
www.manaraa.com

www.manaraa.com

International Handbooks on Information Systems

Series Editors
Peter Bernus, Jacek Blazewicz, Giinter Schmidt, Michael Shaw

Springer-Verlag Berlin Heidelberg GmbH

www.manaraa.com

Peter Bernus . Kai Mertins
Gunter Schmidt (Eds.)

Handbook on Architectures
of Information Systems

With 277 Figures
and 24 Tables

, Springer

www.manaraa.com

Dr. Peter Bemus
Griffith University
School of Computing and Information Technology
Brisbane
Queensland 4111
Australia

Prof. Dr. Kai Mertins
Fraunhofer Institute for Production Systems and
Design Technology
Pascalstr. 8-9
D-I0587 Berlin
Germany

Prof. Dr. Giinter Schmidt
University of Saarland
Information and Technology Management
Postfach 151150
D-66041 Saarbrucken
Germany

ISBN 978-3-662-03528-3

Cataloging-in-Publication Data applied for
Die Deutsche Bibliothek - CIP-Einheitsaufnahme
Bernus, Peter; Mertins, Kai; Schmidt, Gilnter (eds.): Handbook on Architectures of Information
Systems; with 2.77 figures and 2.4 tables I Peter Bernus et al.

(International Handbooks on Information Systems)
ISBN 978-3-662-03528-3 ISBN 978-3-662-03526-9 (eBook)
DOI 10.1007/978-3-662-03526-9

This work is subject to copyright All rights are reserved, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, re
citation, broadcasting, reproduction on microfilm or in any other way, and storage in data
banks. Duplication of this publication or parts thereof is permitted only under the provisions of
the German Copyright Law of September 9, 1965, in its current version, and permission for use
must always be obtained from Springer-Verlag Berlin Heidelberg GmbH.
Violations are liable for prosecution under the German Copyright Law.

@ Springer-Verlag Berlin Heidelberg 1998
Originally published by Springer-Verlag Berlin Heidelberg New York in 1998
Softcover reprint of the hardcover 1st edition 1998

The use of general descriptive names, registered names, trademarks, etc. in this publication does
not imply, even in the absence of a specific statement, that such names are exempt from the
relevant protective laws and regulations and therefore free for general use.

Hardcover Design: Erich Kirchner, Heidelberg

SPIN 10679013 42./2.2.02.-5 4 3 2. 1 0 - Printed on acid-free paper

www.manaraa.com

Foreword

This book is the first volume of a running series under the title International
Handbooks on Information Systems. The series is edited by Peter Bemus,
Jacek Blazewicz, Giinter Schmidt and Mike Shaw. One objective is to give
state of the art surveys on selected topics of information systems theory and
applications. To this end, a distinguished international group of academics
and practitioners are invited to provide a reference source not only for prob
lem solvers in business, industry, and government but also for professional
researchers and graduate students.

It seemed appropriate to start the series with a volume covering some
basic aspects about information systems. The focus of the first volume is
therefore architectures. It was decided to have a balanced number of con
tributions from academia and practitioners. The structure of the material
follows a differentiation betweeen modelling languages, tools and method
ologies. These are collected into separate parts, allowing the reader of the
handbook a better comparison of the contributions.

Information systems are a major component of the entire enterprise and
the reader will notice that many contributions could just as easily have been
included in another volume of the series which is on enterprise integration.
Conversely, some traditionally information systems topics, as organisational
analysis and strategic change management methods, will be treated in more
depth in the Handbook on Enterprise Integration. The two volumes will
complement each other.

The editors of this volume decided to share their work. Peter Bemus
and Giinter Schmidt put up the framework and arranged most of the chap
ters. Kai Mertins took care of some contributions presented in parts three
and four. We think the result is a representative survey on the most im
portant results on Architectures of Information Systems which are presented
by prominent experts. We have to thank not only the contributors for their
effort but also various colleagues who helped us by suggesting relevant top
ics and qualified authors. The editors acknowledge the role of the advisory
board members: Andy Bond, Guy Doumeingts, Keith Duddy, Mark Fox,
Tom Gruber, Ted Goranson, Rudolf Haggenmiiller, Linda Harvey, Matthias
Jarke, Jim Melton, Chris Menzel, John Mylopoulos, Elmar J. Sinz, Riitta
Smeds, Fran<;ois Vernadat.

One of the challenges was a technical one. We had to compile text and
graphics together generated by distributed software systems from allover the
world. Jorg Winckler expertly resolved not only this problem with a number
of supporters who are too many to name them all. We sincerely thank them
for their help and support.

www.manaraa.com

Contents

1 Architectures of Information Systems
Peter Bemus, Gunter Schmidt.

2

Part One: Techniques and Languages for the
Description of Information Systems.

Characterizing Information Modeling Techniques
John Mylopoulos

3 EXPRESS
Reiner Anderl, Harald John, Christian Putter.

4 ORM/NIAM Object-Role Modeling
Terry Halpin

5 Database Language SQL
Jim Melton.

1

11

17

59

81

103

6 Petri Nets
Jean-Marie Proth 129

7 State Transition Diagrams
Jules Desharnais, Marc Frappier, Ali Mili 147

8 PIF The Process Interchange Format
Jintae Lee, Michael Gruninger, Van Jin,
Thomas Malone, Austin Tate, Gregg Yost

9 GPN Generalised Process Networks
Gunter Schmidt

10 The ID EF Family of Languages
Christopher Menzel, Richard J. Mayer

11 The CIMOSA Languages
Fran{:ois Vernadat

12 ConceptBase
Manfred A. Jeusfeld, Matthias Jarke, Hans W. Nissen,

167

191

209

243

Martin Staudt .. 265

13 Conceptual Graphs
John F. Sowa

14 GRAI Grid Decisional Modeling

................ 287

Guy Doumeingts, Bruno Vallespir, David Chen 313

www.manaraa.com

viii

15

16

17

Contents

SOM Modeling of Business Systems
Otto K. Ferstl, Elmar J. Sinz . .

Workflow Languages
Mathias Weske, Gottfried Vossen

Part Two: Software Engineering Methods for
Information System Construction

Software Engineering Methods
Wojtek }(ozaczynski

18 Information Engineering Methodology
Clive Finkelstein

19 Object-Oriented Software Engineering Methods

20

Brian Henderson-Sellers

Euromethod Contract Management
Alfred H elmerich

Part Three: Tools for Analysis and Design

21 An Integrated Enterprise Modeling Enviroment
Florence Tissot, Wes Crump.

22 WorkParty
Walter Rupietta

23 PROPLAN

339

..... 359

381

385

405

429

463

477

481

509

Gunther Schuh, Thomas Siepmann, Volker Levering 529

24 ARIS
August- Wilhelm Scheer 541

25 Bonapart
Herrmann }(rallmann, Gay Wood 567

26 M02GO
}(ai Mertins, Roland Jochem. 589

27 IBM VisualAge
Alois Hofinger .. 601

www.manaraa.com

Contents

Part Four: Reference Models

28 IAA The IBM Insurance Application Architecture

ix

615

Norbert Dick, Jurgen Huschens 619

29 Reference Models of Fraunhofer DZ-SIMPROLOG
Markus Rabe, K ai Mertins 639

30 Configuring Business Application Systems
Stefan Meinhardt, Karl Popp 651

31 The SIZ Banking Data Model
Daniela Krahl, Hans-Bernd Kittlaus . 667

32 ODP and OMA Reference Models
Andy Bond, Keith Duddy, Kerry Raymond 689

Part Five: Selected Topics in
Integrating Infrastructures ..

33 Architectural Requirements of Commercial Products

..... 709

Ted Goranson 711

34 Integration Infrastructures for Agile Manufacturing
Systems
Richard Weston, Ian Coutts, Paul Clements. 733

35 Distributed Processing: DCE, CORBA, and Java
Andy Bond, Keith Duddy, Kerry Raymond

36 System Integration through Agent Coordination
Mihai Barbuceanu, Rune Teigen

List of Contributors .

Index

765

797

827

831

www.manaraa.com

CHAPTER 1

Architectures of Information
Systems

Peter Bemus, Gunter Schmidt

This chapter is an introduction into the scope of the Handbook on Architectures
of Information Systems. We will point out that this volume gives a comprehensive
survey of the most important aspects in this area giving not only a list of available
alternatives but providing also a guidance amidst the many proposals.

1 What is an Information System?

During the past three decades the concept of information system and the
discipline of information systems underwent an evolution, as witnessed by
definitions given by various authors.

Mader and Hagin in 1974 [MH74] defined the information system as the
system which provided " ... transaction processing and decision support ... ".
Brookes et al [BGJL82] defined it as " ... all forms of information collection,
storage, retrieval, processing and communication ... " as " ... the organiza
tion's instrumentation ... informing decision makers of the state of the or
ganization ... including computer based and human implemented systems".
Inmon [Inm86] defines " ... information systems architecture: [as] the mod
elling of the data and processes of a company and how that model relates to
the business of the company ... ". Tatnal et al [TDM95] define an information
system as " ... [a system] comprising hardware, software, people, procedures,
and data, integrated with the objective of collecting, storing, processing,
transmitting and displaying information" and elaborate further by defining
"functional information systems" which support specific business functions,
e.g. accounting, human resource management, manufacturing, marketing,
etc. and "integrated information systems" which provide information flow
across all areas of application. Sandstrom [San88] proposes that the infor
mation system " ... is a designed tool, the purpose of which is to serve people

www.manaraa.com

2 Peter Bemus, Gunter Schmidt

in active work with information and in an organization. It is an organized
construction with subsystems for collecting, processing, storing, retrieving,
and distributing information together, influenced by people. It becomes an
abstraction of a service function when studied". In [SK92] it is proposed
that " ... the field is known now as Information Systems. 'Systems' is the
operative word, since the field includes not only technologies, but people,
processes, and organizational mechanisms as well ... ". All of these definitions
contribute to our understanding of information systems.

The main requirement that an information system must satisfy is to pro
vide and maintain an integrated information flow throughout the enterprise,
so that the right information is available whenever and wherever needed, in
the quality and quantity needed. This generic requirement defined differ
ent tasks for information systems practitioners ,in the past. The first focus
of information systems research and development emerged from the need of
physically enabling the information flow, a level of integration that we call
today physical integration. As physical integration became reality through
the installation of networks and adoption of standards it became possible
to concentrate efforts on the interoperability of applications, i.e. to enable
the various business applications to be combined and interconnected for new
tasks, without having to re-design them. Interoperability is not yet achieved
in many business areas, but practice of the 1990s brought success in some
of them, such as database interoperability. The next challenge after appli
cation integration is business integration, which is the question how various
business functions can be interconnected and efficiently combined through
information systems.

An information system is a system for collecting, processing, storing, re
trieving, and distributing information within the enterprise and between the
enterprise and its environment. The information system is a functionally
defined subsystem of the enterprise, i.e. it is defined through the services it
renders. It may be implemented by the enterprise's own resources (automated
equipment and humans), but parts of the information system's services may
be provided to the enterprise by other enterprises.

2 What is an Information System
Architecture?

An architecture is the integrated structural design of a system, its elements
and their relationships depending on given system requirements. The notion
of an architecture is widely used in the context of buildings and computers.
When applied to information systems we follow the definition of Wall [WaI96]
and assume that an architecture is the abstract plan including the correspond
ing designing process of the system's structure appropriate to the goals of the
system based on design principles and a methodological framework.

Below, we treat the required components of information system archi-

www.manaraa.com

Architectures of Information Systems 3

tecture according to the Generalized Enterprise Reference Architecture and
Methodology (GERAM) [TF97), defining the information system within the
context of the enterprise (see Figure 1 for an overview on GERAM). GERA,
the Generalized Enterprise Reference Architecture is one component and de
fines several important ingredients of architectures for any enterprise entity,
including the information system.

GERA EEMs EMLs
Generalised Enterprise Enterprise Engineering Ente!prise Modelfing Languages

Reference Architecture Methodologies
provide modelling conslnJcts for

identifies concepts of describe process of
modelling of human role,

enterprise integration enterprise IlIlgfneerfng
processes and technologies

I I employs ~ I W utilise 1----1
I implemented in I

GEMCs
Generic Enterprise Modelling

Concepts (Theories and Definitions) •
PEMs define the meaning of EETs enterprise mode/ling consInJcts

Partial Enlelprise Enterprise Engineering

Models I Tools

provide lIIusabie lllference suppod enterprise engineering

models of human roles, support ..
processes and technologies

I used to build I
+

EMs
Enterprise Models

enterprise designs, and models to

EM Os
suppod analysis and operation

Enterprise Modules I
prollide implementable I used to implement I

modules of human + professions, operaVonai
processes, technologies EOS

Enlelprise Operational
Systems

suppod the operaVon of the
particular enterprise

Figure 1: GERAM framework components

Entities involved in the information system's architecture are the enter
prise and its products. Both must be considered for the purposes of informa
tion systems design, implementation, and operation, especially when more
and more systems are designed for virtual enterprises. Thus the information

www.manaraa.com

4 Peter Bemus, Gunter Schmidt

system must support the information flow

• which integrates the value chain, i.e. the business process involved in
producing the product(s) and service(s) of the enterprise,

• which integrates the development of the enterprise throughout its entire
life.

Both entities, i.e. the enterprise and the product have a life history, which
is the history in time of all relevant events, transformations and milestones
that happened or are planned to happen to the entity. Life histories are
unique and particular, therefore a functional abstraction is used to describe
the common functional elements of life histories, called life-cycle. The life
cycle model is defined to contain "phases", which are regarded as types of
transformation rather than as temporal sequences. E.g. GERA defines the
life-cycle phases: identification - concept - requirements - design - detailed
design - implementation - operation and decommissioning. For more details
about the relationships among life-cycles of enterprise entities see [TF97].

ill the early phases the enterprise and its strategies, objectives, mission,
vision, values, policies etc. are defined, and at this stage the separation of
the information system from the rest of the enterprise is not always possible.
Rather, this separation is only one of the possible outcomes of the identi
fication of involved enterprise entities; it happens if the enterprise decides
to outsource information system services to an external provider. Conse
quently (i) methodologies developed for strategic information systems man
agement and strategic management are very similar - both essentially man
aging change, and (ii) information system considerations are important but
not exclusive ingredients in that process. However, if it is demonstrated early
in a change process that it is the information system of the enterprise that
needs change (which is often the case), then specialized information systems
planning methodologies may be utilized. In the ensuing enterprise life-cycle
phases the information system becomes more and more a separate compo
nent; thus information systems specific design and implementation methods
and tools can be made available.

3 Modelling Framework and Views

An architecture has to represent all relevant aspects of a system. These
aspects are defined by models representing different system views. They are
derived from the goals the system has to fulfil and the constraints defined
by the system's environment. The GERA modelling framework describes
what models of the enterprise may need to be created and maintained during
the enterprise's life history. The following views on information systems are
considered essential to be represented by the models of an architecture.

www.manaraa.com

Architectures of Information Systems 5

1. Information, Functions, Co-ordination and Synchronisation. The ma
jor elements of information systems are the data, the functions using or
producing the data, and relationships describing how functions relate
to data and other functions. The modelling framework therefore needs
to represent

• the structure of data,

• the structure and behaviour of functions, and

• the rules for co-ordination and synchronisation (defining the dy
namic properties of a system).

Depending on the actual selection of a modelling language these three
views mayor may not be separate.

2. Organization. Information systems are invariably integrated into orga
nizations. Thus an organizational view needs to describe the relation
between the users and the system. It shows how the information system
is used by an organization in terms of collecting, processing, storing, re
trieving, and distributing information. There are two important issues
which have to be covered: (i) the structure of the organization where
the information system is used has to be represented, i.e. which depart
ment, group, and individual takes over the responsibility for correct
usage of the system, and (ii) how the flow of information is organized
to meet the requirements of the organization.

3. Resources. Resources are used to physically implement and to run
the information system. The most important information processing
resources are software, hardware, and humans to carry out innovative
or otherwise not automated information processing tasks.

Each of these views are represented by models belonging to a life-cycle phase,
such as described in Figure 2. Accordingly

• the models of the "management and control" of the enterprise describe
the service of the information system traditionally rendered by a man
agement information system .

• the models of the enterprise's "service to the customer" describe the
information exchange requirements among the business processes, sup
porting business transactions with product related information.

The purpose of an information system is derived from the mission of the
enterprise which it needs to serve. Requirements level models of the system
describe its functionality (necessary tasks) while design level models propose
a solution to how these tasks can be performed. Design level models are more
detailed and concrete in the phases of detailed design and implementation.

www.manaraa.com

6 Peter Bernus, Gunter Schmidt

Identification

Concept

Requirements

Preliminary design ~~~~.~~
Design

Detailed design

Implementation

Operation

Decommission

Life-cycle /'
phases

Figure 2: GERA modelling framework

Generic } Subdivision
Partial according
Particular to genericity

Instantiation

. Subdivision
- - Customer ServIce } according

____ Management- to purpose
and control of activity

, Software} Subdivision
1 __ · Hard according to physical

ware manifestation

Resource
Organisation

Information

Subdivision

}
according to
modelling
views

M bin Subdivision according
.. ac e } to means of

Human implementation

The first part of the handbook describes a representative selection of
modelling languages supporting the analysis and the design of information
systems, while the third part presents tools which are suitable for model rep
resentation and analysis at each of these levels. It is to be noted, that the
model categories of GERA are not only meant for information systems rep
resentation, but for the modelling of the entire enterprise, and the handbook
describes only those languages which are most important from the point of
view of the integrated information flow in the enterprise, i.e. information
system models. For this reason there is no chapter in this handbook about
"languages to describe functional models of technological equipment", "lan
guages to model factory layouts (detailed design level resource models)" or
"financial models of the resources". Not that these models would be less
important, but because they are beyond the scope of this volume. Even or
ganizational and resource modelling languages are treated less prominently,
for exactly the same reason.

3.1 Models and Methodologies

Using the modelling framework and associated tools information systems
models are built. An architecture has to guarantee that the mission of the

www.manaraa.com

Architectures of Information Systems 7

enterprise is taken into account in the process of design, and that the sys
tem will support the enterprise in achieving its objectives. The models of
the information system should provide sufficient evidence for the designer to
believe that this will indeed be the case. From the models the system prop
erties should be derivable and conversely, the models have to be designed
so that the system requirements can be fulfilled. The second part describes
methodologies for information system construction which are intended to en
sure that the system is consistent and supportive of the enterprise mission.
We also plan to amalgamate enterprise engineering and information systems
engineering methodologies in a forthcoming volume, the Handbook on Enter
prise Integration to broaden the scope of methodologically supported change.

Information systems design methodologies should safeguard that basic
modelling requirements are met. Among these are the following:

• correctness, integrity, consistency, completeness,

• low level of complexity through modularity,

• clarity and ease of communication,

• adequacy, as a basis for system development,

• provision of a guideline for research.

It would be impossible to design good quality models without relying on suit
able reference models. Typical models, or reference models of the information
system are presented in the fourth part. Such models are also often called
"Type 1 Reference Architectures" [BNW96]. Information system architec
tures are defined for the long term and thus have to cope with continuous
change: they must be stable, open, flexible, extendible and should be sup
ported by standards. These properties also ease the re-use of different models,
methods and techniques within the same architectural framework.

Reference models may be provided for certain classes of enterprises on
certain levels. This property is referred to as granularity in [Sch96]. Thus
there exist generic reference models of good practice which are general enough
to cover a broad spectrum of applications, while a more specific model may
be related to a certain class of enterprise, so that all companies belonging
to this class might use the enterprise model as a guideline for more detailed
model building. The most specific model refers to a particular enterprise and
its information system integrating its business functions.

3.2 Building Blocks of Information Systems

Significant resources of the implementation of the information system are:
humans (individuals, groups, and higher level organizational units), and com
puter software and hardware systems.

www.manaraa.com

8 Peter Bemus, Gunter Schmidt

From these this handbook treats in its last part some basic modules, or
product types which are likely to play very significant roles in the build
ing of any information system. The treatment includes a strategic analysis
of the direction of information technology in the enterprise, as well as an
overview of the latest distributed system technologies, and the requirements
and examples for an information integration infrastructure.

Readers familiar with information systems literature will be missing from
this handbook a chapter on organizational analysis, agent modelling, or on
information system evaluation methods. After all the human organization
plays a significant part in the information system, both as user and as pro
ducer of information. Hirschheim et al [HS88] state that "Organizations are
complex social and political entities which defy purely objective analysis. As
information systems form part of organizational reality (i.e. the gestalt) they
cannot be viewed in isolation.". We therefore plan to treat the social or
ganizational domain of information systems, combining analysis and design,
using interpretive approaches in the larger context of enterprise engineering,
including it in a forthcoming volume, the Handbook on Enterprise Integra
tion.

References

[BNW96] P. Bernus, L. Nemes, T. J. Williams (eds.), Architectures for Enter
prise Integration, Chapman and Hall, 1996

[BGJL82] Brookes, C. H. P., Grouse, Ph. J., Jeffrey, D. R., Lawrence, M. J.,
Information Systems Design, Prentice Hall, 1982

[HS88] Hirschheim, R., Smithson, S., Critical analysis of is evaluation, in: N.
Bjorn-Andersen, G. B. Davis (eds.), Information Systems Assessment:
Issues and Challenges, North Holland, 1988, 17-37

[Inm86] Inmon, W. H., Information Systems Architecture: A System Devel
oper's Primer, Prentice Hall, 1986

[MH74] Mader, C. H., Hagin, R., Information Systems: Technology, Eco
nomics, Applications, Science Research Associates, 1974

[San88] Sandstrom, G., Pragmatic quality of information systems, in: N.
Bjorn-Andersen, G. B. Davis (eds.), Information Systems Assessment:
Issues and Challenges, North Holland, 1988, 195-206

[Sch96] Schmidt, G., Informationsmanagement - Modelle, Methoden, Tech
niken, Springer, 1996

[SK92] Stohr, E. A., Konsynsky, B. R., Information Systems and Decision
Processes, IEEE Compo Soc. Press, 1992

[TDM95] Tatnal, A., Davey, B., Mcconville, D., Information Systems: Design
and Implementation, Data Publishing, 1995

www.manaraa.com

[TF97]

[Wal96]

Architectures of Information Systems 9

GERAM Version 1.5, IFIP-IFAC Task Force on Enterprise Integration,
1997

Wall, F., Organisation und betriebliche Informationssysteme, Gabler,
1996

www.manaraa.com

PART ONE

Techniques and Languages for
the Description of Information
Systems

This part is about those techniques and modelling languages which are typi
cally used to specify and design information systems. A modelling language
is a set of constructs for building models of systems, such as an information
system. Models can be prepared of a system at various stages of the sys
tem life-cycle (e.g. specification, design, implementation), and from various
viewpoints (e.g. information, function, resources). Depending on the goal of
modelling the selected modelling language should be adequate or competent
for the purpose of the modelling task. From the point of view of the user of
the language it must be understandable, easy to use, and models developed
using the language must be presentable and easy to interpret for the intended
audience. From the point of view of the use of the language it must have
sufficient expressive power to be able to capture all the information that the
required type of model needs to contain. E.g., if the model of the system
must be used for calculating the minimum time necessary to perform a pro
cess, then a pure functional modelling language which has no notion of time
is inadequate [Sch97).

Modelling languages can be described by their syntax and semantics. The
syntax of a language defines what are the legal constructs of that language.
The most often used form of syntax definition is the Bacus-Naur Form (BNF).
The definition of the language's syntax defines all legal constructs of the
language, including terminal symbols which have no further structure and
expressions, i.e. structures which can be built out of these symbols. The
syntax definition of a language is useful for being able to build a parser
that will examine an arbitrary expression and accept or reject it as a legal
expression of the language. Furthermore, if the expression is legal, then the
parser is able to analyse the structure of the expression and present it in the

www.manaraa.com

12 Gunter Schmidt, Peter Bemus

form of a parse tree or of parse trees determining how the expression is built
using structure definitions given in the BNF.

The semantics of a language defines the meaning of the expressions writ
ten in that language. There are several ways to define the meaning of a
language. Denotational semantics is used to define how expressions formed
in the given language can be mapped to an interpretation or model which
may be a real world or a symbolic system. IT the language is mapped to
an equivalent representation in a suitably selected logic (mostly first order
logic) then the model theory of that logic will be suitable for the definition
of the semantics. It is also customary to define a proof theory that allows
reasoning about the constructs of the langu~ge, in particular proving prop
erties of expressions. The meaning of expressions in the language will then
be determined by what possible models are described by those expressions.
E.g., the meaning of an Entity Relationship Schema is what is common in all
possible implementations of that schema. For further details on denotational
semantics refer to [Sch86].

For languages that describe operations the definition of the semantics can
be using operational semantics. This can be done, for example, by defining
an abstract machine and describing the effect of operations on the state of
that abstract machine. Depending on the reason why the operational seman
tics is developed operations may be described by their pre-conditions and
post-conditions i.e. statements that must be true to be able to execute the
operation, and statements that will be true after the execution as well as
invariants i.e. properties that are not effected by the execution of the oper
ation. Some languages developed for the purpose of specifying the meaning
of languages especially programming languages are the Vienna Definition
Language [Weg72] and Z [Spi88].

The formal specification of the operational semantics for a language can
be used for the unambiguous definition allowing compatible and certifiable
implementations of interpreters for the language. However, for any language
of appreciable size this is a complex matter and due to the nature of these
definitions other more simple definitions of the semantics are also necessary
for end users. Users will still wish to verify the models developed in the
language, but the verification will use several independent means, such as
(i) execution of the models using test examples, (ii) in certain cases formal
proofs, (iii) informal means, such as discussions. Even if the formal speci
fication of the language's semantics was used only by the implementors or
interpreters and not used by the end users of the language, it will be en
sured that the evaluation of these models across different implementations
will produce identical results.

Informal specification of the language semantics is usually given by for
mal presentation of the language syntax accompanied by natural language
description of the intended meanings of the constructs (both in case of de
notational and operational semantics). This is the approach that authors of

www.manaraa.com

Techniques and Languages for the Description of Information Systems 13

this part have taken. The focus is on the question which languages are avail
able to support information modelling and systems description. There is not
one language which is equally suited for all purposes; each language has its
individual strength to meet specific modelling requirements. Some languages
might be applicable for a broad range of applications while others are more
specialised and purpose oriented.

A model of an information system must represent all relevant views on
the system. These are related to the system's elements and their relationship,
i.e. the data and the objects of the application domain, the processes and
activities to be carried out, the organizational environment and the commu
nication needs. This part contains three groups of techniques and languages
according to their purpose or intended use:

• Data and object modelling languages - intended for the modelling of
the information view, i.e. the information that is stored or processed
by the information system at various phases of the system life-cycle,

• Activity and process modelling languages - intended for the specifi
cation, design, and implementation modelling of the function of the
information system,

• Multi view languages - those languages which are suitable for the repre
sentation of multiple views of the information system, possibly serving
the modelling needs of multiple levels of the system life-cycle.

The choice of languages for information system modelling is so great that to
select a few that will get prominent exposition in this book was extremely
hard. We intended to provide examples of languages which can cover the
life-cycle phases of the information system, from initial specification to im
plementation and operation.

Some languages are defined together with a modelling method or tech
nique. A modelling method gives guidance for the user regarding how models
are best built using the language. For example a modelling method would give
specific instructions for information gathering, model building, model quality
control etc. Information systems design methodologies would in turn incor
porate such modelling methods or techniques as components of the method
ology.

This part starts with a contribution by John Mylopoulos. It gives a state
of the art survey on information modelling techniques for knowledge repre
sentation, data modelling, and requirements analysis. It also offers a com
parative framework for information modelling approaches classifying them
according to ontologies, abstraction mechanisms, and available tools.

The next three contributions are related to the group of data and object
modelling languages. Reiner Anderl, Harald John and Christian Putter give
a description of Express which is a formal modelling language for the specifi
cation of static aspects of information representation. Terry Halpin presents

www.manaraa.com

14 Gunter Schmidt, Peter Bemus

Object-Role Modelling also known as ORM or NIAM. This is a language de
signed for modelling and querying an information system at the conceptual
level. Jim Melton surveys the main features of the database language SQL,
in fact SQL2. We did not include SQL3 in this handbook because we felt that
the SQL3 standard was still in developing stage and therefore its description
would better wait until a next edition.

Although the editors were keen to include contributions on the Entity
Relationship (ER) data model, and on the Object Database Management
Group's (ODMG) data model, the contributions did not make this edition.
The extended ER data model is prevalently used as a requirements and design
level data model and is usually followed by a mapping to the relational data
model on the detailed design and implementation levels. The ODMG data
model serves as the common data model of many objectoriented database
management systems. For details of the ER data model the reader is referred
to [Elm94, Bat92] and for ODMG to [ODMG97].

The next four contributions belong to the group of activity and process
modelling languages. Jean-Marie Proth gives an introduction into the the
oretical background of Petri Nets. They are widely used for the evaluation
and simulation of discrete event systems. State Transition Diagrams have
the same focus and are discussed by Jules Desharnais, Marc Frappier, and
Ali Mili. This language has a long tradition being expanded in the recent
past to include features to represent hierarchy, timing, and communication.
Jintae Lee, Michael Gruninger, Yan Jin, Thomas Malone, Austin Tate and
Gregg Yost present PIF, the Process Interchange Format. It is designed
to help automatically exchange process descriptions among different process
tools using a single interface. Recent developments regarding PIF should be
mentioned, especially the likely merger of PIF with the Process Specification
Language (PSL) effort currently underway at the US National Institute of
Standards (NIST). PSL has the ambitious objective to describe manufactur
ing processes such that the semantics of the language is axiomatised in form
of ontological theories. Gunter Schmidt gives a survey on GPN, a language
especially developed for planning and scheduling of processes. GPN is mainly
used for the optimisation of business processes in terms of time and cost. It
directly relates to the framework of scheduling theory. It is possible to build
models which match to the application of optimisation algorithms.

The third group is related to multi view languages and contains seven
contributions. Christopher Menzel and Richard J. Mayer describe the IDEF
family of languages. They cover the syntax and the semantic rules of the
three most widely used IDEFO, IDEFIX, and IDEF3. Note that the lan
guages are used in conjunction with a modelling method, thus the authors
refer to IDEFO, IX and 3 as modelling methods, not languages only. The
CIMOSA languages are presented by Francois Vernadat. These languages are
based on an event driven process model and cover functional, information,
resource and organisational aspects of an enterprise and are defined for all

www.manaraa.com

Techniques and Languages for the Description of Information Systems 15

life-cycle phases. It is expected that this wide scope approach to modelling
would eventually get harmonised with many of the languages less wide in their
coverage, or based on the formal definition of the semantics of these modelling
languages more and more semantic translators would become available. Man
fred A. Jeusfeld, Matthias Jarke, Hans W. Nissen, and Martin Staudt write
on ConceptBase. This is a meta data management system intended to sup
port the cooperative development and evolution of information systems with
multiple interacting formalisms. ConceptBase, which is the implementation
of a version of the Telos specification language, allows its user to extend the
basic modelling formalism, because of the ability of the language to specify
meta-schemas on arbitrary levels (meta, meta-meta, etc.). In spite of the
seemingly higher order nature of the language it has a first order semantics,
which is important for efficiency reasons. The next contribution is on Con
ceptual Graphs (CGs) given by John F. Sowa. These graphs show the logic
designed for the visualization of knowledge represented in computer systems.
Conceptual graphs can be thought of as a graphical notation for First Order
Logic, which determines the expressive power of CGs. In fact CGs have been
proposed as graphical representation of KIF (Knowledge Interchange For
mat) [GF92]. One important application is the possibility to use KIF for the
formal specification of the meaning of different modelling languages through
the expression of their semantics in form of ontological theories. Guy Doume
ingts, Bruno Vallespir, and David Chen describe a language called the GRAI
Grid which has been developed for the modelling of the management system
of enterprises. As the paper shows management is best described in terms
of decisions, thus the name decisional modelling. The uniqueness of this lan
guage lies in the fact that it has been developed on the basis of an ontology
which has proven correct in systems theory and control system theory. This
ontological underpinning, though not fully formalised, gives the language an
advantage over other languages in which the user needs to develop a theory of
what the best representation of management may be. The approach defines
decision centres and their relationships defined by information links and de
cision frameworks. The Semantic Object Model (SOM) is described by Otto
K. Ferstl and Elmar J. Sinz. SOM supports modelling of business systems
on multiple levels of the life-cycle, such as planning, analysis, and design.
The last contribution of this part is given by Mathias Weske and Gottfried
Vossen discussing workflow languages. They survey the requirements, con
cepts, and usage patterns of such languages which are used in commercial
workflow management systems.

Gunter Schmidt, Peter Bemus

www.manaraa.com

16 Gunter Schmidt, Peter Bemus

References

[Bat92j

[Elm94j

[GF92j

Batini, C., Ceri, S. Navathe, S. B., Conceptual Database Design: An
Entity-Relationship Approach, Benjamin Cummings, 1992

Elmashri, N. S., Fundamentals of Database Systems, Benjamin Cum
mings, 1994

Genesereth, M. R., Fikes, R. E., Knowledge Interchange Format, Ver
sion 3.0 Reference Manual, Stanford University, Knowledge Systems
Laboratory, KSL-92-86, June 1992

[ODMG97j Object Database Standard ODMG 2.0, Edited by R. G. G. Cattell, D.

[Sch86j

[Sch97j

[Spi88j

[Weg72j

Barry, D. Bartels, M. Berler, J. Eastman, S. Gamerman, D. Jordan,
A. Springer, H. Strickland, D. Wade, Morgan Kaufmann, 1997

Schmidt, D., Denotational Semantics, Allyn and Bacon, 1986

Schmidt, G., ProzeBmanagement - Modelle und Methoden, Springer,
1997

Spivey, J. M., Understanding Z : a specification language and its for
mal semantics, Cambridge University Press, 1988

Wegner, P., The Vienna Definition Language, ACM Computing Sur
veys 4, 1972, 5-63

www.manaraa.com

CHAPTER 2

Characterizing Information
Modeling Techniques

John Mylopoulos

Information modeling is concerned with the construction of symbolic structures
which capture the meaning of information and organize it in ways that make it
understandable and useful to people. Given that information is becoming a ubiq
uitous, abundant and precious resource, information modeling is serving as a core
technology for information systems engineering. We present a brief history of infor
mation modeling techniques in Computer Science and survey such techniques de
veloped within Knowledge Representation (Artificial Intelligence), Data Modeling
(Databases), and Requirements Analysis (Software Engineering and Information
Systems). The presentation then offers a comparative framework for information
modeling proposals which classifies them according to their ontologies, i.e., the type
of application for which they are intended, the set of abstraction mechanisms (or,
structuring principles) they support, as well as the tools they provide for building,
analyzing, and managing application models. Examples of ontologies include static
worlds consisting of entities and relationships, or dynamic ones consisting of pro
cesses. Generalization, aggregation, and classification are three of the best known
abstraction mechanisms, adopted by many information models and used widely in
information modeling practice. The final component of the paper uses the com
parative framework proposed earlier to assess well known information modeling
techniques, both from a user and a designer perspective.

1 Introduction

Information modeling constitutes a cornerstone for information systems en
gineering and management. To build, operate and maintain an information
system, one needs to capture and represent the meaning and inherent struc
ture of a variety of rich and multi-faceted information, including the system's
subject matter, its internal structure, its operational environment and its
development history. Once captured, the information can be used for com
munication between people - say, the information system owners, users and
developers - but also for building tools which facilitate their management
throughout their lifetime.

www.manaraa.com

18 John Mylopoulos

Development Wald

Figure 1: The Four Worlds of Information Systems Engineering

The DAIDA project [JMSV92], whose aim was the development of an en
vironment for building information systems, characterized this information
in terms of four "worlds", illustrated in Figure 1. The subject world con
sists of the subject matter for an information system, i.e., the world about
which information is maintained by the system. For instance, the subject
world for a banking system consists of customers, accounts, transactions,
balances, interests rates and the like. The system world, on the other hand,
describes the information system itself at several layers of implementation
detail. These layers may range from a specification of functional require
ments for the system, to a conceptual design and an implementation. The
usage world describes the (organizational) environment within which the sys
tem is intended to function and consists of agents, activities, tasks, projects,
users, user interfaces (with the system) and the like. Finally, the development
world describes the process that created the information system, the team
of systems analysts and programmers involved, their adopted methodology
and schedule, their design decisions and rationale. All of this information is
relevant during the initial development of the system but also later on during
operation and maintenance. Consequently, all of this information needs to be
represented, somehow, in any attempt to offer a comprehensive framework
for information systems engineering. This is precisely the task of information
modeling.

Information modeling has been practiced within Computer Science since
the first data processing applications in the '50s, when record and file struc
tures were used to model and organize information. Since then, there have
been literally thousands of proposals for information models, covering many
different areas of Computer Science and Information Systems Engineering.

The purpose of this paper is to propose a comparative framework which
characterizes information modeling techniques and practice and also to hint

www.manaraa.com

Characterizing Information Modeling Techniques 19

queries updates

Information Base Application

Figure 2: Modeling an application with an information base

at some directions for further research. Section 2 of the paper introduces basic
definitions, while section 3 presents a brief (and admittedly biased) history
of the field. Section 4 offers a comparative framework for information models
in terms of the ontologies and abstraction mechanisms they support, also the
tools they offer for modeling, analysis and management. Section 5 assesses
particular information modeling techniques, while section 6 summarizes the
basic thesis of the paper and suggests directions for further research.

2 Preliminaries

Information modeling involves the construction of computer-based symbol
structures which model some part of the real world. We will refer to such
symbol structures as information bases (generalizing the term from others
terms in Computer Science, such as database and knowledge base) . More
over, we shall refer to the part of the real world being modeled by an infor
mation base as its application. Figure 2 illustrates the fundamental nature
of information modeling. Here, the information base is modeling some real
world situation involving several individuals. The atoms out of which one
constructs the information base are assumed to denote particular individuals
in the application, while the associations within the information base denote
real world relationships, such as physical proximity, social interaction, etc.
The information base is queried and updated through special-purpose lan
guages, analogously to the way databases are accessed and updated through
query and data manipulation languages.

It should be noted that an information base may be developed over a
long time period, accumulating details about the application, or changing to
remain a faithful model of a changing application. In this regard, it should be
thought of as a repository that contains accumulated, disseminated, structured

www.manaraa.com

20 John Mylopoulos

information, much like human long-term memory, or databases, knowledge
bases, etc., rather than a mere collection of statements expressed in some lan
guage. Consequently, the organization of an information base should reflect
its contents and its use, not its history. This implies that an information base
can't be simply a collection of statements about the application, added to the
information base over time. Rather, these statements have to be organized
according to their subject matter and interrelated according to their content.

As indicated earlier, an information base used during the development of
an information system will contain models of one or more of the four worlds of
Figure 1. Some of these models may be used during the definition of databases
and applications programs which are part of the information system under
development. Others may be used for operation and maintenance purposes,
e.g., explaining to users how to use the system, or to maintenance personnel
how the system works.

What kinds of symbol structures does one use to build up an information
base? Analogously to databases, these symbol structures need to adhere to
the rules of some information model. The concept of an information model
is a direct adaptation of the concept of a data model. So is the following
definition.

An information model! consists of a collection of symbol structure types,
whose instances are used to describe an application, a collection of operations
which can be applied to any valid symbol structure, and a collection of general
integrity rules which define the set of consistent symbol structure states, or
changes of states. The relational model for databases [Cod70] is an excellent
example of an information model. Its basic symbol structure types include
table, tuple, and domain. Its associated operations include add, remove,
update operations for tuples, and/or union, intersection, join, etc. op
erations for tables. The relational model supports a single integrity rule: No
two tuples within a table can have the same key.

Given this definition, one can define more precisely an information base
as a symbol structure which is based on an information model and describes
a particular application.

Is an information model the same thing as a language, or a notation? For
our purposes, it is not. The information model offers symbol structures for
representing information. This information may be communicated to differ
ent users of an information base (human or otherwise) through one or more
languages. For example, there are several different languages associated with
the relational model, of which SQL is the most widely used. In a similar spirit,
we see notations as (usually graphical) partial descriptions of the contents of
an information base. Again, there may be several notations associated with
the same information model, e.g., the graphical notations used for data flow
diagrams.

The information models proposed and used over the years have been clas-

1 Adopted from Ted Codd's classic account of data models and databases [Cod82)

www.manaraa.com

Characterizing Information Modeling Techniques 21

sified into three different categories. These, roughly speaking, reflect a his
torical advance of the state-of-the-art on information modeling away from
machine-oriented representations and towards human-oriented models which
are more expressive and can cope with more complex application modeling
tasks.

Physical information models. Such models employed conventional
data structures and other programming constructs to model an application
in terms of records, strings, arrays, lists, variable names, B-trees, and the
like. The main drawback of such models is that they force on the program
mer/modeler two sets of conflicting concerns, one related to computational
efficiency, and the other to the quality of the application model. For exam
ple, if one chooses to model persons in the application in terms of 8-character
strings and structure an information base in terms a B-tree, these choices are
driven by efficiency considerations and have nothing to do with the applica
tion.

Logical information models. The early '70s saw several proposals for
logical data models which offered abstract mathematical symbol structures
(e.g., sets, arrays, relations) for modeling purposes, hiding the implementa
tion details from the user. The relational and network models for databases
are good examples of logical models. Such models free the modeler from im
plementation concerns, so that she can focus on modeling ones. For instance,
once the modeler has chosen the relational model, she can go ahead and use
tables to build an information base, without any regard to how these tables
are physically implemented. Unfortunately, logical symbol structures are flat
and unintuitive as to how they should be used for modeling purposes.

Conceptual information models. Soon after logical information mod
els were proposed, and even before relational technology conquered the data
base industry, there were new proposals for information models which offered
more expressive facilities for modeling applications and structuring informa
tion bases. These models (hereafter, conceptual models) offer semantic terms
for modeling an application, such as Entity, Activity, Agent and Goal.
Moreover, they offer means for organizing information in terms of abstrac
tion mechanisms which are often inspired by Cognitive Science [CS88], such
as generalization, aggregation and classification. Such models are supposed
to model an application more directly and naturally [HM81]. In the sequel,
we focus the discussion on conceptual models, since they constitute the state
of-the-art in the field for more than two decades.

3 Brief History

Over the years, there have been thousands of proposals for conceptual models,
most defined and used once, within a single research project. We note in this

www.manaraa.com

22 John Mylopoulos

section some of the earliest models that launched fruitful lines of research
and influenced the state-of-practice. Interestingly enough, these models were
launched independently of each other and in different research areas within
Computer Science.

Ross Quillian [Qui68] proposed in his PhD thesis semantic networks as
convenient directed, labeled graphs for modeling the structure of human
memory (1966). Nodes of his semantic network represented concepts (more
precisely, word senses). For words with multiple meanings, such as "plant",
there would be several nodes, one for each sense of the word, e.g., "plant"
as in "industrial plant", "plant" as in "evergreen plant" , plant as in "I plant
my garden every year", etc. Nodes were related through links representing
semantic relationships, such as isA ("A bird is a(n) animal", "a shark is a
fish"), has ("A bird has feathers"), and eats ("Sharks eat humans"). More
over, each concept could have associated attributes, representing properties,
such as "Penguins can't fly" (Figure 3).

There are several novel ideas in Quillian'S proposal. Firstly, his infor
mation base was organized in terms of concepts and associations. Moreover,
generic concepts were organized into an isA (or, generalization) hierarchy,
supported by attribute inheritance. In addition, his proposal came with a
radical computational model termed spreading activation. Thus, computa
tion in the information base was carried out by "activating" two concepts
and then iteratively spreading the activation to adjacent, semantically re
lated concepts. For example, to discover the meaning of the term "horse
food", spreading activation would fire the concepts horse and food and then
spread activations to neighbors, until the two semantic paths

horse -isA-t animal -eats-t food

horse -isA-t animal -madeOf-t meat -isA-t food

are discovered. These paths correspond to two different interpretations of
"horse food" , the first amounts to something like "the food that horses eat" ,
while the second to "food made out of horses" .

Anima

)yBird-calfIY

Fffither , isa

PerJguin- can't fly

Fish -cal swim

Manma ,.

I
. ISa

lsa

~ShErk
Humal

Figure 3: A simple semantic network

www.manaraa.com

Characterizing Information Modeling Techniques 23

Ole-Johan Dahl proposed in 1966 Simula, an extension of the program
ming language ALGOL 60, for simulation applications which require some
"world modeling". Simula [DH72] allows the definition of classes which serve
as a cross between processes that can be executed and record structures. A
class can be instantiated any number of times. Each instance first executes
the body of the class and then remains as a passive data structure which
can only be operated upon by procedures associated to the class. For exam
ple, the class histo defined in Figure 4 is supposed to compute frequency
histograms for a random variable, Le., how often the random variable falls
within each of n + 1 intervals (-, X 1)' (X l' X 2)' ... (Xn, -).
Each histogram will be computed by an instance of the class.

histo
class histo (X,n);array X; integer n;
begin integer N; integer array T[O;n]
~ocedure tabulate (Y); real Y;

begin integer i; i := 0; ... end;
proce~requency (i); integer i;

frequency := T[i]/N;
integer i;
for i := 0 step 1 until n do

T[i] := 0; N := 0

Figure 4: A Simula class definition

When the class is instantiated, the array T is initialized. Then each instance
keeps count of a random variable's readings through use of the procedure
tabulate, while procedure frequency computes the frequency for interval L

Simula advanced significantly the state-of-the-art in programming lan
guages, and has been credited with the origins of object-oriented program
ming. Equally importantly, Simula influenced information modeling by rec
ognizing that for some programming tasks, such as simulating a barber shop,
one needs to build a model of an application. According to Simula, such
models are constructed out of class instances (objects, nowadays). These are
the basic symbol structures which model elements of the application. Classes
themselves define common features of instances and are organized into sub
class hierarchies. Class declarations can be inherited by subclasses through
some form of (textual, actually) inheritance.

Jean-Raymond Abrial proposed the semantic modelfor databases in 1974
[Abr74J, shortly followed by Peter Chen's entity-relationship model 2 [Che76].

2The model was actually first presented at the First Very Large Databases (VLDB)
Conference in 1975.

www.manaraa.com

24 John Mylopoulos

Figure 5: An entity-relationship diagram

Both were intended as advances over logical data models, such as Codd's
relational model proposed only a few years earlier.

The entity-relationship diagram of Figure 5 shows entity types Customer,
Order and Book, and relationship Places/PlacedBy, Contains/isContai
ned. Roughly speaking, the diagram represents the fact that "Customers
place orders" and "Orders contain books". The Places relationship type is
one-to-many, meaning that a customer can place many orders but each order
can only be placed by a single customer, while Contains is a many-to-many
relationship type ("an order may contain many books, while a book may be
contained in many orders").

Novel features of the entity-relationship model include its built-in types,
which constitute ontological assumptions about the intended modeling appli
cations. In other words, the entity-relationship model assumes that applica
tions consist of entities and relationships. This means that this conceptual
model is not appropriate for applications which violate these assumptions,
e.g., a world of fluids, or ones involving temporal events, state changes, and
the like. In addition, Chen's original paper showed elegantly how one could
map a schema based on his conceptual model, such as that shown on Figure
5, down to a logical schema. These features made the entity-relationship
model an early favorite, perhaps the first conceptual model to be used widely
world-wide.

On the other hand, Abrial's semantic model was more akin to object
oriented data models that became popular more than a decade later. His
model also offers entities and relations, but includes a procedural component
through which one can define procedures for performing four operations on
instances of a class and can attach these to classes.

Douglas Ross proposed in the mid-'70s the Structured Analysis and De
sign Technique (SADTTM) as a "language for communicating ideas" [RS77,
Ros77b] . The technique was used by Softech, a Boston-based software com
pany, in order to specify requirements for software systems.

According to SADT, the world consists of activities and data. Each ac
tivity consumes some data, represented through input arrows from left to

www.manaraa.com

Characterizing Information Modeling Techniques

Farm
Supp lies

Seed &
Vege
Prices

Plan &
Budget

Budget

Weather

Buy n Supplies

Seed~~ C"''''''' l
Plants

f!]1·~t!lUg·mm!lI;""

Figure 6: An SADT activity diagram

Plan

Pick Veaetables
Produce •

Vegetables l.. Extract
Seeds

:J

25

right, produces some data, represented through output arrows from left to
right, and also has some data that control the execution of the activity but
are neither consumed nor produced. For instance, the Buy Supplies activ
ity of Figure 6 has input arrow Farm Supplies, output arrows Fertilizer
and Seeds and control arrows Prices and Plan & Budget . Each activity
may be defined through a diagram such as that shown in Figure 6 in terms
of sub-activities. Thus Growing Vegetables is defined in terms of the sub
activities Buy Supplies, Cultivate, Pick Produce and Extract Seeds.

One of the more elegant aspects of the SADT conceptual model is its
duality: Data are described in ,terms of diagrams with input, output and
control arrows too, but these now represent activities which can produce,
consume or affect the state of a given datum.

Ross' contributions include a conceptual model with some advanced on
tological assumptions. Unlike the entity-relationship model, for SADT ap
plications consist of a static and a dynamic part. He also was influential
in convincing software engineering researchers and practitioners alike that it
pays to have diagrammatic descriptions of how a software system is to fit
its intended operational environment. This contributions helped launch Re
quirements Engineering as an accepted early phase in software development.

After these pioneers, research on conceptual models3 and modeling broad-

3The term "conceptual modelling" was used in the 70s either as a synonym for seman
tic data modelling or in the technical sense of the ANSI /X3/SPARC report [ANSI75]
where it referred to a model that allows the definition of schemata lying between external

www.manaraa.com

26 John Mylopoulos

ened considerably, both in the number of researchers working on the topic,
and in the number of proposals for new conceptual models. In Databases,
dozens of new semantic data models were proposed, intended to "capture
more of the semantics of an application" [Cod79]. For instance, RMjT
[Cod79] attempts to embed within the relational model the notion of en
tity and organize relations into generalization hierarchies. SDM (Seman
tic Data Model) [HM81], offers a highly sophisticated set of facilities for
modeling entities and supports the organization of conceptual schemata in
terms of generalization, aggregation, as well as a grouping mechanism. Taxis
[MBW80] adopts ideas from semantic networks and Abrial's proposal to orga
nize all components of an information system, even exceptions and exception
handling procedures, in terms of generalization hierarchies (taxonomies).
[TL82] presents an early but thorough treatment of data models and model
ing, and [HK87, PM88] survey and compare several semantic data models.

The rise of object-oriented programming as the programming paradigm
of the '80s (and '90s) led to object-oriented databases, which adopted some
ideas from semantic data models and combined them with concepts from
object-oriented programming [ABDDMZ89, ZM89]. Early object-oriented
data models supported a variety of sophisticated modeling features (e.g.,
Gemstone was based on the information model of Smalltalk), but the trend
with recent commercial object-oriented database systems seems to converge
towards the information model of popular object-oriented programming lan
guages, such as C++. As such, object-oriented data models seem to be
taking a bold step backwards with respect to conceptual modeling. The rise
of the internet and the World Wide Web has created tremendous demand
for integrating heterogeneous information sources. This has led to an em
phasis on metamodeling techniques in Databases, where one is modeling the
meaning and structure of the contents of different information sources, such
as files, databases, digitized pictorial data etc., rather than an application
[KS94, Wid95].

Within Artificial Intelligence (AI), semantic network proposals prolifer
ated in the seventies [Fin79], including ones that treated semantic networks
as a graph-theoretic notation for logical formulas. During the same period,
[Min75] introduced the notion of frames as a suitable symbol structure for
representing common sense knowledge, such as the concept of a room or
an elephant. A frame may contain information about the components of the
concept being described, links to similar concepts, as well as procedural infor
mation on how the frame can accessed and change over time. Moreover, frame
representations focus specifically on capturing common sense knowledge, a
problem that still remains largely unresolved for Knowledge Represntation
research. Examples of early semantic network and frame-based conceptual
models include KRL [BW77], KL-ONE [Bra79] and PSN [LM79].

views, defined for different user groups, and internal ones defining one or several physical
databases. The term was used more or less in the sense discussed here at the Pingree Park
workshop on Data Abstraction, Databases and Conceptual Modelling, held in June 1980

www.manaraa.com

Characterizing Information Modeling Techniques 27

Since the early eighties there have been attempts to integrate ingredients
from semantic networks, logic and procedural representations. An early ex
ample of this trend is Krypton [BFL83] and later terminological languages
such as CLASSIC [BBMR89]. A CLASSIC information base consists of two
components: a terminological component where terms are described, and
an assertional one including assertions about the application. For exam
ple, a CLASSIC information base may include a description for the term
Bachelor, which uses other more primitive terms such as Married, Male,
and Person, along with an assertion involving a particular bachelor, for ex
ample, Bachelor (J ohn). The '80s also witnessed a growing interest in the
study of tradeoffs between the expressiveness and the tractability of knowl
edge representation techniques [BL85]. Such studies are now serving as major
methodological vehicles in Knowledge Representation research. Knowledge
Representation is thoroughly presented in [BL85b], reviewed in [Lev86] and
overviewed in [KM91].

Requirements Engineering was born around the mid-'70s, partly thanks
to Ross and his SADT proposal, partly thanks to others such as [BT76]
who established through empirical study that "the rumored 'requirements
problems' are a reality". The case for world modeling was articulated elo
quently by Michael Jackson [J ac78], whose software development methodol
ogy [Jac83] starts with a "model of reality with which [the system] is con
cerned." The use of conceptual models for information systems engineering
was launched by [So179], while Bubenko's Conceptual Information Model, or
CIM [Bub80] is perhaps the first comprehensive proposal for a formal re
quirements modeling language. Its features include an ontology of entities
and events, an assertional sublanguage for specifying constraints, including
complex temporal ones. Greenspan's RML (Requirements Modeling Lan
guage) [GMB82, Gre84, BGM85, GBM86]. Attempts to formalize SADT by
using ideas from knowledge representation and semantic data models. The
result is a formal requirements language where entities and activities are orga
nized into generalization hierarchies, and which in a number of ways predates
object-oriented analysis techniques by several years.

During the same period, the GIST specification language [BGW82]' de
veloped at lSI over the same period as Taxis, was also based on ideas from
knowledge representation and supported modeling the environment; it was
influenced by the notion of making the specification executable, and by the
desire to support transformational implementation. It has formed the basis
of an active research group on the problems of requirements description and
elicitation (e.g., [JFH92]). ERAE [DHLPR86] was one of the early efforts
that explicitly shared with RML the view that requirements modeling is a
knowledge representation activity, and had a base in semantic networks and
logic. The KAOS project constitutes another significant research effort which
strives to develop a comprehensive framework for requirements modeling and
requirements acquisition methodologies [DFL93]. The language offered for

www.manaraa.com

28 John Mylopoulos

requirements modeling provides facilities for modeling goals, agents, alter
natives, events, actions, existence modalities, agent responsibility and other
concepts. KAOS relies heavily on a metamodel to provide a self-descriptive
and extensible modeling framework. In addition, KAOS offers an explicit
methodology for constructing requirements which begins with the acquisi
tion of goal structures and the identification of relevant concepts, and ends
with the definition of actions, to be performed by the new system or existing
agents in the system's environment.

The state-of-practice in Requirements Engineering was affected by SADT
and its successors. Data flow diagrams (e.g., [DeM79]) adopt some of the
concepts of SADT, but focus on information flow within an organization,
as opposed to SADT's all-inclusive modeling framework. The combined
use of data flow and entity-relationship diagrams has led to an information
system development methodology which still dominates teaching and prac
tice within Information Systems Engineering. Since the late 'SOs, however,
object-oriented analysis techniques [SMSS, CY90, RBPEL91, Boo94] have
been introduced and are becoming increasingly influential. These techniques
offer a more coherent modeling framework than the combined use of data
flow and entity-relationship diagrams. The framework adopts features of
object-oriented programming languages, semantic data models and require
ments languages. A recent proposal, the Unified Modeling Language (UML)
[UML97] attempts to integrate features of the more pre-eminent models in
object-oriented analysis, thereby enhancing reusability.

An early survey of issues in Requirements Engineering appears in [Rom85]
and the requirements modeling terrain is surveyed in [Web87]. [TD90] in
cludes a monumental in volume tutorial on Requirements Engineering. Sev
eral recent textbooks on the same topic, e.g., [Dav93], touch on modeling and
survey a broad range of techniques.

The histories of conceptual modeling within the areas reviewed here did
not unfold independently of each other. An influential workshop held at Pin
gree Park, Colorado in 1980 brought together researchers from Databases,
AI, Programming Languages and Software Engineering to discuss conceptual
modeling approaches, compare research directions and methodologies [BZ81].
The workshop was followed by a series of other interdisciplinary workshops
which reviewed the state-of-the-art in information modeling and related top
ics ([BMS84, BMS6, STS9]). The International Conference on the Entity
Relationship Approach4 , held annually since 1979, has marked progress in
research as well as practice on the general topic of conceptual modeling.

Several papers and books provide surveys of the whole field of Concep
tual Modeling, or one or more of its constituent areas. [LZ92] includes a fine
collection of papers on conceptual modeling, most notably a survey of the
field [RC92], while [BBJW97] offers a more recent account. [MB8S] surveys
the interface between AI and Databases, much of it related to conceptual

4Recently renamed International Conference on Conceptual Modeling(ER)

www.manaraa.com

Characterizing Information Modeling Techniques 29

modeling. Along a similar path, [Bor90] discusses the similarities and differ
ences between knowledge representation in AI and semantic data models in
Databases.

It should be acknowledged that this discussion leaves out other areas
where conceptual modeling has been used for some time, most notably En
terprise Modeling (e.g., [Ver84, BN96, Ver96]) and Software Process Modeling
(e.g., [MP93]).

4 A Comparative Framework for Conceptual
Models

The proliferation of proposals for new conceptual models calls for some form
of a comparative framework, so that one can classify new proposals, or evalu
ate whether a particular candidate is appropriate for a particular information
modeling task. This section proposes such a framework structured along three
dimensions:

Ontologies. As we saw from the previous section, each conceptual model
makes some assumptions about the nature of the applications it is intended
to model. Such ontological assumptions determine the built-in terms offered
by a conceptual model, and therefore its range of applicability.

Abstraction mechanisms. These determine the proposed organization
of an information base using a particular conceptual model. This is a funda
mental concern for conceptual models because organizations that are natural
and intuitive lead to more usable information bases which can be searched
effectively and can grow without users losing track of their contents.

Tools. IT an information base is to scale up and remain useful for a long
time, it needs tools which perform information base operations efficiently,
also ones that support analysis of its contents, to give users confidence that
they are correct and consistent.

The reader may have noticed that the proposed characterization ignores
the methodologies supported by a particular conceptual model. This omission
is deliberate. All methodologies that have been proposed, including ones used
in practice, are specific to particular uses one intends for an information base.
For instance, using an information base for requirements engineering, e.g.,
[CY90], calls for a very different methodology than, say, one used for data
modeling [BLN92], or knowledge engineering in AI [HWL83].

www.manaraa.com

30 John Mylopoulos

4.1 Ontologies

Ontology is a branch of Philosophy concerned with the study of what ex
ists. General ontologies have been proposed since the 18th century, including
recent ones such' as [Car67) and [Bun77). For our purposes, an ontology
characterizes some aspects of a class of applications. For instance, an ontol
ogy for time may characterize the temporal aspect of many applications in
terms of points and temporal relations among them. Likewise, an ontology
for manufacturing, may consist of (industrial) processes, resources and the
like. Research within AI has formalized many interesting ontologies and has
developed algorithms for generating inferences from an information base that
adopts them (e.g., [VKV89)). Along a very different path, [Wan89, WW90)
study the adequacy of information systems to describe applications based on
a general ontology, such as that proposed in [Bun77).

Note that a conceptual model offers built-in generic symbol structures, or
terms for modeling applications. For instance, the entity-relationship model
offers two built-in, generic terms: entity and relationship for modeling
applications which are assumed to consist of entities and relationships. The
reader should note that comparison of conceptual models on the basis of the
terms they offer is highly dependent on problems of synonymy, homonymy
etc. In other words, two different models may be appropriate for the same
class of applications, but use different terms to talk about them. We'd like to
have a framework which deems these conceptual models as being comparable
with respect to the intended subject matter. Ontologies help us achieve
precisely this objective.

In order to give some structure to a broad and highly multidisciplinary
topic, we focus on four rather coarse-grained ontologies, based on a broad
survey of conceptual models and the primitive terms they support.

Static Ontology. This encompasses static aspects of an application, by
describing what things exist, their attributes and interrelationships. Most
conceptual models assume that the world is populated by entities which are
endowed with a unique and immutable identity, a lifetime, a set of attributes,
and relationships to other entities. Basic as this ontology may seem, it is by
no means universal. For instance, [Hay85) offers an ontology for material
substances where entities (say, a litter of water and a pound of sugar) can
be merged resulting in a different entity. Also note that very successful
models, such as Statecharts [Har87J, don't adopt this ontology, because they
are intended for a very different class of applications (real-time systems).
Nor is this ontology trivial. For certain applications it is useful to distinguish
between different modes of existence for entities, including physical existence,
such as that of the author of this paper, abstract existence, such as that of
the number 7, non-existence, characteristic of Santa Claus or my canceled
trip to Japan, and impossible existence, such as that of the square root of -1
or the proverbial square circle [Hir89).

www.manaraa.com

Characterizing Information Modeling Techniques 31

Spatial information is particularly important for applications which in
volve the physical world. Such information has been modeled in terms of 2-
or 3-dimensional points or larger units, including spheres, cubes, pyramids
etc. (for instance [Dav86]). A hard modeling problem for spatial information
is its inherently approximate nature, calling for special modeling provisions
[TM96].

Dynamic Ontology. Encompasses dynamic aspects of an application in
terms of states, state transitions and processes. Various flavors of finite state
machines, Petri nets, and more recent statecharts have been offered since the
'60s as appropriate modeling tools for dynamic discrete processes involving a
finite number of states and state transitions. Such models are well-known and
well-understood and they have been used successfully to describe real-time
applications in telecommunications and other fields.

A popular alternative to state transition ontologies is founded on the no
tion of process. A process is a collection of partially ordered steps intended
to achieve a particular goal [CK092]. Processes are executed by agents, hu
man or otherwise. Under different guises, processes have been modeled and
studied in several different areas, including software processes (Software En
gineering), activities (Requirements Engineering), plans (AI), tasks (CSCW),
office procedures (Office Information Systems), and business processes (Man
agement Studies). Depending on their intended use, process models generally
focus on "how" or "what" information. Models intended to support the exe
cution of the process focus on the "how", while models intended for analysis
(such as consistency checking) focus on the "what".

Temporal information is fundamental to the nature of dynamic worlds.
Such information, for example "Maria graduated before her 20th birthdate"
can be modeled in terms of points and associated relations. The tempo
ral dimension of events, such as Maria's graduation, can be represented in
terms of a single time point (for instantaneous events) or two time points.
These points can then be related through relations such as before, after.
[All84] proposes a different ontology for time based on intervals, with thir
teen associated relations such as overlap, meet, before and after. A
related concept is that of causality. Causality imposes existence constraints
on events: if event A causes event B and A has been observed, B can be
expected as well, possibly with some time delay. Within AI, formal models
of causality have been offered as far back as [McC68] and [Rie76].

Intentional Ontology. Encompasses the world of agents, and things
agents believe in, want, prove or disprove, and argue about. This ontology
includes concepts such as agent, issue, goal, supports, denies, subgoalOJ, etc.
The subject of agents having beliefs and goals and being capable of carrying
out actions has been studied extensively in AI, e.g., [MS82] addresses the
problem of representing propositional attitudes, such as beliefs, desires and

www.manaraa.com

32 John Mylopoulos

intentions for agents. The importance of the notion of agents, especially for
situations involving concurrent actions, has a long tradition in requirements
modeling, beginning with the work of Feather [Fea87] and continuing with
recent proposals, such as [DFL93].

Modeling the issues which arise during complex decision making is dis
cussed in [CB88]. The application of such a framework to software design,
intended to capture the arguments pro and con, and the decisions they result
in, has been a fruitful research direction since it was first proposed ~n [PB88],
with notable refinements described in [MYBM91] and [LL91]. For example,
[MYBM91] models design rationale in terms of questions (Q), options (0)
and criteria (C). Figure 7 shows the structure of a decision space concern
ing the design of an Automated Teller Machine (ATM). The four questions
raised, have associated options. Choice among them will be done by using
an associated list of criteria. For example, for the question of what range of
services will be offered (by the ATM under design), there are two options, full
range and cash only, and two criteria for choosing among them. The cash
only option raises an auxiliary question, whether services can be restricted
by having switchable machines, where services can be "masked out", or by
having machines which are inherently limited in the services they offer. On a
complementary front, [GF95] studies the types of contributions a stakeholder
can make to an argumentation structure such as the one shown in Figure 7.

More recently, [Chu93] proposes softgoals as a suitable concept for model
ing software non-functional requirements, such as software usability, security
or user-friendliness. Softgoals are supposed to be ill-defined goals, without
a clear-cut definition of when they have been satisfied (hence their name).
Nevertheless, they play an important role in many applications and many
information system development projects.

Social Ontology. This ontology covers social settings, permanent orga
nizational structures or shifting networks of alliances and inter-dependencies
([Gal73, Min79, Sco87]). Traditionally, this ontology has been characterized
in terms of concepts such as actor, position, role, authority, commitment
etc. [Yu93, YM94, YML96] proposes a novel set of concepts which focus on
strategic dependencies between actors.

Such a dependency exists when an actor has committed to satisfy a goal or
softgoal, carry out a task, or deliver resources to another actor. Using these
concepts, one can create organizational models which do provide answers to
questions such as "why does the manager need the project budget?". Such
models can serve as starting points in the analysis of an organizational setting,
which precedes any reengineering of business processes, and the subsequent
development of software systems.

Figure 8 shows a simple strategic dependency graph between two actors,
a (car) owner and a body shop. The dependencies shown on the graph
include a goal dependency, "Owner depends on the Body shop to fix the car" ,

www.manaraa.com

Characterizing Information Modeling Techniques

r--_____ -"'_---,:~cl C: Variety of service

0 : Fixed machine

Q: How to select 1--.......-1
cash amount? '-;:---'-'--"--___ =;..1

Q: Where to retrieve
cash and receipt from

Q: How to initiate I_-==~

the transaction?

0: Select cash amou

33

Figure 7: Modeling design rationale in terms of questions, options and criteria
[MYBM91]

a resource dependency, "Body shop depends on owner to pay for repairs" ,
and two soft goal dependencies, "Owner depends on Body shop to maximize
estimates" , while "Body shop depends on Owner to continue business" .

4.2 Abstraction Mechanisms

By definition, abstraction involves suppression of (irrelevant) detail. For
example, the generic concept of person can be abstracted from those of par
ticular persons (George, Maria, Chryss, ...) by suppressing personal details
such as each person's age, preferred food, etc., so as to concentrate on com
monalities: persons have an address, an age ranging from 0 to 120, etc.
Likewise, the concept of employee might be abstracted from those of secre
tary, teacher, manager and clerk by suppressing particular features of these
concepts (teachers teach a subject, managers manage some group of people)
and focus on commonalties (all employees have a salary, a position, a job
description, ...)

Abstraction mechanisms organize the information base and guide its use,
making it easier to update or search it. Not surprisingly, abstraction mech
anisms have been used in Computer Science even before the advent of con
ceptual models. For instance, abstraction was used heavily in pioneering
programming languages such as ALGOL 60 and LISP. Of course, the source
of ideas for suitable abstraction mechanisms has to be grounded in Cognitive
Science [CS88) . In the discussion that follows, we list for each abstraction
mechanism one reference which surveys the literature (when available) .

www.manaraa.com

34 John Mylopoulos

Conti nue bus ness

Figure 8: Strategic dependencies between actor

Classification (see [MM92]). This is a fundamental abstraction mecha
nism for human cognition, and it has proven just as fundamental for concep
tual models and information bases. According to this abstraction mechanism,
sometimes called instance OJ, an atom (entity, relationship, attribute, activ
ity or whatever) within an information base is classified under one or more
generic atoms (classes), thereby making it an instance of these classes. In
stances of a class share common properties. For example, all atoms classified
under Person, have an address and an age, while others classified under Dog,
possess a master (sometimes) and have four legs.

Classification has been used under a number of guises to support syntactic
and semantic consistency. For example, sorts in Logic [Coh89] and types
in programming languages are used mostly for syntactic checking. So do
tables or relations in the relational model. In semantic networks and object
oriented information models, classification distinguishes between tokens or
objects, which represent particular individuals in the application, and types
or classes which represent generic concepts.

Besides syntactic and semantic consistency, classification can also lead
to more efficient search algorithms for a knowledge base. If, for instance,
the system is looking for an object whose student number is 98765432 and
it is known that only students have student numbers, then only the set of
instances of Student must be searched.

Some information models (e.g., Smalltalk) allow classification to be re
cursive; i.e., classes may (or must) themselves be instances of other classes.
In this case the class Person might be an instance of the (meta)class Ani
mateClass which has as instances all classes describing animate entities.

In such situations classification may be unconstrained, allowing both a
token and a class that it is an instance of to be instances of some common
class, or constrained in the sense that there is a linear order of strata (or
levels) so that every atom in the information base belongs to a unique level
and an atom at level T can only be an instance of classes at level T + 1. To
allow for classes which have themselves as instances, such as Class, the class

www.manaraa.com

Characterizing Information Modeling Techniques 35

that has all classes as instances, one needs a special w level.
Telos [MBJK90j adopts such a stratified classification scheme and uses it

to classify not only entities but all atoms in an information base, including
attributes and relationships. Figure 9 shows portions of a Telos informa
tion base. The entity5 EntityClass is a metaclass at level 2 of the Telos
stratosphere (as indicated by its superscript). Its instances include classes
Student, but also Person and Professor (the latter instanceDf arrows are
not shown on the diagram). Likewise, RelationshipClass is a binary rela
tionship metaclass relating entity classes to other entity classes.

ClassCO

Rei c=iionshi pCI ass 2

~~T_-'-:~'
Tass:>s°

EconomicsO

'" Dimitriso

Figure 9: Multi-level classification of entities and relationships in Telo

Going one level down, Student is an instance of SimpleEntityClass but
also of the w-class Class (which actually, has all classes and metaclasses
shown in the figure as instances, thought this is not shown). Parent and
Teacher are relationship classes and instances of RelationshipClass. Fi
nally, looking at level 0, Chryss is a student and has three teachers and one
parent. Note that the four relationships Chryss participates in have their
own labels (so that one can distinguish between the three teachers of Chryss

5For consistency, we are using here the terminology introduced earlier in this paper,
rather than used the one in [MBJK90j

www.manaraa.com

36 John Mylopoulos

as her Theory, Economics and Accounting teachers respectively.)
A major advantage of any classification scheme which allows for meta

classes is that it is in a strong sense extensible. If the modeler wants to use
the concept of process to the information base of Figure 9, she can do so
by adding the metaclass ProcessClass (with associated information, whose
nature depends on the information model being used) and then use it the
same way EntityClass and RelationshipClass are on Figure 9. This is
the essence of metamodeling. For more discussion on this topic, see [JJNS98]
in this volume.

Classification mechanisms offered in different conceptual models vary wide
ly as to the features they offer and the overall structure they impose on the
information base. In most proposals, classification has only two levels (to
kens/type, or instances/class, tuples/relation, etc.) Some proposals treat
classes like atoms which need to be classified under metaclasses (see above).
In other schemes, including Telos, everything in an information base needs
to be classified under one or more classes. Moreover, some schemes allow
multiple classifications for an atom, such as placing the token Chryss under
classes Student, Employee and HockeyPlayer, even though these classes
are unrelated to each other. Lastly, some classification schemes treat clas
sification as an invariant property of each atom, while others allow classifi
cations of an atom to change over its lifetime in the information base. For
instance, the entity George might be classified first under Newborn, then
Child, Adolescent, Adult during the lifetime of an information base, re
flecting changes in the application being modeled.

Generalization (see [Bra83bJ). As we have already seen from previous
sections, units in an information base which represent generic concepts have
been traditionally organized into taxonomies, referred to as isA 6 or general
ization hierarchies, which organize all classes in terms of a partial order re
lation determined by their generality/specificity. For example, GradStudent
may be declared as a specialization of Student ("Every grad student is a
student"), which is in turn a specialization of Person ("Every student is a
person").

Inheritance is a fundamental ingredient of generalization hierarchies. In
heritance is an inference rule that states that attributes and properties of
a class are also attributes and properties of its is-a descendants. Thus the
address and age attributes of Person, are inherited by Student and, tran
sitively, by GradStudent. This inheritance may be strict in the sense that
constraints on attributes and properties can be strengthened but cannot be
overridden, or default, in which case overriding is allowed. For example, if the

6Note that the literature on Conceptual Modeling has generally treated isA as a se
mantic relationship between generic atoms, such as "a shark is a fish", rather than as a
relationship between an instance and its class, as in "Clyde is a fish". In AI, some of the
frame- based representations used isA ambiguously to represent both generalization and
classification relationships.

www.manaraa.com

Characterizing Information Modeling Techniques 37

age of persons has been declared to range from 0 to 100 years old, with strict
inheritance the age of students can be declared to range from 5 to 80 but not
from 5 to 120. Default inheritance, on the other hand, allows students to be
120 years old, though persons were declared to live only up to 100 years, or
penguins to not fly though birds were declared to do so.

Generally, the organization of classes/concepts into a generalization hier
archy is left entirely up to the human modeler. An interesting alternative to
this practice is offered by terminological logics [BBMR89], where term def
initions can be automatically compared to see if one is more general ("sub
sumes") the other. For instance, the term "patients with age under 64" is
subsumed by "patients with age under 70" and is disjoint from "persons with
age over 72". Within such conceptual models, generalization hierarchies can
be automatically computed, simplifying the task of extending but also search
ing an information base.

Aggregation (see [Mot93]). This mechanism, also called partOj, views
objects as aggregates of their components or parts. Thus, a person can be
viewed as a (physical) aggregate of a set of body parts - arms, legs, head
and the like - or as a (social) aggregate of a name, address, social insurance
number etc. Components of an object might themselves be aggregates of yet
other simpler components. For example, the address of a person might be
declared as the aggregation of a street number, street name, city, etc.

There is psychological evidence that most of the information associated
with a concept is of the aggregation variety [MJ76]. Within Computer Sci
ence, [KBG89] proposed a formalization of aggregation within his object
oriented data model in order to move away from pointer-type references be
tween objects. In his proposal, components may be dependent on the aggre
gates to which they belong. This means that if an aggregate is removed from
the information base, so are its dependent components. Likewise, a com
ponent may be exclusive, which means that it can only be part of a single
aggregate. In addition, aggregation may be strictly hierarchical or recursive.
For instance, an employee may be defined as the aggregation of a depart
ment, a salary and another employee who serves as the employee's manager.
Finally, an atom in the information base may be treated as an aggregate in
more than one ways.

Figure 10 models an organization as an aggregate in two complementary
ways: as a hierarchical aggregation of different managerial levels (managerial
perspective), or as a vertical aggregation of departments serving different
functions, such as production and marketing (administrative perspective).
The notation used on Figure 10 is adopted from [EKW92] and it depicts
aggregations in terms of triangles. Moreover, the allowable (min, max) car
dinality of each aggregate is indicated by the two numbers shown next to
each aggregation link. In particular, looking at the administrative perspec
tive, an organization may have zero to one finance, production, sales, and
administrative departments respectively.

www.manaraa.com

38 John Mylopoulos

Figure 10: Multiple decompositions of the concept of organization

Contextualization. A problem inherent in any modeling task is that
there are often differences of opinion or perception among those gathering,
or providing information. Contextualization can be seen as an abstraction
mechanism which allows partitioning and packaging of the descriptions being
added to an information base. In a situation where one is modeling how
patients are admitted into a hospital, this abstraction mechanism allows rel
ative descriptions of the process, i.e., the process according to a particular
person, or even a hospital unit, rather than insisting on a description which
captures all the viewpoints in one shot.

Various forms of a contextualization mechanism have been used routinely
in advanced information system applications [NW94]. Since the early days
of AI, contexts have found uses in problem solving, as means for representing
intermediate states during a search by a problem solver in its quest for a so
lution [Hew71], in knowledge representation, as representational devices for
partitioning a knowledge base [Hen79]. In CAD and Software Engineering,
workspaces, versions and configurations [Kat 90] are by now generally ac
cepted notions offering respectively mechanisms for focusing attention, defin
ing system versions and means for defining compatible system components.
Database views have been traditionally used to present partial, but consis
tent , viewpoints of the contents of a database to different user groups. More
recently, such mechanisms have been adopted for object-oriented databases
[SLT91, AB91 , Ber92] . Programming language modules, scopes and scope
rules determine which parts of a program state are visible to a particular

www.manaraa.com

Characterizing Information Modeling Techniques 39

program segment. Perspectives, have been proposed as a structuring mech
anism for hypertext bases [PT93]. Most recently, the modeling of relative
viewpoints has emerged as a significant research issue in requirements engi
neering as well as in distributed, heterogeneous databases. [FK92] describes
early and influence work on this issue from a Requirements Engineering per
spective. Using viewpoints to relativize descriptions in an information base is
serving as a mechanism for dealing with inconsistency in requirements spec
ifications [FG93, NKF93, RF94].

Materialization (see [PZMY94j). This abstraction mechanism relates a
class, such as CarModel, to a more concrete class, such as Car. Other exam
ples of materialization include the relationship between a (theatrical) play,
say "Hamlet", and particular productions of the play, say the one now play
ing at the Royal Alexandra theater. These can be further materialized by
particular shows of each production, such as the matinee show on October 26,
1997. This is clearly a very useful abstraction mechanism for manufacturing
applications, which involve multiple, often indistinguishable entities, of the
same type. As argued in [PZMY94], the formal properties of materialization
constitute a combination of those of classification and generalization.

Normalization. Special, extraordinary circumstances abound in any ap
plication, and considerably complicate its understanding, especially so during
early modeling stages. This has led to proposals for a normal-case first ab
straction [Bor85b], where only the common/typical entities, states and events
in the application are modeled first, while successive pass(es) deal with the
special/exceptional situations and how they are to be treated. This abstrac
tion mechanism is particularly successful if there is some systematic way to
find the abnormal cases and moreover, there is a way to specify the excep
tional circumstances as footnotes/annotations that do not interfere with the
first reading. Similarly, it is not uncommon to find examples were general
ization leads to over-abstraction (e.g., "all patients are assigned to rooms"),
so that a subclass may contradict some aspect of one of its ancestors (e.g.,
"emergency-room patients may be kept on stretchers in hallways"). [Bor88]
analyzes the conflicting desiderata for subclass hierarchies that allow such
'improper specialization', and then suggests a simple language facility to ac
commodate them, while maintaining the advantages of inheritance, and even
subtyping.

Note however that the above papers deal with the issue of exceptions only
at the level of (database) programming languages, albeit ones supporting con
ceptual modeling. The issue of exceptions in specifications has however been
considered in [FG93] and [Sch93], among others. It seems interesting to con
trast and perhaps combine these approaches.

www.manaraa.com

40 John Mylopoulos

Parameterization. This is a well known abstraction technique, im
ported from Mathematics, that has been used with great success in pro
gramming and formal specification languages such as Z [Spi89]. Among re
quirements modeling languages, ERAE and its successors [DDR92] support
parameterization to enhance the reusability of requirements. For example,
one may define a requirement model with two parameters, resource and
consumer, which includes actions such as request and grant and constraints
such as "a grant will take place for an available resource if there is a wait
ing consumer". This model can then be instantiated with resource bound to
book and customer bound to libraryUser. Alternatively, the model may be
instantiated for a car rental application with different bindings for the two
parameters.

4.3 Tools

Computer-based structures, for information modeling or anything else, are
useless without tools that facilitate their analysis, design, construction and
management. Assessment of a conceptual model needs to take into account
the availability of such tools, alongside their expressiveness and support for
abstraction mechanisms.

It is interesting to note that successful tools developed in other areas of
Computer Science are founded on elaborate theoretical research, produced
over many years. For example, compilers in programming languages greatly
facilitate programming by performing various forms of syntactic and seman
tic analysis, also by generating efficient machine-executable code. Likewise,
database management systems (DBMS) greatly simplify the task of manag
ing databases, thanks to facilities such as query optimization, transaction
processing and error recovery. In both cases, these tools are based on the
oretical research, such as formal languages, optimization techniques, query
optimization techniques and concurrency control concepts and algorithms.

For this paper, we focus on three basic classes of tools which we consider
basic for any technology intended to support the creation and evolution of
information bases: analysis, design and management tools.

4.3.1 Analysis Tools: Verification and Validation

Analysis tools perform various forms of checking on the contents of an in
formation base to establish that they are consistent and accurately reflect
the application, thereby giving users confidence that the information base
is meaningful and correct. One type of checking, called verification, treats
an information base as a formal symbol structure which must satisfy syn
tactic and semantic rules provided by its conceptual model. Verification can
take the form of establishing that syntactic rules are obeyed, checking can
dinality constraints for entity-relationship-like models, or checking semantic
consistency of rules and constraints included in the information base.

www.manaraa.com

Characterizing Information Modeling Techniques 41

Verification tools are grounded on the formal definition of a conceptual
model. There is little non-trivial analysis one can do for a conceptual model
that is only informally defined, such as SADT or data flow diagrams. There
is much analysis that can be done (but, at great computational cost) for for
mal, and expressively powerful conceptual models which offer an assertional
sublanguage, such as RML or KAOS. In between these extremes we have
conceptual models which are formally defined, but offer no assertional sub
language, and therefore don't need a computationally expensive inference en
gine. Among many others, various forms of the extended entity-relationship
model fit this in- between category.

This discussion points to a great advantage of conceptual models which
offer built-in terms that cover the ontology of a particular application over
ones that do not, but offer instead general facilities for defining the terms
that one needs for a given application: analysis tools based on the former
type of conceptual model will generally be much more efficient than analysis
tools based on the latter type.

Here is a partial list of different types of analysis that may be offered by a
particular information model, depending on the ontologies that it supports:

• Static ontology - cardinality constraints, spatial reasoning

• Dynamic ontology - proving that state invariants defined in terms of
assertions are preserved by processes defined in terms of prejpost
conditions; proving termination and liveness properties, temporal rea
soning

• Intentional ontology - goal satisfaction algorithms for AND JOR goal
graphs, marker-passing algorithms

• Social ontology - means-ends analysis

Whereas verification tools are concerned with the internal consistency of
an information base vis-a-vis its conceptual model, validation tools check
for the consistency of an information base with respect to its application.
Clearly, such consistency is critical to the usefulness of an information base.
Surprisingly, not much research has been done on this topic. [PoI85] is an
example of early work on validating expert system rules (here the information
base is capturing expertise in the performance of some task) by examining the
performance of the expert system and noting failures, which are then traced
back to the use of particular rules. A study on verification and validation
techniques for expert systems, with a focus on nuclear industry applications,
can be found in [SAIC91].

4.3.2 Design Tools

An information base constitutes an artifact. As such, it needs careful crafting,
or design, based on rules which guide the design process. These rules suggest

www.manaraa.com

42 John Mylopoulos

when is an artifact well structured and when it is not. For information model
ing, such rules have been proposed for the relational model [Cod72], and they
define formally various normal forms for relational schemata. Placing a rela
tional schema in these forms eliminates the danger for certain types of anoma
lies which can occur in the database upon the insertion/removal/update of
tuples. To the extend that this work is based on tuple attributes, it also
applies to other information models, such as the entity-relationship model,
which offer attributes and are relatively unstructured. For more expressive
conceptual models, which cover more than the static ontology and support
several abstraction mechanisms, the problem of normalization, or alternative
means for defining and practicing good information base design, has largely
been ignored.

4.3.3 Management Tools

Management tools begin with a good implementation which offers facilities
for building, accessing and updating an information base. Beyond a mere
implementation, one would like to have an efficient implementation which
scales up in the sense that primitive operations are relatively unaffected by
the size of the information base. In the case of databases, such efficiency is
derived from elaborate systems research into physical storage management,
caching and indexing techniques.

Query optimization makes it possible to efficiently evaluate queries ex
pressed in a high level, declarative language such as SQL. Experience from
databases suggests that having such a facility broadens the class of users for
the information base. In addition, concurrency control can increase dramati
cally the number of transactions that can be executed against an information
base per unit time. Also, error recovery can serve as safeguard against system
failure, ensuring that the information base can be returned to a consistent
state after a crash.

Of course, all these are accepted features of commercial relational DBMS
products. Much work has been done on extending the research which makes
these features a reality for relational databases to other, more advanced data
models, including object-oriented, and multimedia ones. Generally, there are
few supported management tools for conceptual models (but, see Concept
Base [JGJSE95], and [JJNS98] in this volume for some work in the right
direction). Note also that some research has been done on the subject (e.g.,
[LNW91, MCPST96]).

5 Assessment of Conceptual Models

The three-dimensional characterization of conceptual models, can now be
exploited to assess different conceptual models, to guide the design of new
models so that they truly advance the state-of-the-art, also to evaluate and

www.manaraa.com

Characterizing Information Modeling Techniques 43

compare candidates for a given information modeling task. We begin the sec
tion by offering an admittedly coarse-grained evaluation of some well known
conceptual models. We then present some suggestions to those who have to
choose among conceptual models, or dare to design new ones.

5.1 Evaluating Conceptual Models

An obvious way to use the framework proposed in the previous section is
to evaluate the degree to which different conceptual models cover the four
basic ontologies, support the six abstraction mechanisms and offer the three
classes of tools. The overall "mark" for a given conceptual model is some
combination of the marks it gets with respect to each dimension. Likewise,
the overall mark for each dimension is some combination of the partial marks
for each component of the dimension.

A disclaimer is in order here. Like any other form of evaluation scheme,
this one is highly dependent on the definition of the dimensions we have
proposed, and arbitrary with respect to the actual assigned "marks". Never
theless, we consider it a useful coarse-grain instrument for the assessment of
conceptual models, certainly better than no evaluation scheme at all.

Let's use the entity-relationship (ER) model as example to present and
illustrate our evaluation scheme. Firstly, the model clearly supports the static.
ontology. Secondly, the model offers minimal support for the other ontologies
in the sense that one can define activities, goals and social dependencies as
entities or relationships, but none of the semantics of these terms is embedded
in the ER model or the tools it offers. To assign marks, and keep things
simple, we will allocate a mark in the range {excellent, good, OK,
so-so, none}, depending on how well a conceptual model supports each
ontology, abstraction mechanism or tool type. In the case of the ER model,
its mark for the static ontology might be good+, and so-so for all other
ontologies. Why only good+? Well, there is at least one other conceptual
model, [HM81J, which offers a substantially more elaborate notion of entity
than the ER model. In other words, we reserve a perfect mark for the best
proposal in the literature in covering a particular ontology, supporting an
abstraction mechanism, or offering a set of tools.

Turning to abstraction mechanisms, ER supports a simple form of classi
fication, in the sense that every entity jrelationship is an instance of a single
entity jrelationship type. This is clearly a long way from the sophistication
of some of the more recent proposals, so it only gets a so-so. Other ab
straction mechanisms are supported circumstantially. One can define isA,
part Of , instanceof, etc. as relationships, but the semantics of these are
not embedded either in tools, or the ER model itself. Let's give ER, rather
generously, SO-so-marks for all other abstractions.

With regard to tools, there is a variety of tools which perform simple
forms of analysis on ER schemata, including normalization tools. Moreover,
there are well-accepted techniques for mapping down an ER information base

www.manaraa.com

44 John Mylopoulos

into a relational database. For these reasons, we give ER high marks with
respect to the tool dimension, say excellent, excellent, and good+
respectively. A few points have been taken away for management tools be
cause whatever is available was developed specifically for the relational model.
Overall then, the ER model gets high marks for its support of the static on
tology and the availability of management tools, but can use enhancements
in all other areas. Of course, for the time it was proposed, this conceptual
model is still a classic.

Relational Model. The model makes no ontological assumptions about
the application, so its marks on ontologies are uniformly none. For its sup
port of a simple form of classification (tuples are members of relations) the
model gets a so-so, while its score for tools is perfect. Its overall score
then is perfect on tools and close to none in other areas. It should be noted,
however, that this assessment applies to Codd's original proposal and also
the model supported by most commercial DBMS products. The literature
abounds with extensions of the model which do offer some form of an ontol
ogy, including entities, time, and/or space. Moreover, the model has been
extended to support at least aggregation and generalization as far back as
'77 [SS77].

Extended Entity-Relationship Model. This is an extension of the
entity-relationship model (used, for example, in [BLN92]) which supports rea
sonably sophisticated forms of generalization and aggregation, plus the simple
form of classification found in ER, so we'll give it so-so, good, and good
respectively for classification, generalization and aggregation. The marks for
supported ontologies don't change, but analysis, design and normalization
tools become a bit more problematic because of the presence of the two ab
straction mechanisms.

SADT. This model supports, to some extent, both the static and dy
namic ontologies, though its marks in both cases are OK. Likewise, with
respect to abstraction mechanisms, SADT offers a single structuring mecha
nism where each box (representing data or activity) can be elaborated into a
diagram. This structuring mechanism has no associated semantics, so it can
be treated as a rather primitive form of aggregation and lands a mark of OK.
Finally, the marks for tools are also OK, since SADT did come with a basic
implementation along with some, generally ad hoc, design rules.

The reader may want to apply the evaluation scheme to her favorite
conceptual model. Even though crude, the scheme points to the progress
that has been made since the mid-'70s. Specifically, pioneering conceptual
models such as ER and SADT support one ontology, or less than two, re
spectively, and offer little in terms of abstraction mechanisms. Conceptual
models of the mid-'BOs, such as ones embedded in object-oriented databases

www.manaraa.com

Characterizing Information Modeling Techniques 45

and requirements languages, support aggregation and generalization and im
prove on the support of the static and dynamic ontology. Finally, in the
mid-'90s we are looking at conceptual models which begin to grapple with
the intentional ontology, treat classification with the respect that it deserves
and also support various forms of parameterization and modularization (e.g.,
[DFL93, EKW92)).

5.2 Choosing a Conceptual Model

Suppose then that you are leading a project that has an application modeling
component. How could you use the insights of the proposed characterization
to select the conceptual schema to be used in your project?

A starting point for the selection process is to consider three alterna
tives. The first involves adopting an existing generic information base. For
example, if you are developing a banking system, there may be an existing
collection of defined banking terms available, using some conceptual or even
logical information model. Adopting it has the obvious advantage of cutting
costs and project time. No wonder reuse of generic information bases has
received much attention in AI [LG90, PFPMFGN92], as well as in Require
ments Engineering (e.g., [LMV97, MV97)).

A second alternative is to adopt an existing conceptual model and develop
your own information base from scratch. This is clearly a preferred alternative
only if the first one does not apply. Selection of an existing conceptual model
can proceed by identifying the nature of the application to be modeled, i.e.,
answering the question "what kinds of things will we need to talk about?", or
"does the application involve temporal or spatial information?" In addition,
one needs to make rough guesses on the size of the information base, i.e.,
"how many generic and token units?" For a project which will involve a
large number of generic terms, abstraction mechanisms are essential. For
instance, for a project involving the description of aircraft designs where the
number of generic terms may be in the tens of thousands, use of abstraction
is unavoidable. For a project which will require the construction of a very
large information base, say with billions of instances, management tools are
a must.

It is important to keep in mind during the selection process that not all
abstraction mechanisms will be equally helpful to any given project. For a
project requiring the modeling of few but very complex concepts, aggregation
is clearly most helpful and modeling through stepwise decomposition is the
most appropriate modeling strategy. If, on the other hand, the modeling task
involves many simple but similar concepts, generalization is the abstraction to
turn to. Finally, a project involving heavy use of multiple descriptions for one
and the same entity, such as multiple versions of the same design or multiple
views on the same database, use of contextualization is recommended to
organize and rationalize these multiple descriptions.

The last, most time consuming, and least desirable alternative is for your

www.manaraa.com

46 John Mylopoulos

project to develop its own conceptual model. Such an alternative is feasible
only for long term projects. Before adopting it, you may want to think twice
what is unique about your modeling task, and why it is that none of the
existing conceptual models apply. Also to think of the overhead involved
in designing and implementing your new conceptual model, before you can
actually exploit it.

The moral of this discussion is that not all conceptual models are created
equal with regard to their usefulness for your modeling task. The exercise
of identifying what is the application like, also what abstractions and tools
are most useful can greatly reduce the danger of disappointment later on.
Moreover, design of new conceptual models should be avoided at all costs
because it is rarely justified when you are trying to model an application, as
opposed to furthering the state-of-the-art in conceptual modeling.

6 Conclusions and Directions for Future
Research

We have set out to study and characterize information modeling, both in
research and practice, in different areas of Computer Science. Our study
included a brief summary of the history of the topic, a characterization of
conceptual models in terms of three orthogonal dimensions, and the assess
ment of several conceptual models from the literature.

Clearly, there is much research to be done in information modeling. On
conceptual models, the study of new ontologies, and the consolidation of ex
isting ones such as the intentional and social ontologies, will continue. Other
abstraction mechanisms will be proposed, formalized and integrated into ex
isting or new conceptual models. The field of Databases will continue to
push the limits of database management technology so that it applies to ever
more powerful and expressive information models, including conceptual ones.
As well, new application areas will need to be explored and methodologies
will have to be developed, analogously to the state-of-practice for knowledge
engineering in AI, data modeling in Databases, and requirements engineering.

Acknowledgments: I am grateful to many colleagues who helped shape my ideas
on the topic of conceptual modeling, most notably Alex Borgida (Rutgers Univer
sity), Sol Greenspan (GTE Laboratories), Matthias Jarke (Technical University of
Aachen), Hector Levesque (University of Toronto), Nicholas Roussopoulos (Uni
versity of Maryland), and Eric Yu (University of Toronto). Thanks are also due
to the editors of the Handbook and the anonymous reviewers for helpful feedback.
Funding sources for the research include the Natural Sciences and Engineering Re
search Council (NSERC) of Canada and the City University of Hong Kong, where
the paper was actually prepared.

www.manaraa.com

Characterizing Information Modeling Techniques 47

References

[AB91)

[Abr74)

[A1l84)

[ANSI75)

[ABDDMZ89)

[BGW82)

[BLN92)

[BT76)

[BN96)

[Ber92)

[BW77)

[BBJW97)

[Bo094)

[BGM85)

Abiteboul, S., Bonner, A., Objects and Views, Proceedings ofthe
ACM SIGMOD International Conference on the Management of
Data, 1991, 238 - 247

Abrial, J.-R., Data Semantics, in: Klimbie, Koffeman (eds.),
Data Management Systems, North-Holland, 1974

Allen, J. F., Towards a General Theory of Action and Time,
Artificial Intelligence (23), 1984, 123-154

ANSI/X3/SPARC Study Group on Database Management Sys
tems, Interim Report, FDT 7(2), 1975

Atkinson, M., Bancilhon, F., DeWitt, D., Dittrich, K., Maier,
D., Zdonik, S., The Object-Oriented Database System Manifesto,
in: Deductive and Object-oriented Databases, Elsevier Science
Publishers, Amsterdam, Netherlands, 1990

Balzer, R., Goldman, N., Wile, D., Operational specifications
as a basis for rapid prototyping, in: Proceedings Symposium on
Rapid Prototyping, ACM Software Engineering Notes 7(5), 1982,
3-16

Batini, C., Lenzerini, M., Navathe, S., Database Design: An
Entity-Relationship Approach, Benjamin Cummings, 1992

Bell, T. E., Thayer, T. A., Software Requirements: are they really
a problem, in: Proceedings Second International Conference on
Software Engineering, 1976, 61-68

P. Bernus, L. Nemes, (eds.), Modelling and Methodologis for En
terprise Integration, Chapman, Hill, 1996

Bertino, E., A View Mechanism for Object-Oriented Databases,
International Conference on Extending Database Technologies
(EDBT'92), Vienna, April 1992, Lecture Notes in Computer Sci
ence, 1992

Bobrow, D. G., Winograd, T., An Overview ofKRL, a Knowledge
Representation Language, Cognitive Science 1, 1977, 3-46

Boman, M., Bubenko, J., Johannesson, P., Wangler, B., Concep
tual Modeling, Prentice Hall, 1997

Booch, G., Object-Oriented Analysis and Design, Benjamin
Cummings, 1994

Borgida, A., Greenspan, S., Mylopoulos, J., Knowledge Rep
resentation as a Basis for Requirements Specification, IEEE
Computer 18(4), April 1985, Reprinted in: Rich, C., Waters,

www.manaraa.com

48

[Bor85b]

[Bor88]

[BBMR89]

[Bor90]

[Bra79]

[BFL83]

[Bra83b]

[BL85]

[BL85b]

[BZ81]

[BMS84]

[BM86]

[Bub80]

[Bun77]

John Mylopoulos

R., Readings in Artificial Intelligence and Software Engineering,
Morgan-Kaufmann, 1987

Borgida, A., Features of Languages for the Development of In
formation Systems at the Conceptual Level, IEEE Software 2(1),
January 1985

Borgida, A., Modeling Class Hierarchies with Contradictions,
Proceedings ACM SIGMOD Conference, 1988,434-443

Borgida, A., Brachman, R., McGuiness, D., Resnick, L., CLAS
SIC/DB: A Structural Data Model for Objects, Proceedings
ACM SIGMOD Conference, Portland, 1989

Borgida, A., Knowledge Representation and Semantic Data
Modelling: Similarities and Differences, Proceedings Entity
Relationship Conference, Geneva, 1990

Brachman, R. J., On the Epistemological Status of Semantic Net
works, in: N. V. Findler (ed.), Associative Networks: Represen
tation and Use of Knowledge by Computers, Academic Press,
New York, 1979

Brachman, R. J., Fikes, R. E., Levesque, H. J., Krypton: A func
tional Approach to Knowledge Representation, IEEE Computer
16(10), 1983, 67-74

Brachman, R., What Is-a is and isn't: An Analysis of Taxonomic
Links in Semantic Networks, IEEE Computer, 1983

Brachman, R. J., Levesque, H. J., A Fundamental Tradeoff in
Knowledge Representation and Reasoning (Revised Version), in:
[BL85b]

R. J. Brachman, H. J. Levesque, (eds.), Readings in Knowledge
Representation, Morgan Kaufmann, Los Altos, CA, 1985, 41-70

M. Brodie, S. Zilles, (eds.), Proceedings of Workshop on Data
Abstraction, Databases and Conceptual Modelling, Pingree Park
Colorado, Joint SIGART, SIGMOD, SIGPLAN newsletter, 1981

M. Brodie, J. Mylopoulos, J. Schmidt, (eds.), On Conceptual
Modelling: Perspectives from Artificial Intelligence, Databases
and Programming Languages, Springer-Verlag, 1984

M. Brodie, J. Mylopoulos, (eds.), On Knowledge Bas~ Man
agement Systems: Perspectives from Artificial Intelligence and
Databases, Springer-Verlag, 1986

Bubenko, J., Information Modeling in the Context of System
Development, in: Proceedings IFIP Congress 80, 1980, 395-411

Bunge, M., Treatise on Basic Philosophy: Ontology I - The fur
niture of the World, Reidel, 1977

www.manaraa.com

[Car67]

[Che76]

[Chu93]

[CY90]

[Cod70]

[Cod72]

[Cod79]

[Cod82]

[Coh89]

[CS88]

[CB88]

[CK092]

[DH72]

[DFL93]

[Dav86]

Characterizing Information Modeling Techniques 49

Carnap, R., The Logical Structure of the World: Pseudoproblems
in Philosophy, University of California Press, 1967

Chen, P., The Entity-Relationship Model: Towards a Unified
View of Data, ACM Transactions on Database Systems 1 (1), 1976

Chung, L., Representing and Using Non-Functional Require
ments: A Process-Oriented Approach, Ph.D thesis, Department
of Computer Science, U. of Toronto, 1993

Coad, P., Yourdon, E., Object-Oriented Analysis, Yourdon Press,
Englewood Cliffs, NJ, 1990

Codd, E. F., A Relational Model for Large Shared Data Banks,
Communications of the ACM 13, No.6, 1970, 377-387

Codd, E. F., Further Normalization of the Data Base Relational
Model, in: Data Base Systems, Courant Computer Science Sym
posia Series, Prentice Hall, 1972

Codd, E. F., Extending the Database Relational Model to Cap
ture More Meaning, ACM Transactions on Database Systems 4,
No.4, 1979

Codd, E. F., Relational Database: A Practical Foundation for
Productivity, Communications of the ACM, 1982

Cohn, A. G., On the Appearance of Sortal Literals: a Non Sub
stitutional Framework for Hybrid Reasoning, in: Proceedings of
the First International Conference on Principles of Knowledge
Representation and Reasoning, Toronto, 1989, 55-66

Collins, A., Smith, E., Readings in Cognitive Science: A Per
spective from Psychology and Artificial Intelligence, Morgan
Kaufmann, 1988

Conklin, J., Begeman, M., gIBIS: A Hypertext Tool for Ex
ploratory Policy Discussion, Transactions on Office Information
Systems, 6(4), 1988, 281-318

Curtis, B., Kellner, M., Over, J., Process Modelling, Communi
cations of the ACM 35(9), September 1992

Dahl, O.-J., Hoare, C., Hierarchical Program Structures, in: 0.
J. Dahl, E. Dijkstra, C. Hoare, (eds.), Structured Programming,
Academic Press, 1972

Dardenne, A., Fickas, S., Lamsweerde, A. van, Goal Directed Re
quirements Acquisition, in: Science of Computer Programming,
20, 1993, 3-50

Davis, E., Representing and Acquiring Geographic Knowledge,
Pitman. 1986

www.manaraa.com

50

[Dav93]

(DeM79]

[DHLPR86]

[DDR92]

[EKW92]

[ESEC93]

[Fea87]

[FN88]

[Fin79]

[FK92]

[FG93]

[Gal73]

[GF95]

[GMB82]

John Mylopoulos

Davis, A., Software Requirements: Objects, Functions and
States, Prentice Hall, 1993

De Marco, T., Structured Analysis and System Specification,
Prentice Hall, 1979

Dubois, E., Hagelstein, J., Lahou, E., Ponsaert, F., Rifaut, A.,
A Knowledge Representation Language for Requirements Engi
neering, Proceedings of the IEEE 74(10), 1986

Dubois, E., Du Bois, P., Rifaut, A., Elaborating, Structuring and
Expressing Formal Requirements for Composite Systems, Pro
ceedingsFourth International Conference on Advanced Informa
tion Systems Engineering (CAiSE-92), Manchester, 1992

Embley, D., Kurtz, B., Woodfield, S., Object-Oriented Systems
Analysis, Yourdon Press, Prentice Hall, 1992

Proceedings of the Third European Software Engineering Con
ference, Milan, Italy, Springer-Verlag, 1993

Feather, M., Language Support for the Specification and Deriva
tion of Concurrent Systems, ACM Transactions on Programming
Languages 9(2), April 1987, 198-234

Fickas, S., Nagarajan, P., Critiquing Software Specifications: a
Knowledge-Based Approach, in: IEEE Software, November 1988

N. V. Findler, (ed.), Associative Networks: Representation and
Use of Knowledge by Computers, Academic Press, New York,
1979

Finkelstein, A., Kramer, J., et al, Viewpoints: A Framework
for Multiple Perspectives in System Development, International
Journal of Software Engineering and Knowledge Engineering,
2(1), World Scientific Publishing, March 1992, 31-57

Finkelstein, A., Gabbay, D., et al, Inconsistency Handling in
Multi-Perspective Specifications, in: [ESEC93], 84-99

Galbraith, J. R., Designing Complex Organizations, Addison
Wesley, 1973

Gotel, 0., Finkelstein, A., Contribution Structures, Proceedings
Second IEEE International Symposium on Requirements Engi
neering, York, England, March 1995

Greenspan, S., Mylopoulos, J., Borgida, A., Capturing More
World Knowledge in the Requirements Specification, Proc. 6th
Int. Conf.- on SE, Tokyo, 1982, Reprinted in: P. Freeman, A.
Wasserman (eds.), Tutorial on Software Design Techniques, IEEE
Computer Society Press, 1984, also in: Prieto-Diaz, R., Arango,
G., Domain Analysis and Software Systems Modeling, IEEE
Compo Sci. Press, 1991

www.manaraa.com

[Gre84]

[GBM86]

[HM81]

[Har87]

[Hay85]

[HWL83]

[Hen79]

[Hew71]

[Hir89]

[HK87]

[JCJ092]

[Jac78]

[Jac83]

[JMSV92]

Characterizing Information Modeling Techniques 51

Greenspan, S., Requirements Modeling: A Knowledge Represen
tation Approach to Requirements Definition, Ph.D. thesis, De
partment of Computer Science, University of Toronto, 1984

Greenspan, S., Borgida, A., Mylopoulos, J., A Requirements
Modeling Language and Its Logic, Information Systems 11(1),
1986, 9-23, also appears in: M. Brodie, J. Mylopoulos (eds.),
Knowledge Base Management Systems, Springer-Verlag, 1986

Hammer, M., McLeod, D., Database Description with SDM: A
Semantic Data Model, ACM Transactions on Database Systems,
September 1981

Harel, D., Statecharts: A Visual Formalism for Complex Sys
tems, Science of Computer Programming 8, 1987

Hayes, P. J., The Second Naive Physics Manifesto, in: J. R
Hobbs, R C. Moore (eds.), Formal Theories ofthe Commonsense
World, Ablex Publishing Corp., Norwood, N. J., 1985, 1-36

F. Hayes-Roth, D. A. Waterman, D. B. Lenat, (eds.), Building
Expert Systems, Addison-Wesley, Reading, MA, 1983

Hendrix, G. G., Encoding Knowledge in Partitioned Networks,
in: N. V. Findler (ed.), Associative Networks: Representation
and Use of Knowledge by Computers, Academic Press, New York,
1979, 51-92

Hewitt, C., Procedural Embedding of Knowledge in PLANNER,
Proceedings International Joint Conference on Artificial Intelli
gence (IJCAI'71), London, September 1971, 167-182

Hirst, G., Ontological Assumptions in Knowledge Representa
tion, in: Proceedings of the First International Conference on
Principles of Knowledge Representation and Reasoning, Toronto,
1989, 157-169

Hull, R, King, R, Semantic Database Modelling: Survey, Ap
plications and Research Issues, ACM Computing Surveys 19(3),
September 1987

Jacobson, I., Christerson, M., Jonsson, P., Overgaard, G.,
Object-Oriented Software Engineering, A Use Case Driven Ap
proach, Addison-Wesley, 1992

Jackson, M., Information Systems: Modeling, Sequencing and
Transformation, Proceedings Third International Conference on
Software Engineering, 1978, 72-81

Jackson, M., System Development, Prentice Hall, 1983

Jarke, M., Mylopoulos, J., Schmidt, J., Vassiliou, Y., DAIDA:
An Environment for Evolving Information Systems, ACM Trans
actions on Information Systems 10(1), 1992, 1-50

www.manaraa.com

52

[JGJSE95]

(JJNS98]

(JFH92]

[Kat90]

[KBG89]

(KS94]

[KM91]

[LMV97]

[LL91]

[LG90]

[LM79]

[Lev86]

[LNW91]

John Mylopoulos

Jarke, M., Gallersdorfer, R., Jeusfeld, M. A., Staudt, M., Eherer,
S., ConceptBase - a deductive object base for meta data manage
ment, Journal of Intelligent Information Systems, (Special Issue
on Advances in Deductive Object-Oriented Databases), Vol. 4,
No.2, 1995, 167-192

Jeusfeld, M., Jarke, M., Nissen, H., Staudt, M., ConceptBase:
Managing Conceptual Models About Information Systems, (this
volume)

Johnson, W. L., Feather, M., Harris, D., Representing and Pre
senting Requirements Knowledge, IEEE Transactions on Soft
ware Engineering, October 1992, 853-869

Katz, R. H., Toward a Unified Framework for Version Model
ing in Engineering Databases, ACM Computing Surveys 22(4),
December 1990, 375-408

Kim, W., Bertino, E., Garza, J. F., Composite Objects Revis
ited, in: Proceedings Object-Oriented Programming Systems,
Languages and Applications (OOPSLA'89), 1989, 337-347

W. Klas, A. Sheth, (eds.), Special Issue: Metadata for Digital
Data, ACM SIGMOD Record 23(4), December 1994

Kramer, B., Mylopoulos, J., A Survey of Knowledge Representa
tion, in: S. Shapiro (ed.), The Encyclopedea of Artificial Intelli
gence, John Wiley and Sons Inc., 2nd edition, 1991

Lam, W., McDermid, J., Vickers, A., Ten Steps Towards Sys
tematic Requirements Reuse, in: Proceedings Third IEEE Inter
national Symposium on Requirements Engineering, Annapolis,
January 1997, 6-15

Lee, J., Lai, K.-Y., What is Design Rationale?, Human-Computer
Interaction 6(3-4), 1991

Lenat, D., Guha, R., Building Large Knowledge Based Systems
- Representation and Inference in the CYC Project, Addison
Wesley, 1990

Levesque, H. J., Mylopoulos, J., A Procedural Semantics for Se
mantic Networks, in: N. V. Findler (ed.), Associative Networks:
Representation and Use of Knowledge by Computers, Academic
Press, New York, 1979, 93-120

Levesque, H. J., Knowledge Representation and Reasoning, An
nual Review of Computer Science 1, 1986, 255-287

Lockemann, P. C., Nagel, H.-H., Walter, 1. M., Databases for
Knowledge Bases: An Empirical Study, Data and Knowledge
Engineering 7, 1991, 115-154

www.manaraa.com

[LZ92]

[MS82]

[MV97]

[McC68]

[MR95]

[MYBM91]

[MP93]

[MJ76]

[Min68]

[Min75]

[Min79]

[MM92]

[Mot93]

[MBW80]

Characterizing Information Modeling Techniques 53

P. Loucopoulos, R. Zicari, (eds.), Conceptual Modeling,
Databases and CASE: An Integrated View of Information System
Development, Wiley, 1992

Maida, A., Shapiro, S. C., Intensional Concepts in Propositional
Semantic Networks, Cognitive Science 6, 1982, 291-330

Massonet, P., Lamsweerde, A. van, Analogical Reuse of Require
ments frameworks, in: Proceedings Third IEEE International
Symposium on Requirements Engineering, Annapolis, January
1997, 17-26

McCarthy, J., Programs with Common Sense, in: M. Minsky
(ed.), Semantic Information Processing, MIT Press, Cambridge,
MA, 1968, 403-418

Macfarlane, I., Reilly, I., Requirements Traceability in an Inte
grated Development Environment, in: Proceedings Second IEEE
International Symposium on Requirements Engineering, York,
England, March 1995

MacLean, A., Young, R., Bellotti, V., Moran, T., Questions,
Options, Criteria: Elements of Design Space Analysis, Human
Computer Interaction 6(3-4), 1991

N. Madhavji, M. H. Penedo, (eds.), Special Section on the Evo
lution of Software Processes, IEEE Transactions on Software En
gineering 19(12), 1993

Miller, G., Johnson-Laird, P., Language and Perception, Harvard
University Press, 1976

M. Minsky, (ed.), Semantic Information Processing, MIT Press,
Cambridge, MA, 1968

Minsky, M., A Framework for Representing Knowledge, in: P.
Winston (ed.), The Psychology of Computer Vision, the MIT
Press, 1975

Mintzberg, H., The Structuring of Organizations, Prentice Hall,
1979

Motschnig-Pitrik, R., Mylopoulos, J., Classes and Instances, In
ternational Journal of Intelligent and Cooperative Systems 1(1),
April 1992

Motschnig-Pitrik, R., The Semantics of Parts Versus Aggregates,
in: Data/Knowledge Modeling, Proceedings Fifth Conference on
Advanced Information Systems Engineering (CAiSE93), Paris,
June 1993

Mylopoulos, J., Bernstein, P. A., Wong, H. K. T., A Language
Facility for Designing Data-Intensive Applications, ACM Trans.

www.manaraa.com

54 John Mylopoulos

on Database Systems 5(2), .June 1980, reprinted in: S. Zdonik, D.
Maier, Readings in Object-Oriented Database Systems, Morgan
Kaufmann, 1989

[MB88] J. Mylopoulos, M. Brodie, (eds.), Readings in Artificial Intelli
gence and Databases, Morgan-Kaufmann, 1988

[MBJK90] Mylopoulos, J., Borgida, A., Jarke, M., Koubarakis, M., Te
los: Representing Knowledge About Information Systems, ACM
Transactions on Information Systems, October 1990

[MM95] Mylopoulos, J., Motschnig-Pitrik, R., Partitioning an Informa
tion Base Through Contexts, Proceedings Third International
Conference on Cooperative Information Systems (CoopIS'95),
Vienna, May 1995

[MCPST96] Mylopoulos, J., Chaudhri, V., Plexousakis, D., Shrufi, A.,
Topaloglou, T., Building Knowledge Base Management Systems,
Very Large Databases Journal 5(4), October 1996

[NW94] Norrie, M. C., Wunderli, M., Coordination System Modelling,
Proceedings of the Thirteenth International Conference on The
Entity Relationship Approach, Manchester, UK, December 1994

[NKF93] Nuseibeh, B., Kramer, J., Finkelstein, A., Expressing the Rela
tionships Between Multiple Views, in: Requirements Specifica
tion, Proceedings 15th International Conference on Software En
gineer\ng, IEEE Computer Science Press, Baltimore, MD, May
1993, 187-196

[PFPMFGN92] Patil, R., Fikes, R., Patel-Schneider, P., Mckay, D., Finin, T.,
Gruber, T., Neches, R., The DARPA Knowledge Sharing Effort:
Progress Report, Proceedings Third International Conference on
Knowledge Representation and Reasoning, Boston, November
1992

[PM88] Peckham, J., Maryanski, F., Semantic Data Models, ACM Come
putinf Surveys 20(3), September 1988

[PS78] Pfeffer, J., Salancik, G., The External Control of Organizations:
A Resource Dependency Perspective, Harper and Row, 1978

[PZMY94] Pirotte, A., Zimanyi, E., Massart, D., Yakusheva, T., Material
ization: A Powerful and Ubiquitous Abstraction Pattern, Pro
ceedings Very large Databases Conference (VLDB'94), Santiago
Chile, 1994

[Po185] Politakis, P., Empirical Analysis of Expert Systems, Pitman Pub
lishers, 1985

[PB88] Potts, C., Bruns, G., Recording the Reasons for Design Decisions,
in: Proceedings Tenth International Conference on Software En
gineering, Singapore, 1988

www.manaraa.com

[PT93]

[Qui68]

[RE93]

[Rie76]

[RF94]

[RC92]

[Rom85]

[RS77]

[Ros77b]

[RBPEL91]

[SAIC91]

[SM88]

[ST89]

[Sch93]

[SLT91]

Characterizing Information Modeling Techniques 55

Prevelakis, Vo, Tsichritzis, Do, Perspectives on Software De
velopment Environments, in: Proceedings Fifth Conference on
Advanced Information Systems Engineering (CAiSE'93), Paris,

_ France, June 1993, Lecture Notes in Computer Science 685,
Springer Verlag, 1993

Quillian, Mo R., Semantic Memory, in: Mo Minsky (edo), Seman
tic Information Processing, MIT Press, Cambridge, MA, 1968,
227-270

Proceedings IEEE International Symposium on Requirements
Engineering, IEEE Computer Society Press, January 1993

Rieger, Co, An Organization of Knowledge for Problem-Solving
and Language Comprehension, Artificial Intelligence 7(2), 1976,
89-127

Robinson, Wo, Fickas, So, Supporting Multi-Perspective Require
ments Engineering, in: [ICRE94]

Rolland, Co, Cauvet, Co, Trends and Perspectives in Conceptual
Modeling, in: [LZ92]

Roman, Go-Co, A Taxonomy of Current Issues in Requirements
Engineering, IEEE Computer 18(4), April 1985

Ross, Do To, Schoman, Structured Analysis for Requirements Def
inition, in: [TSE77], 6-15

Ross, DoT 0' Structured Analysis: A Language for Communicat
ing Ideas, in: [TSE77], 16-34

Rumbaugh, Jo, Blaha, Mo, Premerlani, Wo, Eddy, Fo, Lorensen,
W, Object-Oriented Modeling and Design, Prentice Hall, 1991

Guidelines for Verification and Validation of Expert Systems:
Review of Conventional Methods, Science Applications Interna
tional Corporation, Report to the US Nuclear Regulatory Com
mission and the Electric Power Research Institute (EPRI), 1991

Shlaer, So, Mellor, So, Object-Oriented Systems Analysis, Your
don, Englewood Cliffs, NJ, 1988

Jo Schmidt, Co Thanos, (edso), Foundations of Knowledge Base
Management, Springer Verlag, 1989

Schoebbens, Po Y., Exceptions in Algebraic Specifications: On
the Meaning of 'but', Science of Computer Programming 20,
1993, 73-111

Scholl, Mo Ho, Laasch, Co, Tresch, Mo, Updateable Views in
Object Oriented Databases, Proceedings of the Second Interna
tional Conference on Deductive and Object-Oriented Database
Systems, Munich, December 1991

www.manaraa.com

56

[Sc087)

[SM88]

[SS77]

[SoI79]

[Spi89]

[TD90]

[TM96]

[TSE77]

[TSE92]

[TL82)

[UML97]

[Ver84]

[Ver96]

[VKV89]

[Wan89]

John Mylopoulos

Scott, W., Organizations: Rational, Natural or Open Systems,
Prentice Hall, 2nd edition, 1987

Shlaer, S., Mellor, S., Object-Oriented Systems Analysis: Mod
eling the World in Data, Prentice Hall, 1988

Smith, J., Smith, D. C. P., Database Abstractions: Aggrega
tion and Generalization, ACM Transactions on Database Systems
2(2), Jun. 1977, 105-133

Solvberg, A., A Contribution to the Definition of Concepts for
Expressing Users Information System Requirements, in: Pro
ceedings International Conference on the E-R Approach to Sys
tems Analysis and Design, December 1979

Spivey, J. M., The Z Notation: A Reference Manual, Prentice
Hall, 1989

Thayer, R., Dorfman, M., System and Software Requirements
Engineering, (two volumes), IEEE Computer Society Press, 1990

Topaloglou, T., Mylopoulos, J., Representing Partial Spatial In
formation in Databases: A Conceptual Modeling Approach, Pro
ceedings Fifteenth International Conference on Conceptual Mod
eling (ER'96), Cottbus, Germany, October 1996

IEEE Transactions on Software Engineering 3(1), Special Issue
on Requirements Analysis, January 1977

IEEE Transactions on Software Engineering, 18(6) & 18(10), Spe
cial Issue on Knowledge Representation and Reasoning in Soft
ware Development, June & October 1992

Tsichritzis, D., Lochovsky, F., Data Models, Prentice Hall, 1982

Rational Software Corporation, Unified Modeling Language Re
source Centre, http:/www.rational.com/uml. 1997

Vernadat, F., Computer-Integrated Manufacturing: On the
Database Aspect, Proceedings of CAD/CAM and Robotics Con
ference, Toronto, 1984

Vernadat, F., Enterprise Modeling and Integration, Chapman
and Hall, 1996

Vilain, M., Kautz, H., van Beek, P., Constraint Propagation Al
gorithms for Temporal Reasoning: A Revised Report, in: D.
Weld, J. De Kleer (eds.), Readings in Qualitative Reasoning
About Physical Systems, Morgan Kaufmann, 1989

Wand, Y., A Proposal for a Formal Model of Objects, in: W.
Kim, F. Lochovsky (eds.), Object-Oriented Concepts, Databases
and Applications, Addison-Wesley, 1989

www.manaraa.com

[WW90)

[Web87)

[Wid95)

[Yu93)

[YM94)

[YML96)

[ZM89)

Characterizing Information Modeling Techniques 57

Wand, Y., Weber, R., An Ontological Model of an Information
System, IEEE Transactions on Software Engineering 16, 1282-
1292

Webster, D. E., Mapping the Design Representation Terrain: A
Survey, TR-STP-093-87, Microelectronics and Computer Corpo
ration (MCC), Austin, 1987

Widom, J., Research Problems in Data Warehousing, in: Pro
ceedings Fourth Conference on Information and Knowledge Man
agement, November 1995

Yu, E., Modeling Organizations for Information Systems Require
ments Engineering, in: [RE93), 34-41

Yu, E., Mylopoulos, J., Understanding 'Why' in Software Process
Modeling, Analysis and Design, Proceedings Sixteenth Interna
tional Conference on Software Engineering, Sorrento, 1994

Yu, E., Mylopoulos, J., Lesperance, Y., AI Models for Business
Process Re-Engineering, IEEE Expert 11(4), August 1996

S. Zdonik, D. Maier, (eds.), Readings in Object-Oriented
Databases, Morgan-Kaufmann, 1989

www.manaraa.com

CHAPTER 3

EXPRESS

Reiner Anderl, Harald John, Christian Putter

The ISO standard 10303-11, also known as EXPRESS, is a formal modelling lan
guage for the specification of static aspects of an information model. To this intent
EXPRESS provides object oriented constructs, such as specialisation, aggregation
and modularization. For the specification of dynamic, behavioural and other non
static aspects of a model, various dialects of EXPRESS have been developed which
will be unified in the future ISO standard, EXPRESS edition 2. EXPRESS or
one of its dialects is being used in a number of research and industrial projects
related to the area of product data technology for the specification of even large
scale models such as, for instance, the application protocol development in STEP
or the modelling of environmentally sound products.

1 Introduction

EXPRESS is a formal language developed to describe information models.
An information model is a formal description of objects, facts and ideas which
together form a mapping of part of the 'real world'. An information model
also provides an explicit set of interpretation rules [SW94]. EXPRESS has
been under development since 1984. The first version was standardised by
the International Standardisation Organisation (ISO) in 1994 [IS094]. Since
then EXPRESS (or one of its dialects) have been used in many industrial and
research oriented projects. Up to now, one of the main domains EXPRESS
is used in is the specification of the integrated product data model of the
"Standard for the Exchange of Product Data" (STEP, ISO 10303 [IS094c]).
The formal specification of an information model using EXPRESS has two
main advantages:

1. The information model can be algorithmically transformed into a com
puter accessible representation, e.g. a database schema.

2. The formal specification of the information model usually contains less
ambiguity than any model described in natural language.

www.manaraa.com

60 Reiner Anderl, Harald John, Christian Putter

The problem with formal information models is that they are more diffi
cult for users to read and understand than natural language. In this article
we will therefore describe the elements of EXPRESS from a user's point of
view., Rather than a formal specification we will use a model defining prod
uct structure to explain the syntax and semantics of EXPRESS (Section 2).
For a detailed and formal specification of EXPRESS, see [IS094]. While us
ing EXPRESS some deficits have been encountered. A description of some
EXPRESS enhancements which deal with these deficiencies are described in
Section 3 focusing on their extensions to the standard. Two large scale exam
ples - the information model for the development of environmentally sound
products and the application protocol development process in ISO 10303 - are
presented in Section 4. Section 5 discusses the application area of EXPRESS
and compares it to public object oriented modelling languages.

2 EXPRESS Language Constructs

In contrast to most modelling languages, EXPRESS contains two different
notations. The graphical one - EXPRESS-G - is a subset of the textual
notation. The example of a simplified product structure will be used to
introduce both notations.

2.1 Aggregation

In EXPRESS the basic element to structure data is the entity type. Entities
are used to represent objects of the real world (like assemblies or product
components in the following example). Entities do not describe individu
als of the real world, but groups of instances which have same properties.
Mandatory or optional relations are used to express relationships such as
aggregations or associations between entities.

The model in Figure 1 specifies that the entity product_component has
an attribute shape described by entity geometry. The entity geometry is
not further described. This means that attributes of the real world object
geometry are of no importance in the context the model used, but it does
not mean a geometry has no properties in general.

Properties of an entity without internal structure like version number,
name or mass are described as Simple Types. Depending on the data to be
described, seven different kinds of Simple Types may be used:

1. An attribute of type STRING may contain a list of characters defined
in the EXPRESS character set. A simple type could be seen as a set.
The STRING set is defined as:

STRING = {x I x E ASCII*}

www.manaraa.com

EXPRESS 61

2. Properties of type INTEGER describe numbers. The INTEGER set is
defined as:

INTEGER = {x I M < x < N; M,N,x E Z},

where the values of M and N depend on the model's implementation
and are not specified in EXPRESS.

3. Rational numbers are represented by properties of type REAL, defined
by the set:

REAL = {x I M' < x < N'; M',N',x E Q'},

where the values of M', N' may also differ among different implemen
tations. Q' is a finite subset of rational numbers.

4. If the type of a property could be in one case of type REAL and of
type INTEGER in an other, the set NUMBER is used. NUMBER is
specified by:

NUMBER = INTEGER uREAL

Usually the sets NUMBER and REAL are identical, but an implemen
tation may use huge integer arithmetic where M < M' and N' < N.

5. As in most formal languages (e.g. programming languages), the BOOL
EAN set is defined as:

BOOLEAN = {true, false}.

Boolean attributes are often used to indicate whether an entity has a
special property or not, so that details of this property do not matter
in the given context.

6. The LOGICAL set extends the BOOLEAN set by one value:

LOGICAL = {true, false, unknown}.

It is used, where attributes could not be determined to be true or false
for a given context.

www.manaraa.com

62 Reiner Anderl, Harald John, Christian Putter

EXPRESS-G EXPRESS

r------,
~-'--=-----'"(l date :

.1 ENTITY geometry;
'2 END ENTITY:
'3 ENTITY product_component:
#4 name: STRING:
'5 synonyms: OPTIONAL SET [l:?) OF
'6 STRING:
'7 serial_no: INTEGER:
'8 version no : INTEGER: '9 color :-colors;
flO shape : geometry:
'II prod_date : date:
'12 mass : INTEGER;
113 END ENTITY:
.14 TYPE colors - ENUMERATION OF
U5 (red, green, blue);
116 END TYPE:
'17 TYPE date = ARRAY [1:3] OF INTEGER:
il8 END_TYPE:

Figure 1: Example of a product structure model (1)

7. Attributes of type BINARY are used to describe digital data (e.g. im
ages or sounds). The BINARY set consists of two values:

BINARY = {O, I}.

In addition to the predefined simple types, users can specify additional sets
using either the enumeration or select type. An enumeration is a finite set
of ideas called items. An enumeration item must be unique within the enu
meration definition. A common example of an enumeration is the set of
colours. This set consists of the items red, green, blue and so on. As with
simple types, enumerations may be used to describe attributes of entities.
The possible value of these attributes is thus constrained by the items of the
enumeration.

The set defined by a select type consists of items that have already been
specified in the model (such as connection_type in Figure 2). At instance
level the value of an attribute described by a select type will be an instance
of one of the types specified in the set of the select type.

It is possible to define global synonyms for types like entities, enumera
tions, simple types or select types. These global synonyms are called defined
types and are represented in EXPRESS-G using a dashed box (see Figure 1).
Defined types are basically used to give more semantic weight to the model.
They help to understand the context in which the underlying type is used.

Up to now the relationships between entities and other types discussed,
are 1:1 relations. EXPRESS defines collection types which may be used to
represent ordered or unordered l:n relations. A collection can have fixed or
varying sizes depending on the specific collection type being used. There are

www.manaraa.com

EXPRESS 63

four different collection types defined. Each has a special behaviour and is
used for different purposes. The four collection types are:

1. ARRAY. The array collection type represents an ordered, fixed-size
collection of elements of the reference type. Its bounds m and n are
(possibly negative) integer values. Exactly n-m +1 elements must be
stored in the array collection.

2. BAG. A bag represents an unordered collection of elements. Duplicate
elements within the bag collection are permitted. A bag may hold any
number of elements within the restrictions or is unlimited.

3. LIST. A list constitutes of an ordered collection of elements. The num
ber of elements in the list may be specified if needed. If it is not
specified, the list may possibly contain an infinite number of elements.

4. SET. A set is similar to a bag. It contains an unordered collection
of elements. The size of the set is also restricted or unlimited. The
difference between a set and a bag is that a set may not contain two
elements of the same value.

The synonyms of product component may be specified by an unlimited set of
strings, where as its construction date would be defined as an array of three
elements of type integer (Figure 1). In order to realise m:n relationships be
tween entities, an inverse relation can be defined. The inverse relation can
have a different name and cardinality. All attributes in an EXPRESS model
can be labelled with the keywords OPTIONAL and/or UNIQUE, where
UNIQUE means that the values of the attribute must be different among
all instances of the type. If an attribute is declared to be OPTIONAL, an
instance of the type need not specify a value for this attribute.

2.2 Specialisation

In addition to the ability to structure data using the aggregation relationships
described above, EXPRESS provides specialisation mechanisms for entities
which differ from any mainstream programming or modelling language.

In general the specialisation (or inheritance) relationship is used to reduce
complexity of an information model by constructing type hierarchies. Along
a specialisation relation, properties are inherited by more specific entities
(subtypes) from more general entities (their supertypes).

As far as the product structure example is concerned, the entities assem
bly and product-component have some attributes in common (e.g. name,
version no etc.). In order to reduce complexity and prevent redundancy, a
supertype of product_component and assembly, item for example, has been
introduced which contains the common attributes. Hence, these attributes
do not need to be specified explicitly in the subtypes (2). The entity item

www.manaraa.com

64

EXPRESS-G

STRING

Reiner Anderl, Harald John, Christian Putter

color ,-~~ T:
" _---'-

EXPRESS
Il ENTITY geometry;
12 END_ENTITY;
13 ENTITY item ABSTACT SUPERTYPE OF .4 (ONEOF (assembly,product_component»;
'S name: STRING;
.6 synonyms: SET (1:?) OF STRING;
'7 serial_no: INTEGER;
.a version no : INTEGER; .9 prod date : date;
flO END_ENTITY;
.11 ENTITY relationship;
112 conncetion: connection_typei
113 upper: assembly;
114 lower: item;
115 END ENTITY ;
116 ENTITY assembly SUBTYPE OF (item);
11 7 END ENTITY ;
118 ENTITY product component SUBTYPE or
119 (it;m);
120 color: colors;
121 shape: geometry;
.22 mas. : INTEGER;
.22 END ENTITY;
.23 TYPE connection_type· SELECT OF
124 (type a , type b);
'2S END TYPE; - -
126 TYPE color. • ENUMERATION OF
'27 (red, green , blue);

.29 TYPE date - ARRAY (1:3) OF INEGER;

.30 END TYPE;

Figure 2: Example of a product structure model (2)

must be declared as abstract, since only instances of the entities assembly
Or product_component are required to define a particular product structure.
Entities declared abstract must not be instantiated. Furthermore an item
must be either an assembly or a product_component but not both.

EXPRESS provides different types of specialisation relations. The special
isation relation between item and its subtypes is called a oneof specialisation
(Figure 3b), because there are no real world objects, being assemblies as well
as product components.

In addition to this public specialisation relation, which is used in common
object oriented languages, EXPRESS provides additional mechanisms which
lead to the concept of complex instantiation.

There are two further kinds of specialisation relations. If the subtypes are
mutually inclusive the relationship between the subtypes is specified using
the and specialisation relation. In this case the instances in the example of
Figure 3c must have the properties of entity A and entity B. Instances of
entity A or entity B are not allowed. The and specialisation relation should
only be used in combination with other types of specialisation (e.g. the oneof
specialisation) .

The third type of a specialisation relation is the andor specialisation.

www.manaraa.com

EXPRESS 65

model level instance level

I (abs) X l andor ~ I attr 1,.J U A J '"1 GW0[IJ q ttr1 a b

L.c1 B I attr 2 II
:ttr- 2 attr_1 attr_2

a) I

I (abs) X I '~
A

~ I:q
[a~_1) [a:_2)

B
b) I

I I~~ ~
II (abs) X A

GW q attr_1

B I] attr 2
c)

Figure 3: Possible specialisation relationships in EXPRESS

Given the example of Figure 3a, instances which (only) have the properties
of entity A could exist as well as instances of entity B and instances with
the properties of both A and B. The subtypes A and B are neither mutually
exclusive nor mutually inclusive. Instances which contain the attributes of
more than one entity are called complex instances. The concept of complex
instantiation is difficult to implement using a programming language, which
does not support this concept (e.g. C++, Smalltalk or Eiffel) . However,
Mayer et al suggest a solution in [Mai94] where any inheritance hierarchy
defined in EXPRESS is automatically transformed to an equivalent common
oneof hierarchy which can be processed by the compiler of most mainstream
programming language.

The solution implies that it must be possible to renounce the special
inheritance relation provided by EXPRESS. This - in fact - is the case, but
the complexity of the information model may grow substantially.

2.3 Schemas

An information model may consist of hundreds of entities. To control the
complexity EXPRESS offers the schema mechanism schema mechanism, by
which a model can be divided into several isolated parts. Further, EXPRESS
allows a schema A to reference elements of schema B using the reference
from and use from constructs. Elements of another schema accessed using
reference from can only be instantiated as attributes of entities from the
importing schema. In contrast, elements imported using use from could
have an independent existence.

www.manaraa.com

66 Reiner Anderl, Harald John, Christian Putter

EXPRESS·G Description EXPRESS

Page#, Ref# (numbers) }----D reference onto this page

Page#, Ref# name }- reference onto another page

r------------- -- ,
I ,
I schema.del r- definition referenced from REFERENCE FROM
_______ a],!s _______ , another schema schema (entity list):

t-schema.def definition used from USE FROM

alias
another schema schema (entity list):

Figure 4: Graphical and lexical notation of schema constructs

Moreover EXPRESS-G offers additional symbols, so-called page refer
ences, to distribute a large, single schema over different sheets. Figure 4
summarises the graphical and lexical notation of these constructs.

2.4 Functions and Rules

As mentioned above EXPRESS-G is a subset of EXPRESS. The essential
facilities supported by EXPRESS and not included in EXPRESS-G are local
and global functions, and local and global rules. Functions and rules will
not be specified formally, but explained by extending the product structure
example.

2.4.1 Functions

Local functions are included in the definition of an entity using the keyword
DERIVED. A local function in EXPRESS consists of an identifier, an at
tribute name and a single, unconstraint formula. Local functions are used to
derive values relevant to the model from a combination of other attributes of
the entity concerned. The checksum of an item for example can be defined
as:

#1 ENTITY item ABSTRACT SUPERTYPE OF
#2 Coneof (assembly, product_component));
#3 serial_no: INTEGER;
#4 version_no: INTEGER;
#5
#6 DERIVED
#7 cs:

www.manaraa.com

EXPRESS 67

#8 checksum:=serial_no+version_no mod 9;
#9 END_ENTITY;

Global functions are not related to any particular entity or type definition.
As in most programming languages, global functions compute a result from
given function parameters. Global functions may be used in the formulae
of local functions. In the following example, the given function calculates
the mass of the assembly entity, which is supposed to be defined as in the
product structure example.

#1 FUNCTION assembly_mass(a : assembly) INTEGER;
#2 relations: LIST [1:?J OF
#3 RELATIONSHIP:=BASE.RELATIONSHIP;
#4 mass: INTEGER := 0;
#5 REPEAT i :=1 TO SIZEOF (BASE.RELATIONSHIP);
#6 IF (relations[iJ .top=a AND
#7 TYPEOF (relations[iJ .lower)=product_component)
#8 THEN mass:=mass+relations[iJ.lower.mass
#9 * relations[iJ.number;
#10 END_IF;
#11 IF (relations[iJ .top=a AND
#12 TYPEOF (relations[iJ.lower)=assembly)
#13 THEN mass:=mass+assembly_mass(relations[iJ.lower);
#14 END_IF;
#15 END_REPEAT;
#16 RETURN (mass);
#17 END_FUNCTION;

2.4.2 Rules

Like local functions, local rules are declared within an entity declaration. Lo
cal rules constrain the possible values an attribute may take at instance level.
A local rule consists of an identifier and a logical formula, which evaluates
to true or false. For valid instances all local rules must evaluate to true. For
example the version number of an item must be greater or equal to zero. This
can be specified by extending the entity item by a local rule as follows:

#1 ENTITY item ABSTRACT SUPERTYPE OF
#2 (oneof (assembly, product_component));
#3 version_no: INTEGER;
#4
#5 WHERE
#6 legal_version version_no >= 0;
#7 END_ENTITY;

In the same way as local rules define constraints for the values of at
tributes, global rules specify constraints which an instantiation of the whole

www.manaraa.com

68 Reiner Anderl, Harald John, Christian Piitter

schema must satisfy. In the product structure example, the frequency with
which a assembly or product component in the next level occurs within a
super-assembly is given by the attribute number of the entity relationship.
Therefore an assembly may not contain duplicate subassemblies or product
components. This constraint is defined by the following global rule:

#1 RULE assembly_constraint;
#2 indicator: BOOLEAN:= true;
#3 relations: LIST [1:?] of
#4 RELATIONSHIP:= BASE.RELATIONSHIP;
#5 REPEAT i := 1 TO SIZEOF(BASE.RELATIONSHIP);
#6 REPEAT j := 1 TO SIZEOF(BASE.RELATIONSHIP);
#7 if (relations[i] . lower = relations[j] . lower and
#8 relations[i].upper = relations[j].upper)
#9 THEN indicator:= false;
#10 END_REPEAT;
#11 END_REPEAT;
#12 where assembly_constraint indicator = true;
#13 END_RULE;

The where clause in line #12 indicates the case that schema instantiation
satisfies this rule.

The constructs described in this contribution enables the user to specify
the static aspects of an information model using a combination of graphical
and textual notation.

3 Extensions to Standard

3.1 Shortcomings of EXPRESS

During the use of EXPRESS, especially in the context of STEP, several short
comings were detected. On the one hand, these shortcomings prevent a com
plete specification of all properties an information model may contain. On the
other hand, there are some aspects, which when modelled using EXPRESS
constructs lead to complicated models, difficult to read and understand. One
of the main elements missing in EXPRESS is the support for modelling dy
namics and behaviour of information. With EXPRESS only a time invariant
snapshot of an information model can be described. The ability to spec
ify the change of information is most important for a number of application
domains, such as business process reengineering or software development.

Furthermore, EXPRESS is not fully object-oriented (EXPRESS is said
to be structural object-oriented). It is not possible to define methods within
an entity declaration which are local to the entity and operating on local
attributes. In EXPRESS global functions are used to support the restricted

www.manaraa.com

EXPRESS 69

local functions. This strategy may cause side effects difficult to control in
complex models.

Another disadvantage is the subset relationship between the graphical
and lexical notation. It is hence necessary to refer to the lexical notation as
well to fully understand the contents of an information model.

Finally, EXPRESS does not support the creation of instance scenarios or
the definition of different views of the model for validation and application
purposes. With these, the use of an information model in a real application
context could be simulated and simplified before being implemented.

Several extensions to the ISO standard have been developed to deal with
the shortcomings of EXPRESS described above. Four of these EXPRESS
dialects which are not mutually compatible are described briefly below.

3.2 EXPRESS-X

An information model must be complete and unambiguous. In general, in
formation represented in a model can be a union of requirements of different
sources (e.g. application systems). As a result, this information model con
tains data that is not needed by individual sources. This may cause problems
in application systems working with this data. To prevent such problems a
view of the model must be defined which only contains the information nec
essary for the particular application.

EXPRESS
original model

instance level

a
a

EXPRESS-X
bijective mapping

< > EXPRESS
view model

instance level

o

Figure 5: Schema mapping with EXPRESS-X [IS096b]

The main purpose of EXPRESS-X is to describe such views. EXPRESS-X
can be used to define mappings between entities from one EXPRESS schema
(e.g. the entire information model) to entities in another schema, a view of
the first (Figure 5).

With EXPRESS-X the creation of a view of an EXPRESS model is di
vided into two phases: materialise and compose. In the materialise phase,
the view entities and their attributes that depend on the original entities

www.manaraa.com

70 Reiner Anderl, Harald John, Christian Putter

are defined. In the compose phase, additional attributes which depend on
the view entities are created (e.g. an attribute which specifies a relationship
between view entities). A particular view of a schema is defined by determin
ing the original EXPRESS schema, the view schema and a mapping schema
(defined in EXPRESS-X) which specifies the mapping. The mapping itself
is a partial bijection on attribute level. This enables an EXPRESS-X pro
cessing application to convert the data back to the original schema. In this
way EXPRESS-X combines the capabilities of EXPRESS-M and EXPRESS
V [IS095, HS96] and is intended to become an ISO standard independent of
the existing standard EXPRESS.

Up to now EXPRESS-X does not provide a graphical notation. For a
detailed description of EXPRESS-X, see [IS096b].

3.3 EXPRESS-P

EXPRESS-P is an extension of standard EXPRESS for process modelling
and monitoring and is upward compatible with EXPRESS. EXPRESS-P ad
ditionally specifies communication structures between processes and their
behaviour. Therefore, the concept of dynamic entities is introduced extend
ing the static entity declaration of EXPRESS by a behavioural section. The
behavioural section may contain descriptions of interfaces, methods, channels
and processes or explicit references to other processes. As attributes, these
constructs are inherited from supertypes to subtypes. Interfaces define sig
nals which can be received or sent via this interface. Methods are functions
or procedures only visible within the scope of the enclosing entity. Using
channels, the user can define the communication structure between inter
faces of different entities. A process in EXPRESS-Pis a list of statements in
the syntax of EXPRESS extended by statements supporting communication
(e.g. INPUT, TIMER, KILL etc.).

EXPRESS-P also extends the graphical notation EXPRESS-G with sym
bols for the visualisation of communication structures. For a detailed de
scription of EXPRESS-P, see [FM94].

3.4 EXPRESS-C

Like EXPRESS-P, EXPRESS-C is an upward compatible extension to EX
PRESS, extending EXPRESS with object-oriented and behavioural facilities.
The entity declaration is extended by operations using the definition of sig
natures, pre- and postconditions and algorithms. Pre- and post conditions
must be satisfied before and after execution of an algorithm respectively.
Operations as well as attributes are inherited along the specialisation hierar
chy. They may be overloaded or redefined. Attributes and operations can be
labelled by the keyword private, preventing their accessibility from outside
the entity's scope. Behavioural aspects of an information model are defined
using a declarative event- action paradigm. Events are raised by changing

www.manaraa.com

EXPRESS 71

attribute values. If a (Boolean) condition in an event evaluates to true the as
sociated action procedure which is a sequence of statements (possibly raising
other events) is executed. Furthermore EXPRESS-C supports the concept of
dynamic typing. This concept allows instances to change their types during
their lifetime.

The extensions of EXPRESS-C are - in a way - similar to those of EX
PRESS-P, because both modelling languages extend EXPRESS by dynamic
elements. The main difference is the point of view and therefore the applica
tion area. For a detailed description of EXPRESS-C, refer to [IS094b].

3.5 EXPRESS Edition 2

The shortcomings of EXPRESS described in the previous section are in fact
the subject of activities of the ISO SC4 committee to extend and improve
the standard. Various dialects are currently being analysed, with the view to
the following goals:

• the improvement of the static modelling provided by EXPRESS,

• the upward compatibility to EXPRESS,

• the integration of dynamic and behavioural aspects,

• the extension of the graphical notation, and

• the unification of dialects.

As a first step, the static modelling has been extended by the definition of
new data types and user defined operators. The event-action concept of
EXPRESS-C has been taken for the modelling of behaviour. EXPRESS-G
has been extended by new symbols for the visualisation of the new data types
and the behaviour of the model [IS096]. EXPRESS edition 2 is intended to
become an international standard within the next decade.

4 Large Scale Exam pies

In the area of virtual product development, the requirements of computer ap
plications involved such as CAD, PDM or Database Systems are increasing.
In particular the processed data structures have reached a level of complex
ity where database schemas or file formats can only be specified by formal
information models. It has been proven in several industrial and research
projects that EXPRESS is a suitable language for modelling even large scale
information models and converting the information to computer accessible
form. Two of such projects, the application protocol development process
and the information model for environmentally sound design are briefly ex
plained below focusing on the use of EXPRESS or an extension of it.

www.manaraa.com

72 Reiner Anderl, Harald John, Christian Putter

4.1 Application Protocol Development in STEP

STEP (ISO 10303) is a standard for computer accessible representation and
exchange of virtual products. It provides a neutral mechanism for the de
scription of product information throughout all life cycle phases (e.g. product
planing, manufacturing, usage or recycling) independent of any particular
system. STEP is suitable for file exchange as well as for shared product
databases [IS094cj. STEP is a series of standards, rather then one standard,
since for each significant type of information exchange a separate application
protocol can be developed and standardised. The standard is organised as a
series of parts specifying:

• The description method EXPRESS,

• integrated resources, containing basic information models, independent
from a particular application area or implementation (Le. geometry or
material data),

• abstract test suites for the verification of each application protocol,

• implementation methods (e.g. for the implementation of a standard
data access interface),

• conformance testing methods for the validation of models and their
implementation according to the standard, and

• application protocols, defining the use of integrated resources in a par
t icular application context (e.g. core data for automotive mechanical
design processes) .

AAM ARM AIM
application activity application reference application interpreted

model model model

process
analysis

formal
description

ARM to AIM
mapping

implementation

Figure 6 : Development process of an application protocol

The development process of an application protocol is the process in which
ISO 10303 is extended to be used in a particular application context (Le.
process chain ship building) . It is divided into four phases (Figure 6) . The
first phase aims to define a process model. This process model (in STEP

www.manaraa.com

EXPRESS 73

terminology an "application activity model" - AAM) consists of activities
creating or using product data. An AAM is defined to restrict and specify
the process chain supported by this application protocol. A typical modelling
language used for the specification of AAM is IDEFO [Ros77].

An application reference model (ARM) must be developed on the basis
of AAM. The ARM in an information model developed for example in EX
PRESS which describes the the product data description requirements of the
application area of which the scope is defined in the AAM. The model is
specified in the terminology of its application area. Therefore experts of this
domain are able to understand and verify the model to ensure its correctness
and completeness. ARMs are usually very large information models, contain
ing hundreds of entities, functions or rules. Therefore an ARM is divided into
units of functionality which are sets of entities, rules and types concerning the
same topic (e.g. 3D geometry). The modelling language for the specification
of the ARM is not prescribed by ISO 10303, but up to now EXPRESS has
been used.

Further to the ARM specification, an "application interpreted model"
(AIM) has to be created. This model defines how elements of the integrated
resources have to be used in order to meet the requirements described in
the ARM. Therefore these elements have to be used directly, if possible, or
by the introduction of subtypes expanding the entities from the integrated
resources by additional local rules or attributes. The AIM must be defined
with EXPRESS and is used as a basis for implementation.

To derive an application interpreted model from the application refer
ence model mapping rules have to be defined specifying the relationships
between ARM and AIM entities. These mapping rules (possibly specified
with EXPRESS-X) are used to check correctness and completeness of the
AIM.

Finally suggestions for the implementation of the AIM are specified con
cerning, for instance, the compatibility of a particular implementation with
the application protocol and other parts of ISO 10303.

According to the standardisation process defined by ISO, the application
protocol has to be reviewed several times by users and domain experts. The
development of various application protocols have proven the suitability of
EXPRESS for the definition of large information models which have to be
analysed by domain experts or users, not familiar with information modelling
or even implementation tasks.

4.2 Development of Environmentally Sound Products

The development of environmentally sound products requires efficient access
to environmental, technical and economical knowledge of all life cycle phases.
Since this complex knowledge is distributed over a variety of sources such as
enterprise departments, their co-operation is recommended including early
design phases to minimise harmful influences on the environment. Of crucial

www.manaraa.com

74 Reiner Anderl, Harald John, Christian Piitter

importance is the sharing of information between the experts involved. The
sharing of this information in the design process and its supporting environ
ment requires a suitable information model as a basis.

To create such an information model, application experts from a num
ber of disciplines or areas must work together. The engineers and scientists
involved handle information in different ways, resulting in various types of
environmental information .

. This information is not suitable for direct use by a designer anc;l must be
transformed. Furthermore the environmental knowledge is distributed over
suppliers or institutions - such as UBA (Umweltbundesamt) 1 - at different
locations. Some kind of support for their co-operation is necessary.

EXPRESS is a suitable basis for information modelling of an interdisci
plinary group of distributed application experts as well as for the represen
tation of the complex environmental knowledge; however, it has been found
that some extensions are necessary.

Figure 7: Information model for environmentally sound design

In the research project "SFB 392: Development of Environmentally Sound
Products" at Technical University of Darmstadt an information model, an
allied database and a design system environment are being developed by an
interdisciplinary group of scientists. To allow their co-operation, the informa
tion model is partitioned according to the life cycle phases which constitute
the domains of the research experts (Figure 7). The core of this information
model contains a product data model covering all development phases as de
veloped within ISO 10303. Any partial model representing environmental
knowledge refers to this core model to ensure its relevance for design. Based
on this architecture an information and assessment system for product models
of all design phases enable the designer to decide between product alterna
tives depending on their technical, economical and environmental properties.

The modelling methodology used is called CO-operative Object Modelling
Technique (COOM) and follows principles similar to those in co-operative
product modelling [Kre96]. During the development of the information model

1 Federal Office of the Environment

www.manaraa.com

EXPRESS 75

the interfaces between life cycle functions must be defined, the partial models
have to be harmonised and the modellers need a view of the actual model as
a whole. Such a concept of co-operative modelling needs to be implemented
in terms of an information modelling method as well as with software tools
and techniques.

identification of Logical Information
clusters partial models process models database schema

problem
analysis

architecture

Step I--e--I~
3

model
integration

detailed analysis
of partial models

specification of
object-oriented models

instantiation

Figure 8: Process Chain 'information modelling' with COOM [ADJP97j

CO OM consists of six modelling steps. The first and second steps of this
method do not require any modelling task. The application area is analysed
(first step) and the architecture of the information model is defined (second
step).

The third step aims at the develpment of informal process models which
are the result of the detailed analysis of the partial models. In the fourth step
a simple graphical, object-oriented modelling language based on EXPRESS
G is used in order to represent ,the complex information model of the envi
ronmental knowledge. Figure 8 shows the whole modelling process. For a
detailed description of the modelling methodology, see [ADJP97].

An important aspect for database creation by application experts is a
facility which allows direct translation of the object-oriented model into a
database structure, which is supported by EXPRESS.

Standard object-oriented modelling languages are too complex to be used
by an application expert and cannot be translated directly into database
schemas. For this reason a modelling language based on EXPRESS-G is de
veloped for COOM. The language must be capable of presenting all important
information at the first glance to allow co-operative work fully graphic repre
sentation as in standard object-oriented methods is obligatory. To meet the
requirements of complex environmental knowledge, the following graphical
modelling constructs are necessary:

www.manaraa.com

76 Reiner Anderl, Harald John, Christian Putter

• Static Object Modelling. EXPRESS-G is taken as a basis for static
modelling. It can be simplified by integrating attributes of simple types
into the class symbol as in UML. The reduced number of relations makes
the model easier to survey. To avoid complex modelling structures,
further redundant types such as fuzzy sets are defined.

• Functional Modelling. To specify functional relations between class at
tributes there are three different types of functions: Local functions
only refer to attributes of simple types within one class and are shown
inside the class symbol. They are used e.g. to transform units of pro
cess parameters. Complex functions may refer to attributes of other
classes especially to derive assessment data from parameters of prod
ucts and processes. Tables represent measured data as combinations
of parameters and their result, because in many cases environmental
relations cannot be described with functions. Pre- and post-conditions
of complex functions can be defined as constraints.

• Constraint Modelling. Constraints are used to ensure database consis
tency for both instantiation and automatic or manual change of objects.
They are defined by logic statements using Boolean operators. Local
constraints limit the range of an attribute value. Complex constraints
define dependencies between class attributes of the same type.

• Rule Modelling. The definition of rules is based on object states. An
object state specifies values of a restricted group of attributes at a
particular time. These states can be divided into conditions and conse
quences. Conditional states are linked by Boolean operators and refer
to attribute values by means of mathematical expressions (e.g. equa
tions). Consequence states express the effect of a rule on the value of
object attributes. Rules are important for describing processes during
product use that cannot be specified with functional relations.

Incorporating these aspects into the current ISO 10303 EXPRESS-G dia
grams would increase their size. In addition to optimising the graphic rep
resentation itself various model views or layers are defined. They can be
realised by blanking selected aspects within one diagram.

The approach of modelling technique and graphical language has to be
realised with suitable modelling tools. A software tool developed for CO OM
must support the entire process of modelling to minimise the training period,
and provides transitions between modelling steps. Because of the analogy
with co-operative product development, computer support for co-operative
information modelling can be realised in similar ways. The collaboration
support in general is synchronous, asynchronous or limited to document pub
lishing techniques.

The collaboration support for information modelling should include an
entire survey of the actual model. For this reason an administration module

www.manaraa.com

EXPRESS 77

has to be developed to communicate with a model repository and to control
access on the partial models. The administration tool also offers facilities
to search for redundant model components and provides information about
partial models under modification to ensure consistency. Access to design
patterns for information modelling is provided to achieve high quality of the
models. Synchronous presentation of model changes will be realised especially
to co-ordinate information modelling in early development phases.

The modelling tool environment also includes a compiler to create a
database schema directly from the information model which enables a rapid
prototyping for model implementation. The object-oriented approach for the
conceptual model including dynamic properties of a product suggests an im
plementation in an object-oriented database system. The compiler developed
to support the database schema generation transforms the schema into the
Data Definition Language (DDL) of the database (e.g. OQL).

The database is the main component for a design system. Additional
systems required for the development of environmentally friendly products
are integrated into the design platform:

• parametric 3D-CAD system

• assessment system for ecological properties of products

• knowledge based system to facilitate the designer's task in finding rel
evant information in the database and

• user interfaces for direct access to the database using a query language

This prototype design environment might serve as an example of a shared
database, derived from an information model based on a graphical EXPRESS
dialect.

5 Conclusion

EXPRESS is a suitable basis for the development of large scale information
models which will be implemented, for instance, as database schemas accessed
by different software applications. Comparing EXPRESS to public object
oriented modelling methods or languages like OMT or UML, both advantages
and disadvantages of EXPRESS can be identified.

The main disadvantage of the actual standard is the absence of constructs
to model time variant dynamics or behaviour yielding incomplete information
models. In particular UML provides facilities to graphically represent almost
all static, dynamic and behavioural properties a model may have.

The advantage of EXPRESS is that it is easy to learn and to handle
(in comparison with UML), even for users not familiar with implementation
details of information models. Moreover, there is often only one way to
model real world ideas with EXPRESS. This makes it easier for somebody

www.manaraa.com

78 Reiner Anderl, Harald John, Christian Putter

who is not involved in the modelling process to understand the contents of
an EXPRESS model.

This features of EXPRESS enables teams consisting of domain experts,
users, modelling experts and implementers to develop an information model
which is understood and therefore influenced by everyone involved. This
information model serves as a suitable basis for the development of data
structures accessed by software systems as is the case in STEP.

References

[ADJP97] Anderl, R., Daum, B., John, H., Piitter, C., Co-operative Product
Data Modelling in Life Cycle Networks, in: 4th International Seminar
on Life Cycle Engineering, Berlin, 1997

[BJR97] Booch, G., Jacobson, I., Rumbaugh, J., Unified Modeling Language
UML Summary Version 1.0, Rational Software, 1997

[FM94] Felser, W., Mueller, W., Extending EXPRESS for Process Modelling
and Monitoring, in: Proceedings of the 1994 AS ME Computers in
Engineering Conference, Minneapolis, MI, September 11-14, 1994

[HS96] Hardwick, M., Spooner, D., EXPRESS-V Reference Manual, Tech
nical Report of the Rensselaer Laboratory for Industrial Information
Infrastructure, 1996

[lS094] ISO TC184/SC4/WG5, EXPRESS Language Reference Manual, ISO
1994

[lS094b] ISO TC184/SC4/WG5, EXPRESS-C Language Reference Manual,
ISO 1994

[IS094c] ISO TC184/SC4, Overview and fundamental principles, ISO 1994

[lS095] ISO TC184/SC4/WG5, EXPRESS-M Reference Manual, ISO 1995

[IS096] ISO TC184/SC4/WG5, Requirements for the second edition of EX
PRESS, ISO 1996

[IS096b] ISO TC184/SC4/WG11, EXPRESS-X Reference Manual, ISO 1996

[Kre96] Kress, H. et al, An Open System Environment to Support the Inte
grated Product Development Process (in German), in: Proceedings of
the Conference on Electronic Imaging, Science & Technologies, San
Jose, 1996

[Mai94] Maier, M. et al, Multiple Class Membership and Supertype Constraint
Handling - Concepts and Implementation Aspects, in: Proceedings of
the 4th EXPRESS Users Group Conference Greenville, S.C., Oct. 13
- 14, 1994

www.manaraa.com

[Ros77]

[Rum91]

[SW94]

EXPRESS 79

Ross, D. T., Structured Analysis (SA): A Language for Communicat
ing Ideas, in: IEEE Transactions of Software Engineering, Vol 3, No.
1, 1977

Rumbaugh, J. et al, Object-Oriented Modeling and Design, Prentice
Hall, 1991

Schenck, D. A., Wilson, P. R., Information Modelling: The EXPRESS
Way, Oxford University Press, 1994

www.manaraa.com

CHAPTER 4

ORM/NIAM
Object-Role Modeling

Terry Halpin

Object-Role Modeling (ORM) is method for modeling and querying an informa
tion system at the conceptual level, and mapping between conceptual and logical
(e.g. relational) levels. ORM comes in various flavors, including NIAM (Natural
language Information Analysis Method). This contribution provides an overview
of ORM, and notes its advantages over Entity Relationship and traditional Object
Oriented modeling.

1 Introd uction

1.1 ORM: What is it and Why use it?

Object-Role Modeling (ORM) is primarily a method for modeling and query
ing an information system at the conceptual level. In Europe, the method is
often called NIAM (Natural language Information Analysis Method). Since
information systems are typically implemented on a DBMS that is based on
some logical data model (e.g. relational, object-relational, hierarchic), ORM
includes procedures for mapping between conceptual and logical levels. Al
though various ORM extensions have been proposed for process and event
modeling, the focus of ORM is on data modeling, since the data perspective
is the most stable and it provides a formal foundation on which operations
can be defined.

For correctness, clarity and adaptability, information systems are best
specified first at the conceptual level, using concepts and language which
people can readily understand. Analysis and design involves building a for
mal model of the application area or universe of discourse (UoD). To do this
properly requires a good understanding of the UoD and a means of specify
ing this understanding in a clear, unambiguous way. Object-Role Modeling

www.manaraa.com

82 Terry Halpin

simplifies this process by using natural language, as well as intuitive dia
grams that can be populated multiple with examples, and by expressing the
information in terms of elementary relationships.

aRM is so-called because it pictures the world in terms of objects (enti
ties or values) that play roles (parts in relationships). For example, you are
now playing the role of reading, and this paper is playing the role of being
read. In contrast to other modeling techniques such as Entity-Relationship
(ER) and Object-Oriented (00) approaches, aRM makes no explicit use
of attributes. For example, instead of using countryborn as an attribute of
Person, we use the relationship type Person was born in Country. This has
many important advantages. Firstly, aRM models and queries are more sta
ble (attributes may evolve into entities or relationships). For example, if we
decide to later record the population of a country, then our countryborn at
tribute needs to be reformulated as a relationship. Secondly, aRM models
may be conveniently populated with multiple instances (attributes make this
too awkward). Thirdly, aRM is more uniform (e.g. we dont need a sepa
rate notation for applying the same constraint to an attribute rather than a
relationship) .

aRM is typically more expressive than ER or 00. Its role-based notation
makes it easy to specify a wide variety of constraints, and its object types
reveal the semantic domains that bind a schema together. One benefit of this
is that conceptual queries may now be formulated in terms of schema paths,
where moving from one role though an object type to another role amounts
to a conceptual join (see later).

Unlike ORM or ER, popular 00 models often duplicate information by
wrapping facts up into pairs of inverse attributes in different objects. More
over, 00 notations have weak support for constraints (e.g. a constraint might
have to be duplicated in different objects, or even ignored). Unfortunately,
00 models are less stable than even ER models when the UoD evolves. For
such reasons, 00 models should be used only for implementation, not for
analysis.

Although the detailed picture provided by aRM is desirable in develop
ing and transforming a model, for summary purposes it is useful to hide or
compress the display of much of this detail. Various abstraction mechanisms
exist for doing this, e.g. [CHP96]. If desired, ER and 00 diagrams can also
be used for providing compact summaries, and are best developed as views of
aRM diagrams. For a simple discussion illustrating the points in this section,
see [Hal96].

The rest of this contribution provides a brief history of aRM, summarizes
the aRM notation, illustrates the conceptual design and relational mapping
procedures, and mentions some recent extensions before concluding.

1.2 A Brief History of ORM

In the 1970s, especially in Europe, substantial research was carried out to pro
vide higher level semantics for modeling information systems. Abrial [Abr74],

www.manaraa.com

ORM/NIAM 83

Senko [Sen75] and others discussed modeling with binary relationships. In
1973, Falkenberg generalized their work on binary relationships to n-ary re
lationships and decided that attributes should not be used at the conceptual
level because they involved "fuzzy" distinctions and also complicated schema
evolution. Later, Falkenberg proposed the fundamental ORM framework,
which he called the "object-role model" [FaI76]. This framework allowed
n-ary and nested relationships, but depicted roles with arrowed lines. Ni
jssen [Nij76] adapted this framework by introducing the circle-bo:x; notation
for objects and roles that has now become standard, and adding a linguis
tic orientation and design procedure to provide a modeling method called
ENALIM (Evolving NAtural Language Information Model) [Nij77]. Nijssen
led a group of researchers at Control Data in Belgium who developed the
method further, including van Assche who classified object types into lex
ical object types (LOTs) and non-lexical object types (NOLOTs). Today,
LOTs are commonly called "Entity types" and NOLOTs are called "Value
types". Kent [Ken 77] provided several semantic insights and clarified many
conceptual issues.

Meersman added subtypes, and made major contributions to the RIDL
query language [Mee82] with Falkenberg and Nijssen. The method was re
named "aN Information Analysis Method" (NIAM) and summarized in a
paper by Verheijen and van Bekkum [VB82]. In later years the acronym
"NIAM" was given different expansions, and is now known as "Natural lan
guage Information Anslysis Method". Two matrix methods for subtypes
were developed, one (the role-role matrix) by Vermeir [Ver83] and another
by Falkenberg and others.

In the 1980s, Falkenberg and Nijssen worked jointly on the design pro
cedure and moved to the University of Queensland, where the method was
further enhanced by various academics. Halpin provided the first full for
malization of the method [HaI89], including schema equivalence proofs, and
made several refinements and extensions to the method. In 1989, Halpin and
Nijssen co-authored a book on the method. A second edition of this book,
authored by Halpin, was published in 1995 [Hal95]. Another book on the
method, written by Wintraecken, was published in 1990 [Win90].

Many researchers have contributed to the ORM method over the years,
and there is no space here to list them all. Today various versions of the
method exist, but all adhere to the fundamental object-role framework. Al
though most ORM proponents favor n-ary relationships, some prefer Binary
Relationship Modeling (BRM), e.g. Shoval [SS93]. Habrias [Hab93] devel
oped an object- oriented version called MOON (Normalized Object-Oriented
Method). The Predicator Set Model (PSM) was developed mainly by ter Hof
stede, Proper and van der Weide [HPW93J, and includes complex object con
structors. De Troyer and Meersman [DM95] developed another version with
constructors called Natural Object-Relationship Model (NORM). Halpin de
veloped an extended version called Formal ORM (FORM), and with Bloesch

www.manaraa.com

84 Terry Halpin

and others at InfoModelers Inc. developed an associated query language
called Conquer [BH97]i this work is being extended at Visio Corporation.
Van der Lek and others [BZL94] allowed entity types to be treated as nested
roles, to produce Fully Communication Oriented NIAM (FCO-NIAM). Emb
ley and others [EKW92] developed Object-oriented Systems Analysis (OSA)
which includes an "Object-Relationship Model" component that has much
in common with standard aRM, with no use of attributes.

2 Data Modeling in ORM

2.1 Notation

A modeling method includes both a notation and a procedure for using its
notation. This subsection discusses notation, and later subsections discuss
procedures. Each well defined version of aRM includes a formal, textual
specification language for both models and queries, as well as a formal, graph
ical modeling language. The textual languages are more expressive than the
graphical languages, but are mentioned only briefly in this paper. Figure 1
summarizes most of the main symbols used in the graphical language. We
now briefly describe each symbol. Examples of these symbols in use are given
later.

8 , , , (2) @ @ 0 A \
I

, ,

2 3 4 5 6

'A'

R I -- ® ~ ~ -B' '&-
7 8 9 10 11 12

@-1 < ~ 8 {a,. a.. a,}
{a, .. a.,}

13 14 15 16

... -+ t o;r °it °ae I I

~ I I n n-m ~n
°as °ans 0sym * I .. I

17 18 19 20 21 22 23

Figure 1: Main ORM symbols

The symbols are numbered for easy reference. An entity type is depicted
as a named ellipse (symbol 1). A value type denotes a lexical object type

www.manaraa.com

ORMINIAM 85

(e.g. a character string or number) and is usually shown as a named, dot
ted ellipse (symbol 2). Another notation for value types encloses the value
type name in parentheses. Object types that appear more than once in the
schema may be tagged with an arrow tip (see symbol 3), that "points" to
the existence of another occurrence. Each entity type must have at least
one reference scheme, which indicates how each instance of the entity type
may be mapped via predicates to a combination of one or values. A simple
injective (1:1 into) reference scheme maps entities to single values. For ex
ample, each country may be identified by a single country code (e.g. USA).
In such cases the reference scheme may be abbreviated as in symbol 4 by
displaying the reference mode in parentheses beside the name of the entity
type, e.g. Country(code). The reference mode indicates how values relate to
the entities. Symbol 5 shows that a plus sign "+" may be added if the values
are numeric. Values are constants with a universally understood denotation,
and hence require no reference scheme to be declared.

Although not strictly a conceptual issue, it is normal to require each
entity type to have a primary reference scheme. Relationship types used
for primary reference are then called reference types. The other relationship
types are known as fact types. In symbol 6, an exclamation mark is added to
declare that an entity type is independent. This means that instances of that
type may exist without participating in any facts. By default, this is not the
case (i.e. we don't normally introduce an object into the universe unless it
takes part in some fact).

Symbol 7 shows a ternary predicate, comprised of three roles. Each role is
depicted as a box, and must be played by exactly one object type. Roles are
connected to their players by a line segment (see symbol 13). A predicate is
basically a sentence with object holes in it, one for each role. The number of
roles is called the arity of the predicate. Except for the BRM version, ORM
allows predicates of any arity (1 = unary, 2 = binary, 3 = ternary etc.).
Predicates are usually treated as ordered, as in predicate logic. In this case,
the name of the predicate is written either in or beside the first role box,
and if necessary each object hole may be shown as an ellipsis " ... ". Different
readings may be provided so the information may be read in any direction.
FORML allows mixfix predicates so objects may be placed at any position in
the predicate. For example, the fact type Room at Time is used for Activity
involves the predicate "... at... is used for ... ". Apart from facilitating
natural verbalization of n-ary relationships, mixfix predicates allow binary
relationships to be verbalized in languages where the verb is not in the infix
position (e.g. in Japanese, verbs come at the end). In some versions of ORM,
relationship types are given a name, and each role is also given a name, thus
making order irrelevant.

Internal uniqueness constraints are depicted as arrow tipped bars (symbol
8), and are placed over one or more roles in a predicate to declare that
instances for that role (combination) in the relationship type population must

www.manaraa.com

86 Terry Halpin

be unique. For example, adding a uniqueness constraint over the first role of
Person was born in Country declares that each person was born in at most
one country. A predicate may have one or more uniqueness constraints, at
most one of which may be declared primary by adding a "P" (symbol 9).
An external uniqueness constraint shown as a circled "u" may be applied
to two or more roles from different predicates by connecting to them with
dotted lines (symbol 10). This indicates that instances of the combination
of those roles in the join of those predicates are unique. For example, to say
that a state is identified by combining its statecode and country, we add an
external uniqueness constraint to the roles played by Statecode and Country
in the reference types: State has Statecode; State is in Country. To declare
an external uniqueness constraint primary, use "P" instead of "u" (symbol
11). An object type may have at most one primary reference constraint.

If we want to talk about a relationship type we may objectify it (Le. make
an object out of it) so that it can play roles. Graphically, the objectified
predicate is enclosed in either a rounded rectangle (symbol 12) or an ellipse,
and named. Objectified predicates are also called nested object types. Typ
ically the objectified predicate must have a spanning uniqueness constraint,
but 1:1 cases may also be allowed [Hal93).

A mandatory role constraint declares that every instance in the population
of the role's object type must play that role. It is usually shown as a black
dot (see symbol 13) but a universal quantifier is sometimes used. Mandatory
roles are also called total roles. A disjunctive mandatory constraint may be
applied to two or more roles to indicate that all instances of the object type
population must play at least one of those roles. This may often be shown
by connecting the roles to a black dot on the object type (symbol 14) or in
general by connecting the roles by dotted lines to a circled black dot (symbol
15).

To restrict an object type's population to a given list, the relevant values
may be listed in braces (symbol 16, top). If the values are ordered, a range
may be declared separating the first and last values by" .. " (symbol 16,
bottom). These constraints are called value constraints.

Symbols 17-19 denote set comparison constraints, and may only be ap
plied between compatible role sequences (Le. sequences of one or more roles,
where the corresponding roles have the same host object type). A dotted
arrow (symbol 17) from one role sequence to another is a subset constraint,
restricting the population of the first sequence to be a subset of the second. A
double- tipped arrow (symbol 18) is an equality constraint, indicating the pop
ulations must be equal. A circled "X" (symbol 19) is an exclusion constraint,
indicating the populations are mutually exclusive. Exclusion constraints may
be applied between two or more sequences.

A solid arrow (symbol 20) from one object type to another indicates that
the first object type is a (proper) subtype of the other. For example, Woman
is a subtype of Person. Totality (circled black dot) and exclusion (circled

www.manaraa.com

ORMINIAM 87

"X") constraints may also be displayed between subtypes, but are implied
by other constraints if the subtypes are given formal definitions.

Symbol 21 shows three kinds of frequency constraint. Applied to a se
quence of one or more roles, these indicate that instances that play those
roles must do so exactly n times, between nand m times, or at least n times.

Symbol 22 shows six kinds of ring constraint, that may be applied to a
pair of roles played by the same host type. These indicate that the binary
relation formed by the role population must be irreflexive (ir) , intransitive
(it), acyclic (ac), asymmetric (as), antisymmetric (ans) or symmetric (sym).

Symbol 23 is an asterisk "*", which may be placed beside a fact type
to indicate that it is derivable from other fact types. Not all versions of
aRM support all these symbols, and some versions have a few more symbols.
InfoModeler, a popular ORM tool, supports all the symbols shown, as will a
future release of Visio Professional.

2.2 Conceptual Schema Design Procedure

The information systems life cycle typically involves several stages: feasibil
ity study; requirements analysis; conceptual design of data and operations;
logical design; external design; prototyping; internal design and implemen
tation; testing and validation; and maintenance. ORM's conceptual schema
design procedure (CSDP) focuses on the analysis and design of data. The
conceptual schema specifies the information structure of the application: the
types of fact that are of interest; constraints on these; and perhaps derivation
rules for deriving some facts from others. With large applications, the UoD
is divided into convenient modules, the CSDP is applied to each, and the
resulting subschemas are integrated into the global conceptual schema.

Table 1 shows the CSDP used in FORM. Although different versions of
the CSDP exist, they all agree on the importance of verbalization in terms of
elementary facts, population checks, and thorough analysis of business rules.
The rest of this section illustrates the basic working of this design procedure
by means of an example. Because of space limitations, our treatment is
necessarily brief. A much more detailed discussion of the same example can
be electronically accessed from [Ha197].

Step
1. Transform familiar information examples into elementary facts,

and apply quality checks.
2. Draw the fact types, and apply a population check.
3. Add uniqueness constraints, and check arity of fact types.
4. Add mandatory role constraints, and check for logical derivations.
5. Add value, set comparison and subtyping constraints.
6. Add other constraints and perform final checks.

Table 1: The conceptual schema design procedure (CSDP)

www.manaraa.com

88 Terry Halpin

Step 1 is the most important. Examples of the information required from
the system are verbalized in natural language. Such examples are often avail
able in the form of output reports or input forms, perhaps from a current
manual version of the required system. IT not, the modeler can work with
the client to produce examples. To avoid misinterpretation, a UoD expert
(a person familiar with the application) should perform or at least check the
verbalization. As an aid to this process, the speaker imagines he/she has
to convey the information contained in the examples to a friend over the
telephone.

For our case study, we consider a fragment of an information system used
by a university to maintain details about its academic staff and academic
departments. One function of the system is to print an academic staff di
rectory, as exemplified by the report extract shown in Table 2. Part of the
modeling task is to clarify the meaning of terms used in such reports. The
descriptive narrative provided here would thus normally be derived from a
discussion with the UoD expert. The terms "empnr" and "extnr" abbreviate
"employee number" and "extension number."

A phone extension may have access to local calls only ("LOC"), national
calls ("NAT"), or international calls ("INT") . International access includes
national access, which includes local access. In the few cases where different
rooms or staff have the same extension, the access level is the same. An
academic is either tenured or on contract. Tenure guarantees employment
until retirement, while contracts have an expiry date.

Phone Tenured/
Empnr EmpName Dept Room Extnr Access Contract-

expiry
715 Adams A Computer Science 69-301 2345 LOC 01/31/95
720 Brown T Biochemistry 69-301 9642 LOC 01/31/95
139 Cantor G Mathematics 62-406 1221 INT tenured
430 Codd EF Computer Science 67-301 2911 INT tenured
503 Hagar TA Computer Science 69-507 2988 LOC tenured
651 Jones E Biochemistry 69-803 5003 LOC 12/31/96
770 Jones E Mathematics 67-404 1946 LOC 12/31/95
112 Locke J Philosophy 1-205 6600 INT tenured
223 Mifune K Elec.Eng. 50-215A 1111 LOC tenured
951 Murphy B Elec.Eng. 45-B19 2301 LOC 01/03/95
333 Russell B Philosophy 1-206 6600 INT tenured
654 Wirth N Computer Science 69-603 4321 INT tenured

Table 2: Extract from a directory of academic staff

The information contained in this table is to be stated in terms of elemen
tary facts. Basically, an elementary fact asserts that a particular object has
a property, or that one or more objects participate in a relationship, where
that relationship cannot be expressed as a conjunction of simpler (or shorter)
facts without introducing new object types [Hal93]. For example, to say that
Bill Clinton jogs and is the president of the USA is to assert two elementary
facts.

www.manaraa.com

ORM/NIAM 89

As a first attempt, one might read off the information on the first data
row as the six facts £1-f6. Each asserts a binary relationship between two
objects. For discussion purposes the predicate is shown in bold between the
noun phrases which identify the objects, and object type names start with a
capital letter. Some obvious abbreviations are used ("empnr", "EmpName",
"Dept", "extnr"); when read aloud these can be expanded to "employee
number", "Employee name", "Department" and "extension number". The
second data row contains different instances of these six fact types. Row
three, because of its final column, provides an instance f7 of a seventh fact
type, a unary.

£1 The Academic with empnr 715 has EmpName 'Adams A'.

f2 The Academic with empnr 715 works for the Dept named 'Computer
Science'.

f3 The Academic with empnr 715 occupies the Room with roomnr '69-
301'.

f4 The Academic with empnr 715 uses the Extension with extnr '2345'.

f5 The Extension with extnr '2345' provides the AccessLevel with code
'LOC'. mdy-code '01/31/95'.

f6 The Academic with empnr 715 is contracted till the Date with mdy
code '01/31/95'

f7 The Academic with empnr 139 is tenured.

Different readings may be provided to allow relationships to be read in differ
ent directions. For example, the inverse reading of f4 is: The Extension with
extnr 2345 is used by the Academic with empnr 715. To save writing, both
the normal predicate and its inverse may be included in the same declaration,
with the inverse predicate preceded by a slash "/". For example:

f4 The Academic with empnr 715 uses/is used by the Extension with
extnr 2345.

Predicate names are usually unique in the conceptual schema. In some cases
(e.g. "has"), the same name may be used externally for different predicates:
internally these have different identifiers.

As a quality check at Step 1, we ensure that objects are well identified.
Values are identified by constants (e.g. Adams A, 715). Entities are "real
world" objects that are identified by a definite description (e.g. the Academic
with empnr 715). Fact £1 involves a relationship between an entity (a person)
and a value (a name is just a character string). Facts f2-f6 specify relation
ships between entities. Fact f7 states a property (or unary relationship) of
an entity.

www.manaraa.com

90 Terry Halpin

As a second quality check at Step 1, we use our familiarity with the UoD
to see if some facts should be split or recombined (a formal check on this
is applied later). For example, suppose facts £1 and f2 were verbalized as:
The Academic with empnr 715 and empname 'Adams A' works for the Dept
named Computer Science. The presence of the word "and" suggests that this
may be split without information loss. The repetition of "Jones E" on differ
ent rows of Table 2 shows that academics cannot be identified just by their
name. However the uniqueness of empnr in the sample population suggests
that this suffices for reference. Since the "and-test" is only a heuristic, and
sometimes a composite naming scheme is required for identification, the UoD
expert is consulted to verify that empnr by itself is sufficient for identifica
tion. With this assurance obtained, the composite sentence is now split into
£1 and f2.

As an alternative to specifying complete facts one at a time, the reference
schemes may be declared up front and then assumed in later facts. For exam
ple, suppose we have declared the following: Academic(empnr); EmpNameO;
Dept(name). The empty parentheses after EmpName indicates it is a value
type and hence needs no reference scheme. Now facts £1 and f2 may be stated
as: Academic 715 has EmpName 'Adams A'; Academic 715 works for Dept
'Computer Science'. Facts £1-f7 are instances of the following fact types:

F1 Academic has EmpName

F2 Academic works for Dept

F3 Academic occupies Room

F4 Academic uses Extension

F5 Extension provides AccessLevel

F6 Academic is contracted till Date

F7 Academic is tenured

Step 2 of the CSDP is to draw a draft diagram of the fact types and
apply a population check (see Figure 2). As a check, each fact type has been
populated with at least one fact, shown as a row of entries in the associated
fact table, using the data from rows 1 and 3 of Table 2. The English sentences
listed before as facts £1-f7, as well as other facts from row 3, may be read
directly off this figure. Though useful for validating the model with the client
and for understanding constraints, the sample population is not part of the
conceptual schema itself.

Suppose the information system is also required to assist in the production
of departmental hand-books. Figure 3 shows an extract from a page of one
such handbook. In this university academic staff are classified as professors,
senior lecturers or lecturers, and each professor holds a "chair" in a research

www.manaraa.com

ORMINIAM 91

715 Adams A
139 CantorG

69-301 715
67-301 139

139

Figure 2: Draft diagram of fact types for Table 2 with sample population

area. To reduce the size of our problem, we have excluded many details which
in practice would also be recorded (e.g. office phone and fax). To save space,
details are shown here for only four of the 22 academics in that department.
The data are, of course, fictitious.

It appears from the handbook example that within a single department,
academics may be identified by their name. Let us assume this is verified by
the UoD expert. However the complete application requires us to handle all
departments in the same information system, and to integrate this subschema
with the directory subschema considered earlier. Hence we must replace the
academic naming convention used for the handbook example by the global
scheme used earlier (i.e. empnr).

We use this report to illustrate Step 3 of the CSDP: check for entity
types that should be combined, and note any arithmetic derivations. Sup
pose we verbalized the degree information in terms of the three ternary fact
types: Professor obtained Degree from University; SeniorLecturer obtained
Degree from University; Lecturer obtained Degree from University. The com
mon predicate suggests that the entity types Professor, SeniorLecturer and
Lecturer should be collapsed to the single entity type Academic, with this
predicate now shown only once. To preserve the original information about
who is a professor, senior lecturer or lecturer we introduce the fact type:
Academic has Rank. Let's use the codes "P," "SL" and "L" for the ranks of
professor, senior lecturer and lecturer.

The second aspect of Step 3 is to see if some fact types can be derived
from others by arithmetic. Since we now record the rank of academics as
well as their departments, we can compute the number in each rank in each

www.manaraa.com

92

Department:
Home phone of
Dept head:

Chairs
Databases
Algorithms

Senior Lecturers (9)
Hagar TA

Lecturers (8)
Adams A

Terry Halpin

Computer Science

9765432

Professors (5)
Codd EF BSc (UQ)j PhD (UCLA) (Head of Dept)
Wirth N BSc (UQ)j MSc (ANU)j DSc (MIT)

BInfTech (UQ)j PhD (UQ)

MSc (OXON)

Figure 3: Extract from Handbook of Computer Science Department

department simply by counting. So the fact type Dept employs academics of
Rank in Quantity is derivable. If desired, derived fact types may be included
on a schema diagram if they are marked with an asterisk "*,, .At any rate,
a derivation rule must be supplied. This may be written below the diagram
(see Figure 4). Here "iff" abbreviates "if and only if".

Step 4 of the CSDP is to add uniqueness constraints and check the arity of
the fact types. For example, we add a uniqueness constraint to the first role
of works for to ensure that each academic works for at most one department.
One simple arity check ensures that each uniqueness constraint on an n-ary
spans at least n-1 roles.

Step 5 of the CSDP is to add mandatory role constraints, and check for
logical derivations. For example, we need a disjunctive mandatory constraint
to declare that each academic either is contracted till some date or is tenured.
Roles that are not mandatory are optional. If an object type plays only one
fact role in the global schema, then by default this is mandatory, but a dot
is not normally shown.

Suppose that departmental handbooks include a building directory, which
lists the names as well as the numbers of buildings. A sample fact might be:
Building '67' has Buildingname 'Priestly'. Earlier we identified rooms by a
single value. For example "67-301" was used to denote the room in building
67 which has room number "301". Now that buildings are to be talked about
in their own right, we replace the simple reference scheme by a composite
one which shows the full semantics (see Figure 4). Here Roomnr now means
just the number (e.g. "301") used to identify the room within its building.

To illustrate nesting, suppose the application also has to deal with reports
about teaching commitments, an extract of which is shown in Table 3. Not

www.manaraa.com

ORM/NIAM 93

all academics currently teach. If they do, their teaching in one or more
subjects may be evaluated and given a rating. Some teachers serve on course
curriculum committees. Here the new fact types may be schematized as
shown in Figure 4. The nested object type Teaching plays only one role, and
this role is optional, so Teaching is an independent object type (as shown by
the "!").

The second stage of Step 5 is to check for logical derivations (i.e. can
some fact type be derived from others without the use of arithmetic?). One
strategy here is to ask whether there are any relationships (especially func
tional relationships) which are of interest but which have been omitted so far.
Another strategy is to look for transitive patterns of functional dependencies.
Suppose that our client confirms that the rank of an academic determines the
access level of his /her extension. For example, suppose a current business rule
is that professors get international access while lecturers and senior lecturers
get local access. This rule might change in time (e.g. senior lecturers might
be arguing for national access). To minimize later changes to the schema,
we store the rule as data in a table. So it can be updated as required by an
authorized user without having to recompile the schema. The relevant rule
is shown at the bottom of Figure 4.

Empnr Emp. name Subject Rating Committees
715 Adams A CSIOO

CSlOl 5
430 Codd EF
654 Wirth N CS300 BSc-Hons

CAL Advisory

Table 3: Extract of report on teaching commitments

In Step 6 of the CSDP we add any value, set comparison and subtyping
constraints. One value constraint is that Rankcode is restricted to P ,SL,L.
In Figure 4, a pair-subset constraint runs from the heads predicate to the
works for predicate, indicating that a person who heads a department must
work for the same department. The rule that nobody can be tenured and
contracted at the same time is captured by an exclusion constraint. Sub
typing is determined as follows. Each optional role is inspected: if the role
is played only by some well-defined subtype, a subtype node is introduced
with this role attached. Subtype links and definitions are added. Figure 4
contains three subtypes: Teacher; Professor; and TeachingProfessor. In this
university, each teacher is audited by another teacher. Moreover, only pro
fessors may be department heads, and only teaching professors can serve on
curriculum committees (not all universities work this way).

Step 7 of the CSDP adds other constraints and performs final checks. For
example, auditing is irrefiexive (no teacher audits himself/herself). Suppose
we also need to record the teaching and research budgets ofthe departments.
We might schematize this using the ternary Dept has for Activity a budget

www.manaraa.com

94 Terry Halpin

, ,
, BldgName "
\ , , , {1 .. 7}

"
(Roomnr ;

, ,
I, Phonenr ;

... _-_

CINr,'NAr,'LOC,)

each Teacher is an Academic who teaches some Subject
each Professor Is an Academic who has Rank 'P'
each TeachingProf Is both a Teacher and a Professor

• Dept d employs academics of Rank r in Quantity q Iff q =
count each Academic who has Rank r and works for Dept d

• Extension e provides AccessLevel a Iff
Extension e is used by an Academic who has a Rank that ensures AccessLevel a

Figure 4: The final conceptual schema

of MoneyAmt, where Activity has the value constraint {Teaching, Research}
and the first role is mandatory and constrained to a frequency of 2.

Once the global schema is drafted, and the target DBMS decided, some
optimization can often be performed to improve the efficiency of the logi
cal schema obtained by mapping. Assuming the conceptual schema is to be
mapped to a relational database schema, the ternary fact type about bud-

www.manaraa.com

ORMINIAM 95

gets will map to a separate table all by itself, leading to extra joins for some
queries. We can avoid this problem by transforming the ternary into the fol
lowing two binaries before we map: Dept has teaching budget of MoneyAmt;
Dept has research budget of MoneyAmt. These binaries have simple keys,
and will map to the "main" department table. Another optimization may
be performed which moves the home phone information to Dept instead of
Professor. Figure 4 includes these optimizations. Such conceptual schema
transformations require a rigorous theory of schema equivalence and opti
mization strategies. For details on such topics (see [Hal95], ch.9, [HP95b]
and [DeT93]).

Once the conceptual schema has been specified, the target data model
is selected and the mapping is done. For example, the Rmap algorithm
[RH93 , Hal95] maps our conceptual schema to the relational schema shown
in Figure 5 (domains omitted). If the conceptual fact types are elementary
(as they should be), then the mapping is guaranteed to be free of redun
dancy, since each fact type is grouped into only one table, and fact types
which map to the same table all have uniqueness constraints based on the
same attribute(s). Keys are underlined. If alternate keys exist, the primary
key is doubly-underlined. A mandatory role is captured by making its corre
sponding attribute mandatory in its table (not null is assumed by default),
by marking as optional (in square brackets) all optional roles for the same
object type which map to the same table, and by running an equality/subset
constraint from those mandatory/optional roles which map to another table.
The <2,1> in the pair-subset constraint indicates the source pair should be
reversed before the comparison. Subtyping is captured by qualified optionals
or qualified subset constraints. The word "exists" means "a non-null value
exists" .

3 Recent Extensions

3.1 Conceptual Queries

Besides information modeling, ORM is also ideal for information query
ing. The first significant ORM query language was RIDL [Mee82], a hy
brid language with both declarative and procedural components. Tempo
ral aspects were added later to form TRIDL. Currently, research is being
carried out on at least three ORM query languages: LISA-D [HPW93]j
OSM-QL [EWPC96]j and ConQuer [BH96]. Of these ConQuer (CONcep
tual QUERy) is the only one to be commercially released. A more powerful
version, ConQuer-II [BH97], is currently under development at Visio Corpo
ration.

Using ConQuer, an ORM model may be queried directly without prior
knowledge of either the conceptual schema or the corresponding relational
schema, by dragging object types onto the query pane, selecting predicates

www.manaraa.com

96

Building

PhoneAccess

Department

Academic

Terry Halpin

(bldgnr ,bldgname)
----x--
{L,S,~} {INT,NAT,LOC} - ~

(rank, access level) I

A : ---::::::::::------------------, :
., 1 1

(deptname , headempnr I home phone, teachingbudget, 1 :
-,-"" I 1 1

C:=<2,1>-----, 1 researchbudget) 1 1
I 1 1 1
r 5 I .".,; '" '

I ... I: {P,~L .. L}.'>,/
(empnr , empname, deptriame ,extn, rank, bldgnr, roomnr,
~ tenured, [enddate) 1, [chairF, [au~itor)3,4)

" 1 1 {y,N} ,/ ___ I 1 ,

5,'1 .. ,"
Award " : (empnr, degree ,university) _ ./ ---(1 ---

\ I _-----" '" .--------
Teaching \ (empnr, subject ,[rating))

\ ~ {1..7}

\ 1

CteeMember (empnr, committee

1 exists iff tenured = 'N'
2 exists iff rank = 'P'
3 <> empnr
4 exists iff empnr in Teaching.empnr
5 only where rank = 'P'

* Provides (extn, accesslevel) ::= extn, accesslevel from

*

Academic natural join PhoneAccess

Employs (deptname, rank, nrstaff) ::= deptname, rank, count (*)
from Academic
group by deptname, rank

Figure 5: The relational schema mapped from Figure 4

of interest, applying restrictions and functions as desired, and ticking the
items to be listed. As a simple example, consider the following English query
on our academic database: list the empnr, empname and number of subjects
taught for each academic who occupies a room in the Chemistry building and
teaches more than two subjects. This may be formulated by drag-and-drop
basically as shown in Figure 6.

Notice how easily the conceptual joins are made. A verbalization of the
query is automatically generated, as well as SQL code. Formulating queries in
terms of objects and predicates is much easier than deciphering the semantics

www.manaraa.com

ORMINIAM

Academic l is identified by ~ Empnr
has ~ Empname

occupies Room
I L is in Building L L has BldgName 'Chemistry'

teaches Subject
L ~ count (Subject) for Academic> 2

Figure 6: Query on an academic database

97

of the relational schema and coding in SQL or QBE. A major benefit of
such queries is their semantic stability. For example, ConQuer queries are
unaffected by most schema changes (e.g. addition offact types, or changes to
constraints). In contrast, such changes often require the corresponding SQL
or ER query to be reformulated, since they depend on attribute structures.

3.2 Other Extensions

Researchers are actively investigating several extensions to the basic ORM
framework. These include abstraction mechanisms to allow users to con
trol the amount of detail seen at any given time [CHP96], reverse engi
neering [SS93, CH94], support for complex objects [HW93, DM95], process
event modeling [Hof93], external schema generation [CH93], schema evolution
[Pr094], schema optimization [HP95b] [Bom94], meta-modeling [F094], null
handling [HR92], object-oriented mapping [ME96], unary nesting [BZL94],
and empirical research [Eve94].

Although various versions of ORM have added support for complex ob
jects, they differ in their approaches. Currently there seems to be a growing
agreement that constructors (e.g. set, bag, sequence) should only be added
after a flat ORM model is first developed. There are also different opinions on
whether such constructors should be considered part of the conceptual model,
or regarded as mapping annotations. Commercial developers of ORM tools
are also extending the method. For example, InfoModeler includes extra
constructs for mapping to object-relational databases, and extensions of this
technology are being incorporated into Visio Professional.

4 Conclusion

This contribution has provided only a brief sketch of the ORM method, em
phasizing its fundamental features and touching on some of its advantages.
Apart from its sound theoretical basis, the method has been used success-

www.manaraa.com

98 Terry Halpin

fully in many countries, on applications from the small to the very large.
The recent emergence of intuitive and powerful ORM tools has led to wider
adoption of the method, which is now being successfully taught as early as
high school level. Perhaps the greatest strengths of ORM are that it lifts the
communication between modeler and client to a level where they can readily
understand and validate the application model using simple sentences, and
that it has been designed from the ground up to facilitate schema evolu
tion. This second advantage is very relevant to today's business world where
change is ongoing.

In an article this brief, several aspects of ORM have necessarily been
glossed over. The reader who is interested in pursuing the area further should
consult the cited references, which are included at the end of the contribution.

References

[Abr74]

[BZL94]

[BH96]

[BH97]

[Bom94]

[CH93]

[CH94]

[CHP96]

Abrial, J. R, Data Semantics, in: J. W. Klimbie, K. L. Koffe
man (eds.), Data Base Management, North-Holland, Amsterdam, The
Netherlands, 1974, 1-60

Bakema, G. P., Zwart, J. P. C., Lek, H. van der, Fully Communication
Oriented NIAM, in: G. M. Nijssen, J. Sharp (eds.), NIAM-ISDM 1994
Conf. Working papers, Albuquerque, NM USA, 1994, 1-35

Bloesch, A. C., Halpin, T. A., ConQuer: a conceptual query language,
Proc. ER'96: 15th Int. Conf. on conceptual modeling, Springer LNCS,
vol. 1157, 1996, 121-133

Bloesch, A. C., Halpin, T. A., Conceptual queries using ConQuer-II,
in: Proc. ER'97, 16th Int. Conf. on Conceptual modeling, Springer
LNCS 1331, 1997, 113-26

Bommell, P. van, Implementation selection for Object-Role models,
in: T. A. Halpin, R M. Meersman (eds.), Proc. First Int. Conf. On
Object-Role Modeling (ORM-l), Magnetic Island, Australia, 1994,
103-112

Campbell, L., Halpin, T. A., Automated Support for Conceptual to
External Mapping, in: S. Brinkkemper, F. Harmsen (eds.), Proc. 4th
Workshop on Next Generation CASE Tool, Univ. Twente Memoranda
Informatica 93-132, Paris (June), 1993, 35-51

Campbell, L., Halpin, T. A., The reverse engineering of relational
databases, Proc. 5th Workshop on Next Generation CASE Tools,
Utrecht (June), 1994

Campbell, L. J., Halpin, T. A., Proper, H. A., Conceptual Schemas
with Abstractions: making flat conceptual schemas more comprehen
sible, Data and Knowledge Engineering, vol. 20, no. 1, 1996, 39-85

www.manaraa.com

ORM/NIAM 99

[DeT93] De Troyer, 0., On data schema transformations, PhD thesis, Univer
sity of Tilburg (K. U. B.), Tilburg, The Netherlands, 1993

[DM95] De Troyer, 0., Meersman, R, A logic framework for a semantics of ob
ject oriented data modeling, 00ER'95: Object-Oriented and Entity
Relationship Modeling, Springer LNCS, vol. 1021, 1995, 238-249

[EKW92] Embley, D. W., Kurtz, B. D., Woodfield, S. N., Object-Oriented Sys
tems Analysis, Prentice Hall, Englewood Cliffs, NJ, 1992

[EWPC96] Embley, D. W., Wu, H. A., Pinkston, J. S., Czejdo, B., OSM-QL: a
calculus-based graphical query language, Tech. Report, Dept of Compo
Science, Brigham Young Univ., Utah, 1996

[Eve94] Everest, G., Experiences teaching NIAM/OR modeling, NIAM-ISDM
1994 Conf. Working Papers, G. M. Nijssen, J. Sharp (eds.), Albu
querque, NM USA, 1994, 1-26

[FaI76] Falkenberg, E. D., Concepts for modelling information, in: G. M.
Nijssen (ed.), Proc. 1976 IFIP Working Conf. on Modelling in Data
Base Management Systems, Freudenstadt, Germany, North-Holland
Publishing, 1976, 95-109

[F094] Falkenberg, E. D., Oei, J. L. H., Meta-model hierarchies from an
Object-Role Modeling perspective, in: T. A. Halpin, R M. Meers
man (eds.), Proc. First Int. Conf. On Object-Role Modeling (ORM-1),
Magnetic Island, Australia, 1994, 218-227

[Hab93] Habrias, H., Normalized Object Oriented Method, in: Encyclopedia
of Microcomputers, vol. 12, Marcel Dekker, New York, 1993, 271-285

[HaI89] Halpin, T. A., A Logical Analysis of Information Systems: static
aspects of the data-oriented perspective, PhD thesis, University of
Queensland, 1989

[HaI93] Halpin, T. A., What is an elementary fact?, in: G. M. Nijssen, J.
Sharp (eds.), Proc. First NIAM-ISDM Conf., Utrecht, (Sep), 1993, 11

[HaI95] Halpin, T. A., Conceptual Schema and Relational Database Design,
2nd edn, Prentice Hall Australia, Sydney, 1995

[HaI96] Halpin, T. A., Business Rules and Object-Role Modeling, Database
Prog., Design, vol. 9, no. 10, Miller Freeman, San Mateo CA, 1996,
66-72

[HaI97] Halpin, T. A., Object-Role Modeling: an overview, electronic paper
available on website http://www.visio.com. 1997

[HP95a] Halpin, T. A., Proper, H. A., Subtyping and polymorphism in Object
Role Modeling, Data and Knowledge Engineering, Elsevier Science,
vol. 15, 1995, 251-281

[HP95b] Halpin, T. A., Proper, H. A., Database schema transformation and op-

www.manaraa.com

100 Terry Halpin

timization, OOER95: Object-Oriented and Entity-Relationship Mod
eling, Springer LNCS, vol. 1021, 1995, 191-203

[HR92] Halpin, T. A., Ritson, P. R., 1992, Fact-Oriented Modelling and Null
Values, in: B. Srinivasan, Z. Zeleznikov (eds.), Proc. 3rd Australian
Database Conf., World Scientific, Singapore, 1992

[Hof93] Hofstede, A. H. M. ter, Information modelling in data intensive do
mains, PhD thesis, University of Nijmegen, The Netherlands, 1993

[HPW93] Hofstede, A. H. M. ter, Proper, H. A., Weide, Th. P. van der, Formal
definition of a conceptual language for the description and manipula
tion of information models, Information Systems, vol. 18, no. 7, 1993,
489-523

[HW93] Hofstede, A. H. M. ter, Weide, Th. P. van der, Expressiveness in
conceptual data modelling, Data and Knowledge Engineering, vol. 10,
no. 1, 1993, 65-100

[Ken77] Kent, W., Entities and relationships in Information, in: G. M. Ni
jssen (ed.), Proc. 1977 IFIP Working Conf. on Modelling in Data Base
Management Systems, Nice, France, North-Holland Publishing, 1977,
67-91

[Mee82] Meersman, R., The RIDL conceptual language, Research report, Int.
Centre for Information Analysis Services, Control Data Belgium, Brus
sels, 1982

[ME96] Mok, W. Y., Embley, D. W., Transforming conceptual model to objec
toriented database designs: practicalities, properties and peculiarities,
Proc. ER96: 15th Int. Conf. on conceptual modeling, Springer LNCS,
vol. 1157, 1996, 309-324

[Nij76] Nijssen, G. M., A gross architecture for the next generation database
management systems, in: G. M. Nijssen (ed.), Proc. 1976 IFIP Work
ing Conf. on Modelling in Data Base Management Systems, Freuden
stadt, Germany, North-Holland Publishing, 1976, 1-24

[Nij77] Nijssen, G. M., Current issues in conceptual schema concepts, in: G.
M. Nijssen (ed.), Proc. 1977 IFIP Working Conf. on Modelling in Data
Base Management Systems, Nice, France, North-Holland Publishing,
1977,31-66

[Pro94] Proper, H. A., A theory of conceptual modelling of evolving applica
tion domains, PhD thesis, University of Nijmegen, The Netherlands,
1994

[RH93] Ritson, P. R., Halpin, T. A., Mapping Integrity Constraints to a Re
lational Schema, Proc. 4th ACIS, Brisbane, (Sep.), 1993, 381-400

[Sen75] Senko, M. E., Information systems: records, relations, sets, entities
and things, Information Systems, vol. 1, no. 1, Jan. 1995, Pergamon
Press, 1975, 3-13

www.manaraa.com

[SS93J

[VB82J

[Ver83J

[Win90J

ORM/NIAM 101

Shoval, P., Shreiber, N., Database reverse engineering: from the rela
tional to the binary relational model, Data and Knowledge Engineer
ing, vol. 10, 1993, 293-315

Verheijen, G. M. A., van Bekkum, J., NIAM: an information analy
sis method, Information systems Design Methodologies: a compara
tive review, Proc. IFIP WG8.1 Working Conf., Noordwijkerhout, The
Netherlands, North Holland Publishing, 1982, 537-590

Vermeir, D., Semantic hierarchies and abstractions in conceptual
schemata, Information systems, vol. 8, no. 2, 1983, 117-124

Wintraecken, J. J. V. R., 1990, The NIAM Information Analysis
Method: Theory and Practice, Kluwer, Deventer, The Netherlands,
1990

www.manaraa.com

CHAPTER 5

Database Language SQL

Jim Melton

SQL, a data sublanguage used to access relational databases, is sometimes de
scribed as "English-like" because many of its statements read a bit like English.
It is a non-procedural language since complex data operations are formulated by
specifying their intended result rather than the method used to obtain that result.
Both ANSI and ISO have published three generations of the de jure SQL standards.
The syntax and semantics of SQL is examined and the conformance requirements
are stated; a few components of the language are considered in greater detail and
the future of the language is outlined.

1 Introduction

SQL is not a complete programming language, but is a data sublanguage
used with a host language for access to relational databases. Programs writ
ten using SQL depend on the host language for input/output and control
facilities. The syntax of SQL is sometimes described as "English-like" be
cause many of its statements read a bit like English. SQL is described as a
non-procedural language, or an intentional language because complex data op
erations are stated by specifying their intended result rather than the method
by which that result is to be obtained.1 This results from SQL's relation
ship to the relational model of data and has resulted in the fact that much
of the research related to SQL implementation is intended to improve the
optimization of SQL statement execution. Both ANSI (American National
Standards Institute) and ISO (International Organization for Standardiza
tion) have published three generations of the de jure SQL standard, and a
consortium, X/Open, has published an SQL specification that is often said
to be a de facto standard.

1 In mathematical logic we would say that SQL describes intensionally the set of tuples
(specifies the set through its intension, i.e. the properties of the tuples in the set that the
user of the language wants to denote, as opposed to the extension of the set, which would
be the enumeration of tuples) [Ed].

www.manaraa.com

104 Jim Melton

The relational model gained prominence in 1974 when E.F.Codd pub
lished his seminal paper [Cod74] that provided a mathematical foundation
for logical representation and manipulation of data, independent of physi
cal representation, relationships, and other implementation considerations.
Shortly afterwards, Don Chamberlin and Raymond Boyce published the first
paper on the language that became SQL [CB74]. This paper was based on
research prototypes on data languages named SQUARE and SEQUEL, as
well as on IBM's research relational database project, called System R. The
relational model uses terms like relation, attribute, and tuple for the concepts
that SQL calls table, column, and row. It should be noted that SQL does not
correspond perfectly to the relational model - most significantly in the fact
that SQL does not prohibit duplicate rows in a table, although SQL does
permit users to restrict their tables to contain only unique rows.

In 1978, the principle standards body in the United States, ANSI, ap
proved a project to develop a standard for a data definition language for
network databases and established a new Technical Committee, X3H2, to do
the work on that project. In 1986, a complete network database language
standard was published as Database Language NDL (ANSI X3.133-1986).
However, X3H2 members recognized the importance of the relational model
and worked in the background on a derivation of SEQUEL called RDL (many
viewed this as an acronym for "Relational Database Language"). After a cou
ple of years of RDL work, X3H2 found the work wasn't reaching closure and
accepted an IBM proposal to use IBM's SQL specification. X3H2, in cooper
ation with a newly-established corresponding ISO group, spent another year
refining the SQL specification, which was published in 1986 by ANSI and in
early 1987 by ISO [ANSI86, IS087].

SQL-86 (or SQL-87, depending on one's frame ofreference) omitted sup
port for referential integrity, but a revised standard, called SQL-89, was
published three years later by both ANSI and ISO, with a minimal referen
tial integrity facility [ANSI89, IS089]. In 1992, a major new version of the
language was published [ANSI92, IS092]. While SQL-86 and SQL-89 did not
have adequate features for real applications, SQL-92 contained language fea
tures and conformance requirements that would allow significant applications
to be built using only standardized language features. The fourth generation
of SQL (the project is called "SQL3") is currently being prepared for publi
cation perhaps as early as the end of 1998; it adds significant new facilities to
SQL, including support for object orientation, and divides the specification
into several parts that can be progressed more or less independently.

2 Requirements Leading to SQL

SQL derived from the need for a database language that, analogous to COBOL,
was relatively easy to use and supported the most important features of the
relational model of data that was in the 1980s attracting so much attention

www.manaraa.com

Database Language SQL 105

from large application builders and software vendors. Like the CODASYL
defined language [Coda7l] supporting "network database" applications, a
relational database language had to be complete, allowing definition and
maintenance of a database and its structure, as well as management of its
contained data. In addition, it was widely agreed that such a language was
required to provide better support for application modeling, including en
forcement of business rules, without depending on the database structure.
Several languages were developed in support of these requirements. SQL
became the most popular of those languages - not necessarily because of in
herent technical superiority, but because of that most powerful of forces, the
marketplace. SQL was supported and implemented by several marketplace
leading vendors and demanded by several important computer system users:
the combination determined the outcome of any competition from other lan
guages.

2.1 Database Definition

Like the relational model itself, SQL's database definition capabilities specify
only the logical contents of a database and say nothing about the physical
structure. Although virtually every dialect of the SQL language includes
facilities for defining certain physical aspects of a database - such as indexes
that are used for higher-performance access to some data, or allocation of
data storage to physical devices - those facilities vary quite widely from
implementor to implementor and are generally viewed as extensions to the
language rather than an inherent part of it.

Instead of allocating significant language facilities to physical database
design, SQL focuses on the higher abstraction levels of data. The data def
inition language of SQL, called the "schema manipulation language" in the
SQL standard, allows database designers to specify the data elements that
they wish represented, the data types of those elements, and how those ele
ments are grouped together into "records" of data. Database designers are
also able to identify specific rules that the database must follow when appli
cations perform various operations that manipulate the data that it contains.
Some versions of SQL, including the emerging next generation of the SQL
standard sometimes called SQL3, allow database designers to specify active
behaviors that the database system takes when applications perform certain
classes of operations on the data.

2.2 Data Manipulation

As important as database design is to successful application creation, the
essence of a database management system is the operations that it permits
on the data that it is designed to contain. SQL provides four major classes of
data manipulation operation: retrieval, insertion, update, and deletion. All
operations in an SQL database are performed in the context of a transaction

www.manaraa.com

106 Jim Melton

[GR93] that provides atomicity of groups of operations. The SQL standard,
as well as most implementations of the language, allows application writers
to determine the degree of isolation that transactions have from the effects of
other transactions. Data manipulation operations are, of course, performed
in the larger context of an application, which leads to special considerations
that are not immediately obvious.

Because of its relationship to the relational model of data, SQL's opera
tions are inherently set oriented operations, meaning that a single SQL data
manipulation statement specifies both an action to be performed and a rule by
which the database system is able to identify - possibly many - data items on
which the action is performed. However, SQL is not a complete programming
language but is used in conjunction with more traditional programming lan
guages for building applications. Those traditional programming languages
do not process data in sets, but one datum at a time. It often happens that
SQL and its host language must interact as they manipulate the database
data. This leads to one component of what is commonly called the impedance
mismatch between SQL and other programming languages. SQL provides a
construct called a cursor to resolve this aspect of impedance mismatch; a
cursor identifies a set of data to manipulate, but actually operates on that
data one datum at a time.

Since SQL's data types are not identical to those of any single traditional
programming language - much less to all such languages - a 'second compo
nent to the impedance mismatch is revealed. As data is transferred between
SQL and code written in the host language, there may be a need for some of
that data to be converted from one data type to another. In doing so, it is
possible that information (e.g., precision) could be lost; application writers
must exercise some caution to ensure that data loss possibilities are well un
derstood and actual loss minimized or eliminated. A final component of the
impedance mismatch arises from SQL's recognition that not all data is well
known at the time that collections of data are created. SQL uses the notion
of a null value to represent data that is missing, inapplicable, or otherwise
unavailable. Traditional programming languages do not have inherent facil
ities for dealing with those concepts and this leads to difficulties when it is
necessary to retrieve data from an SQL database into an application program
and that data is null (or, conversely, when data is being stored into an SQL
database and the application must notify SQL that the data to be stored is
null). This aspect of the impedance mismatch is resolved by exchanging two
components for every potentially null datum transferred between SQL and
the host language: one component is a sort of flag that identifies whether or
not the datum has the null value, and the other - relevant only if the flag
indicates that the datum does not have the null value - contains the actual
value of the datum.

www.manaraa.com

Database Language SQL 107

2.3 Business Rules

Data models that predate the relational model - and the database access fa
cilities, including database languages, that supported those models - typically
required that the database be designed in a way that enforced the various
rules of the business and its applications in the database structure itself.
This approach made database designs very inflexible and difficult to adapt
to new business conditions with different rules. The relational model, and
SQL, permit and encourage a very different approach, in which the logical
structure of a database is independent of the business rules that applications
must enforce. Of course, one possible outcome of this change in approach
is that each application program might be responsible for enforcing all of
the business rules itself. Besides raising the costs of writing applications
considerably, this situation would significantly increase the risk that errors
in programming could cause many sorts of anomalies in database contents.
This is clearly an undesirable result.

To avoid such problems, SQL provides facilities that allow database de
signers to define business rules within the database itself and to modify or
even remove those rules as circumstances require. Because the rules are not
instantiated in the database structure, the database design remains quite flex
ible and can respond readily to business changes - and application programs
need not even be aware of the existence of such rules and certainly don't
have to be changed as business conditions evolve. Some such rules are called
semantic integrity constraints because they provide restrictions on data con
tent that enforce the integrity of the meaning of the data. For example, most
business entities require that all wages and salaries be greater than zero -
employees are rarely required to pay for the privilege of working. Therefore,
a meaningful (if trivial) business rule applied to salary data is that values
representing such data must be greater than zero.

2.4 Modeling Businesses and Applications

There are other sorts of business rules, however. Many of these govern the
relationships between different aspects of business data. For example, it is
common to require that business departments be managed by exactly one em
ployee; departments cannot be comfortably managed by two or more employ
ees simultaneously, and it's clearly undesirable to have departments without
any management at all. A different sort of business rule called a referential
integrity constraint allows database designers to place restrictions on certain
data to insist that the data reference existing data in other places in the
database.

Real business requirements go even further than this. It is often necessary
that certain actions performed on data in a database always be accompanied
by other actions in order to maintain consistency of data in different places
in the database. For example, it is common for a business to require that an

www.manaraa.com

108 Jim Melton

increase in capital expenditures for one project in a department be supported
by an equal decrease in the capital budget for one or more other projects in the
same department. SQL database systems often provide triggers that allow
a database designer to make the database an active database by prescrib
ing specific actions to be automatically taken by the database management
system whenever certain specific actions are taken by an application.

Facilities such as referential (and semantic) integrity constraints and trig
gers - and others that will be introduced shortly - make it possible for SQL
databases to do more than merely model the data associated with an appli
cation - SQL permits the modeling of entire applications and businesses.

3 The SQL Language

SQL is a sufficiently large and complex language that no strictly linear treat
ment of it can be wholly successful. However, a good understanding of the
main concepts of SQL provides a foundation on which other aspects of the
language can be acquired as needed.

3.1 Principle Concepts

The most fundamental concept of SQL is the table. A table is a logical unit
of data that has one or more columns, each of which has a name and a data
type. Data in a table is stored in rows that have columns corresponding to
those of the table. Each column of a table has a single data type for all rows
in that table. (A column in a row is sometimes called a "cell", though the
SQL standard does not use or define that term.) Figure 1 illustrates these
concepts.

SQL provides a number of data types, broken into the categories of nu
meric, string, datetime, and others. Table 1 shows each category, the further
breakdown of those categories, and the specific data types.

All data in an SQL database belongs to one of those data types, even if
some data has the null value. The concept of null doesn't have a data type
itself, but the cell in which a null is stored always has one of the SQL data
types.

In addition to representing data, SQL databases are self-describing; that
is, besides the tables they contain that hold the application data, they contain
tables with metadata that describes the tables in the database (and describing
the tables containing the metadata). While the SQL standard doesn't define
the word "database", it does define the words catalog and schema. A catalog
is a named collection of schemas, including the special schema that contains
the metadata for all objects in the catalog. A schema is a named collection
of tables (and their columns), character sets, and other SQL-defined objects.
Catalog names qualify schema names, allowing multiple schemas with the
same name to exist in different catalogs; similarly, schema names qualify the

www.manaraa.com

Database Language SQL 109

/' Row
/

/

/
/ 1 Cell

Column Table

Figure 1: Illustration of Table concepts

names of tables and other objects, and table names qualify the names of
columns. Qualified names are represented by the various components of the
name separated by periods. For example, the name of a table might be

CATALOG3.MYSCHEMA.EMPLOYEES

Part of the power of SQL lies in the aids that it provides database and
application designers. SQL databases can contain constraints, including:

• semantic integrity constraints that instruct the database system how to
enforce business rules associated with the data stored in the database,
and

• referential integrity constraints that tell the database system how to
keep its data internally consistent when changes are made by applica
tions.

If an application attempts to violate a semantic integrity constraint (for ex
ample, a rule that says "all salaries must be greater than 0"), then it is
notified of the error and the statement attempting that violation is not ex
ecuted. Attempted violations of some referential constraints (e.g., a rule
prohibiting elimination of departments having one or more employees) are
handled similarly. However, referential constraints can be more sophisticated
- a database designer might permit resignation of a project's manager, but
require the database to effect resolution of the status of the project. One
design could result in the project's automatic deletion, while a second design
might assign the project to someone responsible for "orphaned" projects, and

www.manaraa.com

110 Jim Melton

Numeric Numbers
Exact numeric Represents values exactly

INTEGER and SMALLINT System-defined precisions
DECIMAL and NUMERIC User-defined precisions

Approximate numeric "Floating point" numbers
REAL and DOUBLE PRECISION System-defined precisions
FLOAT User-defined precision

String Characters and bits
Character string In specific character sets

CHARACTER, CHARACTER
VARYING User-specified character set

NATIONAL CHARACTER System-defined character set
Bit string Zeros and ones

BIT, BIT VARYING Fixed- or varying-length
Datetime and interval Chronological, or temporal, data

DATE, TIME, and TIMESTAMP Specific dates and times
INTERVAL (with precision) Difference between datetimes

Logical Truth-related data
Boolean TRUE, FALSE, and UNKNOWN

User-defined Extending the database
Abstract Data Type (ADT) User-defined encapsulated type
Named row type "Record" or "structure"
Distinct type Based on an existing type

Object orientation New paradigm support
Reference type References to instances of named row

type

Table 1: SQL Data Types

a third design leaves the project in an unassigned state pending explicit ac
tion at a later time. Each of these designs results in automatic resolution
without execution of any additional SQL statements by the application.

A related feature, called triggers, allows a database designer to force the
database system to take certain specific actions whenever certain tables are
accessed in specified ways. For example, a trigger could be defined to add a
row to a log table whenever changes are made to the salary column of an em
ployee table, or to adjust the budgets for departments whenever new projects
are assigned to them. 'friggers can be arbitrarily complex and "intelligent"
and their actions can cause additional triggers to be invoked.

When rows are created in a table, an application programmer can choose
to provide a value for every column in each created row; alternatively, some
rows might have an obvious default value. For example, employees might be
hired as members of the Staff department often enough that the application
assumes that department assignment for new employees if no specific depart
ment is provided. SQL allows the database designer to specify a default value
for each column in a table; if no default value is specified, then a default of
null is implied.

It sometimes happens that database designers find themselves using a
particular combination of data type, constraint, and default value frequently

www.manaraa.com

Database Language SQL 111

(perhaps in various tables). SQL allows the definition of a domain 2 to give a
name to that combination; the domain name can then be used in place of the
data type (and constraint and default value) when defining columns in tables.
For example, the name MONEY might be applied to a domain providing a
data type of DECIMAL(8,2) - decimal with 8 total digits of precision, two
of them after the decimal point - along with a constraint saying that the
value must never be negative, and a default value of null. Columns such as
SALARY and BUDGET could then be defined to be MONEY, providing a
convenient shorthand as well as ensuring consistency of specification.

SQL programmers have several alternatives for using the language. The
most widely-used alternative is to embed SQL statements into programs writ
ten in ordinary third-generation programming languages (3GLs). This tech
nique, called embedded SQL, requires the application programmer to write
the application in a 3GL (the SQL standard supports Ada, C, COBOL, For
tran, MUMPS, Pascal, and PL/I; SQL implementations often support other
languages and standard support is likely for increasingly important languages
such as Java). Each embedded SQL statement starts with a distinguished
string, such as "EXEC SQL". In a typical SQL implementation, this em
bedded SQL program is processed by a preprocessor that extracts the SQL
statements and (conceptually, at least) replaces them with a "call statement"
to invoke the (conceptual or literal) procedure that the system creates to con
tain the SQL statement. The SQL statement (contained in that procedure)
is then compiled and optimized by the SQL system to prepare it for later
execution, while the remaining application program is compiled in the nor
mal way. When the program executes, the optimized SQL statements are
executed as specified by the 3GL code.

In some SQL implementations and in the SQL standard, it is possible to
write actual SQL procedures (each containing a single SQL statement), col
lecting related procedures together into a module. Called module language,
this technique permits applications to be written in a more modular fashion
- database-related operations are coded in "pure SQL" and processed by an
SQL compiler, while other application operations are coded in the appropri
ate 3GL and processed by that language's compiler. The SQL procedures are
invoked through actual "call statements" by the application program. The
two techniques are completely isomorphic with one another. In implemen
tations that support both techniques, the choice of which to use is often a
matter of taste or of organization policy.

In many applications, such as traditional mainframe applications, the
SQL statements to be executed are well-known when the application is writ
ten. Embedded (or module language) SQL is appropriate for such applica-

2SQL does not follow the mathematical convention here with respect to the use of the
term domain. Mathematically an SQL attribute (column name) is a function which maps
the attribute domain to its range, where the set of possible tuples (rows) are the domain
of the this function, and the set of possible values are the range of that function. The SQL
terminology 'domain' really refers to this range.[Ed].

www.manaraa.com

112 Jim Melton

tions. In other situations, such as ad hoc query generators, graphical database
browsers, or client-server systems with widely-varying users, the SQL state
ments that will be executed are often not known until execution time, when
the user formulates a question. A technique called dynamic SQL allows SQL
statements to be formulated at runtime, prepared for execution by the data
base system, and executed on demand. Dynamic SQL is typically slower than
static SQL because of its inability to precompile and optimize statements. Of
course, the benefits of flexibility often make this a worthwhile cost.

3.2 Basic Data Definition Language (DDL)

Manipulation and management of data in an SQL database depends, of
course, on the existence of the database. SQL does not specify how a
database itself is created; there are simply too many different reasonable
(and commercially-successful) implementation techniques to support stan
dardization of anyone or a set of them. Because the SQL standard does
not even define the term "database", the closest analog to a database in
SQL is the catalog. Catalogs contain schemas, including the schema (called
the "Information Schema") that describes all other schemas (and their con
tained objects) in the catalog. The SQL standard does not provide state
ments for creating and destroying catalogs, either. It explicitly leaves that
to "implementation-defined" means.

However, SQL does provide a CREATE SCHEMA statement that allows
users to define new schemas, as well as a DROP SCHEMA statement to
allow the destruction of schemas and their contents. Creation of a schema
is normally accompanied by the creation of one or more objects within the
schema, such as tables; in addition, such objects can be added to schemas
already in existence. A schema belongs to a specific authorization identifier
(authorization identifiers are the way that SQL identifies and represents users
of the database). All objects in a schema ordinarily belong to the owner of
the schema and only the owner of a schema is able to define and manage
objects in that schema. Some SQL products provide language extensions
permitting the owner of a schema to grant other users privileges allowing
them to create and otherwise manage objects in that schema. The privilege
structure of SQL is covered later.

The SQL statements that create and destroy schemas are:

CREATE SCHEMA schema-name ...
DROP SCHEMA schema-name

The ellipsis (...) represents one or more statements that create schema ob
jects, such as tables or views.

To create or destroy a table, these SQL statements would be used:

CREATE TABLE table-name (table-element, ...)
DROP TABLE table-name

www.manaraa.com

Database Language SQL 113

Each table-element can be a column definition or a table constraint definition.
A column definition specifies the column name and data type, optionally

with additional information:

column-name data-type
default-clause
column-constraint
collation

The column-name must be unique within the table and data-type can be
either one of SQL's data types or the name of a domain. The other clauses
are optional. Default-clause provides an explicit default for the column and a
collation instructs the database system how to sort character string columns.
Constraints (column and table constraints) are discussed later.

A virtual table is a table that is not persistently stored in the database,
but that is generated on demand as the result of a query expression. A view is
a named virtual table whose definition is stored in the database as part of the
metadata. One use of views is to capture complex query expressions once so
they can be used by many application programs without the costs and risks
of errors that rewriting them for each program entails. Another important
use of views is to allow access to some data in some tables without allowing
unrestricted access; this subject is discussed along with SQL's privilege model
later.

3.3 Basic Data Manipulation Language (DML)

Creation of a database and its contained objects is of course necessary, but the
essence of a database management system is the storage, retrieval, and ma
nipulation of the data stored within it. SQL's Data Manipulation Language
provides the statements necessary to retrieve information from a database,
as well as to insert information into, modify information in, and remove in
formation from a database.

A number of additional SQL statements exist for managing various as
pects of the database and the application's use of it; however, those state
ments are usually not characterized as Data Manipulation Statements.

3.3.1 Retrieving Information from a Database

Arguably, the most basic operation that is performed on an SQL database
is the retrieval of information stored in it. Information may be retrieved
directly into an application, or it may be retrieved for use strictly within an
SQL statement.

The SELECT expression is the foundation for retrieval of SQL informa
tion. With a little variation in syntax, the SELECT expression can be used
as an SQL statement to retrieve the information into the application or to

www.manaraa.com

114 Jim Melton

define a view, as well as in the form of a subquery within an SQL statement.
The format of a SELECT expression is:

SELECT select-list
FROM table, table ...
WHERE logical-expression
GROUP BY grouping-columns
HAVING logical-expression

The WHERE, GROUP BY, and HAVING clauses are all optional. The result
of the SELECT expression is always a virtual table; SQL exhibits closure
such that operations on tables produce new tables. A SELECT expression
is evaluated according to the following rules (effectively, that is; products
must provide this effect, but may - and usually do - provide significant
optimizations) :

1. First, all rows in the table or tables specified in the FROM clause are
retrieved; if more than one table is specified, then the Cartesian product
of all tables is retrieved, producing new, extended rows. (Two tables
with Nand M columns and nand m rows have a Cartesian product
with N + M columns and nm rows; each row in one table is "matched"
with every row from the other table.)

2. The predicates in the WHERE clause (if present) are applied to the
rows produced by the preceding step. All rows that do not satisfy the
predicate or combination of predicates in the logical-expression (that is,
for which the logical expression does not evaluate to true) are eliminated
from the working set of rows.

3. If a GROUP BY clause is present, then rows are grouped together
according to equal values in the column or columns (grouping-columns)
identified in that clause.

4. If a HAVING clause is present, then its logical-expression is applied to
the groups; all groups for which the logical-expression does not evaluate
to true are eliminated. (A HAVING clause without a GROUP BY
clause effectively makes the result of the WHERE clause a single group.)

5. Finally, the select-list is used to determine the columns produced as
the result of the SELECT expression. If groups have been formed by
the presence of a GROUP BY clause or a HAVING clause, then the
select-list can include only columns used as grouping columns, certain
"statistical operations" (sum, average, maximum, and minimum) on
other columns, and count operations on the resulting table. These
statistical and count operations can be also used without groups having
been formed. If no groups have been formed, then any column of the
resulting virtual table can be used. In any case, the select-list can

www.manaraa.com

Database Language SQL 115

include expressions of various sorts as long as the expressions do not
include any columns prohibited by the grouping rules.

It is worth noting that SQL supports several sorts of joins, including inner
joins (in which the result includes only rows that have a match between
the two tables being joined) and outer joins (in which the result may ~nclude
rows from one or both tables that have no match in the other table - columns
corresponding to those from the table with no match are filled in with nulls).

To form a SELECT statement, the target of the retrieved information
must be given:

SELECT select-list
INTO target-list

FROM table, table ...
WHERE logical-expression
GROUP BY grouping-columns
HAVING predicates

The target-list is a list of host language variables (or, in module language,
a list of parameters of the containing procedure); there must be as many
targets as there are columns in the select-list, and the data types of each
target must match the data type of its corresponding select-list column.

A problem arises if the SELECT statement produces a virtual table con
taining more than one row. The host language variables into which the
columns of the result are retrieved can only accept a single value at a time.
If the SELECT statement were to produce multiple rows, then only one of
them could be retrieved into the list of targets. This illustrates part of the
impedance mismatch between SQL and the host languages. The SELECT
statement, then, is really a "single-row SELECT statement". If it produces
more than one row, an error is signaled.

The difference between SQL's set-at-a-time semantics and the datum-at
a-time character of the host languages makes it infeasible to write a simple
SELECT statement to retrieve more than one row, yet many applications
need exactly this capability. SQL resolves this impedance mismatch by pro
viding a device called a cursor, which allows the application to identify sets
of rows, but to process them one at a time. The set of rows is identified by
a cursor declaration that specifies the SELECT expression:

DECLARE cursor-name CURSOR FOR
SELECT select-list
FROM tables
WHERE logical-expression

The cursor declaration is just that - a declaration. It is not executed at
all. However, when the application program opens the cursor, the SELECT
expression is evaluated. Once the cursor has been opened, rows can be fetched

www.manaraa.com

116 Jim Melton

through the cursor until the last row has been retrieved (signaled by a special
status returned to the application program). Finally, the cursor is closed.

OPEN cursor-name
label:
FETCH FROM cursor-name

INTO target-list

... 3GL statements to process the data ...

if not end-of-data, then loop to label
CLOSE cursor-name

3.3.2 Inserting Information into a Database

However useful it might be to retrieve information from a database, that
information must first be somehow placed into the database. SQL's INSERT
statement is used to insert information into tables.

The INSERT statement has three alternative formats, allowing informa
tion to be inserted using literal values, information retrieved from another
table or tables, or merely the default values for each column. The syntax of
INSERT is:

INSERT INTO table-name (column-name, column-name ...)
data-source

The parenthesized list of column-names is optional; if it is not specified, then
the system assumes a list containing every column of the table, in the order
in which they are defined in the table. The number of column-names and the
number of columns in the data-source must be the same and the data types
of each corresponding column must match.

If the data-source is a list of literals or host variables, then a single row is
inserted into the identified table. If the data-source is a SELECT expression,
then many rows might be inserted - one per row of the virtual table resulting
from evaluation of the SELECT expression. If data-source is the keywords
DEFAULT VALUES, then a single row is inserted in which each column takes
on the default value for that column (which, of course, is null if no explicit
default value has been defined).

3.3.3 Updating Information in a Database

In addition to retrieving information from a database and inserting new in
formation into it, real applications frequently require that data already in a
database be modified. In fact, after retrieval, updating information is prob
ably the most common operation performed on SQL databases.

www.manaraa.com

Database Language SQL 117

SQL provides two types of UPDATE statement - one for set-oriented up
date operations, and a second for cursor-oriented updates. The first, some
times called a searched update because of its self-contained nature of locating
and updating rows in tables, exemplifies SQL's set-oriented nature. Using
this, an application is able to change many rows of a table with one statement
- without the programmer having to write a loop of any sort. The second
form of UPDATE is called the positioned update; the word "positioned" is
used to imply that the statements affect the row on which a cursor is currently
positioned. UPDATE statements use the syntax:

UPDATE table-name
SET column-name = update-value,

column-name update-value ...
WHERE locator

The WHERE clause in the searched UPDATE is optional; if it is omitted,
then all rows of the table are affected. If WHERE is specified and locator is
a logical-expression, then only those rows in the table for which the logical
expression is satisfied are updated. If WHERE is specified and locator is
"CURRENT OF cursor-name", then the single row currently identified by
the cursor is updated. The update-values can be expressions with a data type
suitable for the corresponding column (including scalar subqueries), but they
can also be the keyword NULL or the keyword DEFAULT. In the cases of
NULL or DEFAULT, the corresponding column in each identified row is set
to null or to its default value (which, of course, might itself be null). When
an expression is used for an update-value, the expression can use values in
the row being updated. For example:

UPDATE employees
SET salary = salary * 1.05

WHERE dept_id = 'ENG'

will give a 5 % raise in salary to every member of the engineering department.

3.3.4 Removing Information from a Database

Of course, not all data that is put into a database remains there forever; some
data become obsolete and must be removed, while other insertion operations
are wrong and the incorrect rows must be deleted. SQL provides two forms
of the DELETE statement, analogous to the two forms of the UPDATE
statement, to allow applications to remove data from tables.

The first form, called the searched delete, allows applications to remove
(possibly many) rows from a table based on criteria specified in the statement,
while the second form is called the positioned delete and deletes from the
identified table only the row on which the specified cursor is positioned. The
format of the DELETE statement is:

www.manaraa.com

118 Jim Melton

DELETE FROM table-name
WHERE locator

The WHERE clause here, as in the searched UPDATE statement, is optional;
if absent, then all rows in the specified table are deleted. As with the two
variants of UPDATE, it's possible to delete all rows of a table (obviously
a DELETE without a WHERE is to be used with discretion!), all rows for
which a logical-expression is satisfied, or the one row currently identified by
a cursor.

3.4 SQL-86

The 1986/1987 standard for SQL was widely characterized as a "least-common
denominator" standard. Its goal was to standardize only those features of
SQL that had been widely implemented by the major database system ven
dors (principally, IBM, Oracle, Informix, Sybase, and Ingres). In fact, al
though public awareness of this was minimal, SQL-86 had two levels, called
Levell and Level 2. Levell was viewed as so minimal that almost any vendor
with any sort of database product could conform with a few months work.
In fact, Levell was rejected by NIST (the National Institute of Standards
and Technology) on behalf of the U.S. Federal Government when it adopted
FIPS (Federal Information Processing Standard) 127 for use in government
agency procurements.

Level 2 was also rather minimalist. For example, all DDL operations in
SQL-86 were to be performed in the context of a "schema definition pro
cessor" distinct from the SQL language processor, and once a database was
created, no changes to its metadata (e.g., addition of tables, addition of
columns to tables, etc.) could be performed. There were many concessions
made to accommodate the goal of standardizing only that which was already
implemented, meaning that no serious applications could be written using
only standardized SQL language.

The most controversial omission in SQL-86 - which nearly caused it to
be rejected by the international standards community - was referential in
tegrity. Progression in ISO was saved only because of a last-minute offer from
the United States to work on an addendum to SQL-86 specifying referential
integrity that could be quickly progressed.

3.5 SQL-89

While development of the referential integrity addendum to SQL-86 was be
ing developed, a number of the more active standardization participants be
gan working on a second addendum that was intended to add a number of
significant new features to the language.

As work proceeded on both addenda, it became obvious that the ANSI
and ISO processes were sufficiently different that it would be easiest to recast

www.manaraa.com

Database Language SQL 119

the referential integrity addendum as a replacement standard that could be
adopted in identical form by both communities. The delays in making this
discovery and restructuring the document itself, coupled with the (by then,
significant) distractions of the second addendum, led to a three-year lapse
before publication as SQL-89. SQL-89 was virtually identical to SQL-86
other than the addition of basic (restrictive) referential integrity facilities.

However, there were two mechanisms specified in SQL-86 and SQL-89 for
coupling SQL with other programming languages. One mechanism, module
language, was specified in the normative part of the standards, but very few
vendors had actually implemented it. The other mechanism, embedded SQL,
was specified only in an informative annex to the standard! The U.S. Federal
Government participants expressed concern that it would serve only to limit
the number of vendors competing for Federal procurements if only a few
vendors implemented module language and all of the others implemented only
the "non-standard" embedded capabilities. To avoid this potential problem,
ANSI progressed a second SQL-related standard in 1989, called "Database
Language Embedded SQL" [ANSI89b]; ISO did not pursue a corresponding
standard.

Besides the technical content, SQL-89 contained the same two levels that
SQL-86 contained. NIST issued a revised FIPS 127-1 that combined require
ments for SQL-89 and Embedded SQL.

3.6 SQL-92

By 1989, it had become obvious that the proposed second addendum to SQL-
86 was going to take significantly longer than originally thought and that the
content was going to be quite a bit larger. Both ANSI and ISO decided to
transform that addendum into another replacement standard that would be
published about three years after SQL-89.

Industry dissatisfaction with the least-common denominator aspect of
SQL-89 led to another important decision: to ensure that the new version of
the SQL standard contained enough features that realistic applications could
be built using only standardized language features. There were, predictably,
vastly differing opinions about what such a set of features would be. Intense
technical work and negotiations among the representatives of database imple
menters, large and small customers, government agencies, and even academia
continued for three years, culminating in a new SQL specification that took
roughly five times as many pages (nearly 600) to present as SQL-89 had
taken.

Close analysis of those nearly 600 pages show that the actual language
itself grew by a factor of between two and three; the remaining increase in
size was due largely to more detailed specification of features (even those
from SQL-86) and the inclusion of auxiliary components of the language like
definitions of the tables that describe various schema objects (the metadata
tables). Nonetheless, the size of the language was sufficiently daunting that

www.manaraa.com

120 Jim Melton

participants agreed to divide it into three levels: Entry SQL, Intermediate
SQL, and Full SQL. Entry SQL was to be very little more than SQL-89, while
Intermediate SQL was to contain roughly half of the new features added to
the language; Full SQL, of course, was the entire standard.

NIST released a revised FIPS 127-2 that carefully analyzed the features
in SQL-92 and specified a taxonomy of features divided into the three levels
specified in the standard. As an aid in guiding the vendors, NIST included
a fourth level, called 'Transitional SQL, that contained roughly half of the
features that were standardized in Intermediate SQL. Unfortunately, a great
many compromises had to be made in determining the set of features in 'Tran
sitional and Intermediate SQL in order to acquire enough votes for a majority
- and those compromises may have made it unattractive for any vendor to
pursue conformance to either level. By early 1997, no vendor had made a
formal claim of conformance to 'Transitional SQL, although most of the fea
tures in that level, and even in Intermediate SQL had been implemented by
multiple vendors.

3.7 SQL3

Even before SQL-92 was finalized, it was obvious to participants that many
good ideas proposed for that version of the standard were either too immature
or in insufficient demand to justify delaying publication in order to complete
their specification. Instead, a new project for yet another replacement version
of the standard was initiated. If SQL-86 had been the first SQL standard,
then SQL-89 was not so much the second SQL standard as it was a minor
enhancement. The project under which SQL-92 was developed was widely
called "SQL2", so it was natural to call the next edition "SQL3", particularly
since it was uncertain how long development would take.

A sort of theme quickly developed for SQL3: support for object orienta
tion. Even though a large number of additional, more traditional, features
have been proposed for and are included in SQL3, the most energy has been
required for the object-oriented aspects of the specification. Among the other
features are new data types and predicates, support for recursion, and better
support for analytical processing.

Early proposals that specified several different aspects related to the ob
ject paradigm were surprisingly contentious and resulted less in stable spec
ifications than in heated debate and competing approaches. Some facilities
were quickly endorsed philosophically - although working out the details was
still difficult and time-consuming; others proved to be extremely difficult in
terms of reaching agreement amongst the principle participants. The most
difficult aspect turned out to be the definition of just what an object is! Sev
eral different approaches were taken, notably creating a new storage category
(in addition to tables) that provided extents for user-defined data type in
stances, treating rows of tables as instances of user-defined data types with
the table's columns equivalent to the instance's attributes, and requiring in-

www.manaraa.com

Database Language SQL 121

stances of user-defined data types to be stored in columns of tables whose
rows could then be treated as objects with identity. That last approach finally
won over enough participants to move forward.

Unfortunately, by the time that decision was reached, the goal of publish
ing the revision to SQL-92 in three years - by 1995 - was no more than a lost
dream. Instead, participants realized that publication even by 1998 would
require incredible efforts, especially since other components of SQL3 were by
then partitioned into separate documents and progressing to standardization
very rapidly (SQL's call-level interface, SQL/CLI, is closely related to the
ODBC interface from Microsoft and others and was standardized in 1995; a
standard for stored procedures, SQL/PSM, was standardized in 1996).

In late 1996, the first formal ballot was held on the most crucial parts of
SQL3. This ballot, as expected, failed, but a large number of comments were
submitted from many participants allover the world. Meetings to resolve
those comments, limit the feature set of SQL3, and pursue publication no
later than late 1998 or early 1999 are currently in progress.

4 Advanced Topics

There are a number of additional aspects of SQL that demand some atten
tion. These range from security and error handling issues, as well as putting
business rules in the database, to aspects of object orientation.

4.1 Security

SQL offers the ability to protect data from unauthorized access. Every
schema object is covered by one or more privileges so that only users (identi
fied by authorization identifiers) having the appropriate privilege are able to
use that schema object. Objects containing data, such as tables and views,
require that users have the SELECT privilege on the object before they can
successfully perform any operation that reveals data values, such as data
retrieval; users must have the INSERT privilege on the object in order to
create new rows of data, the UPDATE privilege in order to modify data
values, and the DELETE privilege in order to delete rows of data. The REF
ERENcEs privilege permits the definition of referential integrity constraints
that reference data values stored in a table.

The owner of a schema object automatically gets all possible privileges
on that object; when the object is a view, "all possible privileges" is often
less than all of the privileges that theoretically might apply to the view, as
we'll see shortly. The owner is able to grant privileges to other authorization
identifiers by using the GRANT statement, specifying the specific privileges
to be granted, the schema object on which privileges are being granted, and
the authorization identifiers to which those privileges will be given. If the
privileges are granted WITH GRANT OPTION, then the recipients are per-

www.manaraa.com

122 Jim Melton

mitted to grant those privileges to additional users. Privileges are taken away
with the REVOKE statement, which requires the same information that was
used for the GRANT.

The INSERT privilege can be granted for access to an entire table or only
to selected columns of the table, since users might be authorized to insert rows
into a table but supply non-default values only for some columns; the same
granularity applies to the UPDATE privilege since users might be authorized
to change only some columns of a table. Because it is meaningless to attempt
to delete only some columns of specified rows, the DELETE privilege can be
granted only at table granularity. The SELECT privilege is also limited
to table granularity, although there is interest in extending it to column
granularity. The REFERENCES privilege is applied at either table or column
granularity.

Every SQL statement is executed under the privileges of exactly one au
thorization identifier. The success of an attempt to execute an SQL state
ment depends in part on the privileges required by the statement itself and
the privileges available to that authorization identifier. If the user on whose
behalf an SQL statement execution is attempted does not have all of the
privileges required for successful execution of the statement, SQL will inhibit
execution of that statement; implementations are sometimes able to deter
mine the presence or absence of required privileges when applications are
compiled, but they must always reconfirm the continued existence of those
privileges before executing the statement (thus avoiding the situation where
a user compiled a program while having the privileges and then runs the
program after those privileges are revoked).

Views accomplish two principle functions: assignment of a name to per
sistent specification of a query expression so applications can avoid recoding
that query specification; and provision of a security mechanism that allows
users to access data through the view that they are not authorized to access
directly in the underlying tables. For example, instead of giving users SE
LECT privilege on a table that contains salary information for all employees,
views can be created that permit users to see only their own salary informa
tion, but that allow all users to see office telephone numbers of any employee.
In order to create a view that derives its contents from data stored in one
or more tables or other views, the definer of the view must have the appro
priate privileges on the view. The privileges that the view definer has on
those underlying tables and views determines the privileges that the definer
gets on the view. If the privileges required for the view's creation are later
revoked from the view's definer, the view is automatically destroyed by the
system. (Of course, no data is lost since destruction of a view only destroys
the persistent query expression.) A view definer might have only SELECT
privileges on the tables underlying the view; in this case, the privileges given
to the definer would not include UPDATE, DELETE, or INSERT since those
privileges are unavailable on the underlying tables.

www.manaraa.com

Database Language SQL 123

4.2 Semantic Integrity Constraints and Assertions

SQL supports the creation of business rules at several levels of granularity.
Semantic integrity constraints can be applied to entire tables or to individ
ual columns (though SQL automatically transforms column constraints to
table-level constraints). Table constraints can apply to individual columns or
groups of columns in the table or they can apply to the table as a whole. Table
constraints that apply to the entire table might make restrictions on the total
number of rows stored in the table. Constraints applying to columns could
be used, for example, to prohibit null values being stored in the columns,
to require that the columns' values not contain any duplications, or to place
restrictions on the values that can be stored in columns.

Another form of semantic integrity constraint, called an assertion, can be
specified at the schema level and is intended primarily to specify relationships
between data stored in more than one table. For example, an assertion might
be used to restrict the sum of salaries in a table of employee information plus
the sum of capital budgets in a table of department information to some
maximum value. Such a constraint could be written as a table constraint,
but a decision would have to be made to define the constraint in the context
of the employee table or in the context of the department table; to avoid
such arbitrary and possibly misleading choices, assertions provide a more
appropriate mechanism.

4.3 Referential Integrity Constraints

Many types of data represented in an SQL database have a natural component
that serves to uniquely identify each row of data. For instance, employees
usually have employee identification numbers and products being sold in a
store always have a product code of some sort. While SQL, unlike the re
lational model, does not prohibit storage of more than one row in a table
with all corresponding column values equal, many application benefit from
the identification of some such unique value. SQL gives database designers
the ability to specify PRIMARY KEY for any column or group of columns
that provide such a unique value. SQL requires that the table contain no
two rows for which the values stored in the column or columns specified as
a PRIMARY KEY are equal; it also requires that the PRIMARY KEY col
umn (or, if more than one column participates in the PRIMARY KEY, the
combination of all such columns) not have the null value.

Applications often require that data stored in one table correspond closely
with data stored in a different table. For example, if employees are assigned
to departments, then the table representing employees must require that the
values stored in the departments column all be equal to a value stored in
the department identification column of the table representing departments.
Such a requirement is called a foreign key. SQL allows database designers to
specify one or more columns as a FOREIGN KEY that references a specific

www.manaraa.com

124 Jim Melton

table; if a FOREIGN KEY specification does not provide the names of the
columns in the referenced table, then SQL assumes that the PRIMARY KEY
of that table will be used - and, of course, the number and data types of
those PRIMARY KEY columns must match the number and data types
of the FOREIGN KEY columns. Although a table can have at most one
PRIMARY KEY, it can have any number of FOREIGN KEYs, and a given
column might participate in more than one FOREIGN KEY.

The simplest kind of FOREIGN KEY reference, which was supported in
SQL-89, simply prohibits any value in the referencing columns that do not
appear in the referenced columns - applications will encounter an error on
any attempt to delete a row from the referenced table that would delete the
referenced column values on which some referencing columns depend, as well
as on any attempt to add a row to a referencing table with values that depend
on values that don't exist in the referenced columns.

SQL-92 added the ability for FOREIGN KEYs to specify the action that a
database system can take to correct referential integrity violations. Database
designers can specify that deletion of a referenced row automatically causes
deletion of referencing rows or that referencing rows have their referencing
column values replaced with their default values or with null values. Similarly,
they can specify that modification of a referenced column automatically cause
referencing rows to be updated so their referencing column values updated
to the same new values or replaced with either their default values or the
null value. (Of course, replacement of a referencing value with the default
value requires that that default value appear as a referenced column value,
and replacement with the null value requires that there be no constraint
prohibiting null values on the referencing column or columns.)

4.4 Triggers

SQL3 provides the ability for database designers to build into a database
the ability for the database to react to changes made by an application in
ways other than simply making the specified changes. The database can
make additional changes not specified directly by the application, including
making changes to completely different tables.

Triggers can be specified to respond to specific application actions, such as
insertion, update, or deletion of rows from specific tables (or even updates to
specific columns); they can execute any sequence of SQL statements, and can
be made to execute once per application statement or once per row affected
by such statements.

Triggers are even able to access column values in rows being updated
both before the update is applied and after it has been applied, permitting
database designers to prohibit certain transitions of data in the database.
For example, a trigger could be designed that allows the amount of remaining
capital expenditure budget for a project to be decreased but not increased.

www.manaraa.com

Database Language SQL 125

4.5 Recursion

Certain classes of applications require the ability to recursively retrieve data
from tables. A common example is called the "bill of material" application,
in which it is desired to retrieve information about all components required
to manufacture some product. Given the part number of the product, the
application must locate all subassemblies required to build the product; some
of those subassemblies are made of other subassemblies, possibly through
several iterations before basic indivisible parts are the only components used.

Constructing such a bill of materials requires recursively retrieving part
information, sometimes through a number of levels not well known in ad
vance. Until SQL3 is implemented, the only approaches available to applica
tions are awkward to write and limited to a pre-known number of levels of
recursion. SQL3, however, provides inherent recursion capabilities that can
be used by applications for bill of material and other analogous requirements
(including, for example, genealogy or genetics research). These recursion fa
cilities even allow the definition of views that are inherently recursive, thus
removing yet another burden from application writers.

4.6 Abstract Data Types (ADTs)

While SQL's "traditional" data types, such as numbers and character strings,
have supported countless applications for years, increasing numbers of ap
plications require the ability to store and manage more complex forms of
data, including things like documents, images, and sound. Furthermore, the
increasing popularity of object-oriented technology places additional require
ments on database systems.

SQL3 responds to these needs with the addition of abstract data types.
ADTs allow database designers to define data types that include arbitrarily
complex structures and fully encapsulate them so that their components are
accessible only through a functional interface (methods is the word used in
the object-oriented community). Type hierarchies can be defined using ADTs
(e.g., employees are a type of person, and managers are a type of employee;
while persons may not be assigned to a department, employees might be,
and managers typically have some signatory authority that other employees
do not). SQL also allows the definition of multiple functions with the same
name but with different combinations of parameter definitions; this allows
applications to overload function names and have the database system decide
the most appropriate function of a given name to use based on the parameters
that the application provides. While most function resolution is done when
applications are compiled, functions having parameters that are abstract data
types in a type hierarchy can sometimes only be fully resolved when the
application runs, based on the most specific type passed as an argument to
the function.

www.manaraa.com

126 Jim Melton

4.7 Reference (REF) Types

ADTs alone do not provide all elements expected for object orientation; they
are missing the important characteristic of identity. If objects have a unique
identity, then applications can reference an object strictly by its identity
instead of by the values of attributes of the object: for example, persons
with the same height, weight, hair color, and name are still distinct persons
having their own unique identities. SQL3 provides a data type called named
row type, and allows database designers to define tables whose columns are
not specified individually (which would give the table an anonymous row
type), but are taken from a specified named row type. SQL3 also provides
a reference type (called a REF type) that can be applied to instances of a
specified named row type. Thus, a column in a database table can contain
references to rows in other database tables that are of that named row type.
These references serve the function of object identity while preserving SQL's
table and row orientation. By defining a named row type having exactly
one column whose data type is some ADT, rows in that table correspond
one-to-one with instances of the ADT - REF values identifying rows of that
table behave like object identifiers and the ADT instances provide the other
behaviors of objects including the method interface.

4.8 Error Handling

Applications written using any programming language may always encounter
unexpected conditions and errors; SQL is not an exception to this rule. Ex
ecution of SQL statements cause the database system to set a status in a
structure called the diagnostics area. The status includes a 5-character value
called the SQLSTATE resulting from the statement's execution; the SQL
STATE informs the application of the statement's outcome, including suc
cessful execution, warnings, or outright exceptions, or whether a statement
intending to affect data actually did so.

SQL statements invoked through module language or embedded SQL
cause the SQLSTATE value to be returned in a required parameter to the
module language procedure or to a host language variable assigned for that
purpose. Applications should generally test the SQLSTATE variable after
the execution of every SQL statement to ensure its success or other expected
outcome before dispatching the next SQL statement. Embedded SQL appli
cations can use a special language facility, the WHENEVER declaration, to
cause compiled embedded SQL programs to automatically test the outcome
of each SQL statement and branch to a specified target when the specified
conditions are met.

Multiple SQL statements can be combined together into compound state
ments when the facilities of SQL/PSM are used by an application. Com
pound statements allow the specification of condition handlers that can take
application-specified action when specified exception or other conditions are
encountered.

www.manaraa.com

Database Language SQL 127

5 Future Evolution

The database industry does not expect that SQL3 will be the end of the
development for SQL standards. Indeed, as SQL3 progresses towards formal
publication, additional features deemed insufficiently mature and stable (or
for which the market requirements have not yet proved sufficiently high) are
being developed - at a lower priority - for an anticipated fourth generation of
the SQL standard, naturally called "SQL4". The SQL standards community
generally anticipates that SQL4 will be published as a de jure standard in
roughly 2001 or 2002, i.e. three years after SQL3 is published.

Will there be another generation of the SQL standard beyond SQL4? It's
difficult to be certain, but as long as relational database systems remain as
important to industry and commerce as they are today, evolution of SQL and
its standard is probably inevitable.

References

[ANSI86] ANSI, ANSI X3.135-1986, American National Standard for Informa
tion Systems - Database Language SQL, American National Standards
Institute, 1986

[ANSI89] ANSI, ANSI X3.135-1989, American National Standard for Informa
tion Systems - Database Language SQL with Integrity Enhancement,
American National Standards Institute, 1989

[ANSI89b] ANSI, ANSI X3.168-1989, American National Standard for Informa
tion Systems - Database Language Embedded SQL, American National
Standards Institute, 1989

[ANSI92] ANSI, ANSI X3.135-1992, American National Standard for Informa
tion Systems - Database Language SQL, American National Standards
Institute, 1992

[CB74] Chamberlin, D. D., Boyce, R. F., SEQUEL: A Structured English Query
Language, Proceedings of the ACM SIGFIDET Workshop, 1974, 249-
264

[C093] Cannan, S., Otten, G., SQL - The Standard Handbook, McGraw-Hill
Book Company, 1993

[Cod74] Codd, E. F., A Relational Model of Data for Large Shared Data Banks,
Communications of the ACM (13,6), 1974, 377-387

[Coda71] Data Base Task Group Report to the CODASYL Programming Lan
guage Committee, ACM, New York, 1971

[DD93] Date, C. J., Darwen, A Guide to the SQL Standard, Addison-Wesley
Publishing Company, 1993

www.manaraa.com

128 Jim Melton

[GR93] Gray, J., Reuter, A., Transaction Processing: Concepts and Techniques,
Morgan Kaufmann Publishers, San Mateo, CA, 1993

[MS93] Melton, J., Simon, A. R., Understanding the New SQL: A Complete
Guide, Morgan Kauffman Publishers, 1993

[IS087] ISO, ISO 9075:1987, Database languages - SQL, International Organi
zation for Standardization, 1987

[IS089] ISO, ISO/IEC 9075:1989, Information technology - Database languages
- SQL, International Organization for Standardization, 1989

[IS092] ISO, ISO/IEC 9075:1992, Information technology - Database languages
- SQL, International Organization for Standardization, 1992

[IS095] ISO, ISO/IEC 9075-3:1995, Information technology - Database lan
guages - SQL - Part 3: Call-Level Interface (SQL/CLI), International
Organization for Standardization, 1995

[IS096] ISO, ISO/IEC 9075-4, Information technology - Database languages -
SQL - Part 4: Persistent Stored Modules (SQL/PSM), International
Organization for Standardization, 1996

[IS097a] ISO, ISO/IEC CD 9075-2, Information technology - Database languages
- SQL - Part 2: Foundation (SQL/Foundation), International Organi
zation for Standardization, 1997

[IS097b] ISO, ISO/IEC CD 9075-5, Information technology - Database languages
- SQL - Part 5: Host language bindings (SQL/Bindings), International
Organization for Standardization, 1997

[XOPN93] X/Open, CAE Specification - Structured Query Language (SQL),
X/Open Company Ltd., 1993

www.manaraa.com

CHAPTER 6

Petri Nets

Jean-Marie Proth

The objective of this contribution is to provide the basics of Petri net theory in
order to model and evaluate Discrete Event Systems (DES). The first part of the
contribution is devoted to the common definitions and properties of Petri nets.
Qualitative properties are then introduced. These properties are those who are of
importance when manufacturing systems are concerned. Finally, a short introduc
tion of event graphs is proposed; these graphs are of utmost importance to study
cyclic DES.

1 Introd uction

Discrete Event Systems (DES) such as manufacturing systems or information
networks are highly parallel and distributed. They need to be evaluated from
a qualitative point of view as well as from a quantitative point of view. The
goal of qualitative analysis is, for instance, to verify the absence of deadlocks,
the ability to reach some states (reachability) or the ability to return to some
pre-defined states (reversibility and home state), to quote only a few.

Quantitative analysis aims at evaluating performance properties (for in
stance throughput), utilisation properties (for instance lengths of the queues
in front of the resources), or responsiveness properties (for instance average
time for message transmission). To summarise, quantitative analysis aims at
evaluating the efficiency of the system at hand.

Both qualitative and quantitative analyses are used more and more fre
quently at the preliminary design phase of systems (manufacturing or infor
mation networks) since the complexity of these systems increases due to the
constraints of the market and the rapid changes of technologies.

We claim that Petri nets, introduced by C.A. Petri in 1962 (see [Pet62]),
are the most powerful set of tools which can support the functional spec
ification, as well as the qualitative and the quantitative analysis. In this
contribution, we provide the foundations of Petri nets. We deliberately re
strict ourselves to simple Petri nets, since these nets have the most powerful

www.manaraa.com

130 lean-Marie Proth

analytical properties. More precise information about the use of Petri nets to
model and evaluate manufacturing systems is available in [DHPSV93, HP92,
Pet81, PX96, Ram74].

2 Basic Definitions

2.1 Petri Nets and Related Definitions

A Petri net is a five-tuple P N = (P, T, A, W, Mo) where:

• P = (PI, P2, ... , Pn) is a finite set of places. Places are represented by
circles.

• T = (tl, t2, ... , tq) is a finite set of transitions. Transitions are repre
sented by bars.

• A ~ (P x T) U (T x P) is a finite set of arcs. An arc joins a place
to a transition or a transition to a place, but never a transition to a
transition or a place to a place.

• W : A -t (1,2,3, ...) is a weight function attached to the arcs. The
weight is represented by an integer located near the arc. If this integer
is missing, it is assumed that the weight of the arc is 1.

• Mo : P -t (0,1,2, ...) is the initial marking. Mo(p),p E P, is the
marking of place p. Mo(P) is the initial number of tokens included in
place p. Each token is represented by a bullet.

Note 2.1 A Petri net is said to be ordinary if all the weights are equal to 1.

A Petri net is represented in Figure 1. In this Petri net:

• P = (PI,P2,P3,P4,PS)

• T = (h, t2, t3, t4, ts)

• A = {(PI, t2), (t2,P2), (P2, t3), (t2,P3), (P3, t4), (t4,P4), (P3, ts), (tl,PS),
(PS, tS)}

The weights are represented by integer numbers located near the arcs. For in
stance, W(PI, t2) = 2; W(tl,ps) = 1, since the integer is missing, W(ps, ts) =
4. The initial marking is Mo = [3,1,2,0,1] since Mo(Pd = 3, MO(P2) =
1, MO(P3) = 2, MO(P4) = 0, Mo(Ps) = 1.

We usually denote by:

• °t the set of input places of transition t, that is the set of places P such
that (p, t) EA. For instance, °ts = (P3,PS) in Figure 1.

www.manaraa.com

Petri Nets 131

Figure 1: A Petri net

• to the set of output places of transition t, that is the set of places p
such that (t,p) EA. For instance, in Figure 1, t2 = (P2,P3) and t3 = 0,
where 0 denotes the empty set.

• 0p is the set of input transitions of place p, that is the set of transitions
t such that (t,p) E A. For instance, in Figure 1, °p4 = {t4},0 PI =
0,° P2 = {t2}'

• pO is the set of output transitions of place p, that is the set of transitions
t such that (p, t) E A.

If °t = 0 (resp. 0p = 0), then t (resp. p) is called a source transition (resp.
source place). If to = 0 (resp. pO = 0), then t (resp.p) is called a sink
transition (resp. sink place). For instance, in Figure 1:

• PI is a source place.

• tl is a source transition.

• t3 and t5 are sink transitions.

• P4 is a sink place.

2.2 Dynamics of Petri Nets

A transition t is said to be enabled if, whatever p E °t, P contains a number
of tokens greater than or equal to W(p, t). If M is the marking of a Petri
net, this definition can be formally written as:

t E T is enabled if and only if, whatever p E °t, M(p) 2': W(p,t).

www.manaraa.com

132 Jean-Marie Proth

For instance, in Figure 1, t2 is enabled since Mo(pr) > W(Pl, t2) = 2, but t5
is not enabled since MO(P5) = 1 < W(p5, t5) = 4.

Note 2.2 According to the definition of an ordinary Petri net, a transition
t of an ordinary Petri net is enabled if and only if each of its input places
contains at least one token.

If a transition t is enabled, it mayor may not be fired. Firing a transition t
consists in:

• removing W(p, t) tokens from each p E °t

• adding W (t, p) tokens to each p E to.

For instance, firing t2 in the Petri net represented in Figure 1 consists in:

• removing two tokens from PI

• adding four tokens in P2 and one token in P3.

After firing h, the marking becomes M = [1,5,3,0,1].
A source transition is always enabled. Firing a source transition consists

in adding W (t, p) tokens to each p E to. A sink transition can be fired if it is
enabled. If a sink transition is fired, the tokens are removed from the input
places following the usual rule, but no token is added in a place. In Figure
1, firing source transition tl once changes Mo into M = [3,1,2,0,2]. None of
the sink transitions being enabled, they cannot be fired.

Let us assume that, starting from the marking Mo represented in Fig. 1:

• we fire tl three times in sequence

• we fire t5 once

• we fire t2 once

• we fire t3 once.

After firing h three times, the marking becomes Ml = [3,1,2,0,4]. After
firing t5 once, the marking becomes M2 = [3,1,1,0,0]. After firing t2 once,
the marking becomes M3 = [1,5,2,0,0]. Finally, after firing t3 once, the
marking becomes M4 = [1,2,2,0,0]. In this case, we write:

Note that sequence 0"1 =< t5, tl, h, tl, t2, t3 > which is composed of the
same set of transitions, is not firable since t5 cannot be fired first starting
from Mo. This remark is of great importance, as we will see in the remaining
of this contribution.

Note 2.3 The set of markings derived from Mo is denoted by R(Mo). Thus,
in the previous example, Mi E R(Mo) for i = 1,2,3,4.

www.manaraa.com

Petri Nets 133

Figure 2: Elementary circuits and self-loops

2.3 Siphons and Traps

We consider the case when the Petri net under consideration is an ordinary
Petri net, i.e. a Petri net where all the arcs are weighted to 1. A set P(s)
of places is a siphon if any transition t E T which has an output place in
P(s) has at least one input place in P(s). In other words, P(s) is a siphon
if to n P(s) =/: 0 leads to °t n P(s) =/: 0. Note that we may have, for some
transitions t, to np(s) = 0 and °tnp(s) =/: 0. As a result, some siphons may
become empty by firing transitions. Thus, a siphon in the Petri net model of
a discrete event system, for instance a manufacturing system, may reflect a
mistake at the design level.

A set P(t) of places is a trap if each transition which has an input place
in P(t) has at least one output place in P(t). Formally, P(t) is a trap if
°t n P(t) =/: 0 leads to to n P(t) =/: 0. Note that we may have, for some
transitions t, °t n P(t) = 0 and, nevertheless, to n P(t) =/: 0. A trap which
contains tokens will never become empty, but the number of tokens in a trap
may increase to infinity: a Petri net model containing a trap may reflect a
design mistake.

2.4 Elementary Circuits and Self-Loops

An elementary circuit in a Petri net is a directed path that goes from one
place (or transition) back to this place (or transition), and which does not
contain more than once any place (or transition). In Figure 2, 1'1 = <
tt,P2, h,P3, t4,P1 > and 1'2 =< tt,P2, t2,P3, t3,P6, t5,P4, t4,P1 > are two ele
mentary circuits.

A self-loop is an elementary circuit containing one place and one transi
tion. I' =< t,p > is a self-loop if {t} = pO = 0p. In figure 2, 1'3 =< t5,P5 >
is a self-loop.

www.manaraa.com

134 Jean-Marie Proth

Level 0

Levell

Level 2

Figure 3: The first three levels of the reachability tree

3 Reachability Tree and Coverability Tree

Let us consider a Petri net PN = (P, T, A, W, Mo). The goal of the reacha
bility tree is to find all the markings which can be reached starting from the
initial marking Mo by firing a sequence of transitions.

To find the reach ability tree, we start from the initial marking Mo which
is the root of the tree (level 0). Then we consider all the transitions enabled
by Mo and compute the markings obtained by firing each of these transitions
starting from Mo. Each of these new markings represents a node of the
reachability tree at level 1. In the example represented in Figure 2, Mo =
[0,2,0,1,1,0] and the following transitions can be fired starting from Mo:

• h, which leads to marking MI = [0,1,1,1,1, 0]

• t6, which leads to marking Mi = [0,2,0,1,1,1].

In this case, level 1 of the reachability tree includes two nodes. The next
level, level 2, of the reach ability tree is obtained by firing all the transitions
enabled by MI and by Mi·

Starting from MI, it is possible to fire:

• t2, which leads to marking MI = [0, 0, 2,1,1,0]

• t 6 , which leads to marking Mi = [0,1,1,1,1,1].

Starting from Mi, it is possible to fire:

• t2, which leads to marking Ml = [0,1,1,1,1,1]

• t5, which leads to marking Ml = [0,1,1,2,1, 0]

• t 6 , which leads to marking M; = [0,2,0,1,1,2].

The first three levels of the reachability tree of the Petri net represented in
Figure 2 are given in Figure 3.

We obtain the nodes at level 3 by firing all the transitions enabled by the
marking which are the nodes at level 2, and so on. When no transition is
enabled by a marking, no further node is derived from the node corresponding

www.manaraa.com

Petri Nets 135

to the marking. If the markings corresponding to different nodes are the same,
we merge these nodes. It is easy to understand that a reachability tree may
have an infinite number of levels, and thus an infinite number of nodes. It
is the case for the Petri net introduced in Figure 2 since transition t6 can be
fired as many times as we want. As a consequence, the reachability tree is
not an efficient tool to analyse the dynamics of most of the Petri nets.

To limit the size of the tree (at the expense of the information provided
by the tree), the following decisions were made:

(i) a node is marked "old" if the corresponding marking was already found
at another level of the tree, i.e. we do not fire a transition from the
corresponding marking anymore,

(ii) if a marking M reached at a given level is such that there exits a marking
M corresponding to a node located on the path joining the root to the
node corresponding to M which verifies:

• M(p) ~ M(p), Vp E P

• M(p*) > M(p*), for at least one p* E P

then the marking of p* is denoted by w, where w stands for infinity.
As a consequence, the marking of p* will remain w in all the markings
derived from M, and rule (i) also applies to these markings.

• A node is marked "dead-end" if the corresponding marking does
not enable any transition: such a node is a leaf of the tree.

• A node which is neither "dead-end" nor "old" is marked "new".
Only the "new" nodes produce nodes at the next level.

The tree obtained by applying the previous rules is called cover ability
tree. A cover ability tree contains less information than a reachability tree,
but always remains limited in size. The following conclusions can be drawn
from a cover ability tree:

• if none of the markings corresponding to the nodes of a cover ability tree
contains w, then R(Mo), set of markings reachable from Mo, is finite

• the cover ability tree provides the transitions which are never enabled

• when the Petri net under consideration is bounded, the reachability
tree provides the same information as the coverability tree.

The algorithm used to obtain the coverability tree is given hereafter.

www.manaraa.com

136 Jean-Marie Proth

Coverability tree algorithm

1. Initialisation: one node, reprocessing the initial marking Mo, is assigned
to level O. Let Xo be this node.

2. For each and every node X marked "new":

(a) If there exists a node X on the path joining Xo to X· such that
the marking corresponding to X is the same as the marking cor
responding to X, then mark X with "old". X is a leave of the
tree.

(b) If none of the transitions is enabled by the marking corresponding
to X, then mark X with "dead-end". X is a leave of the tree.

(c) If at least one transition is enabled by the marking M correspond
ing to X then, for each enabled transition t:

i. Compute Ml derived from M by firing t. Let Xl be the node
corresponding to MI.

ii. If, on the path joining Xo to Xl, there exists a node X the
marking of which is M and such that Ml(p) ~ M(p), Vp E P
and Ml (P) > M(P), for at least one PEP, then set Ml (p) = w
for any p such that Ml (p) > M(P).

iii. Introduce Xl in the tree, as well as arc (X,Xl), and mark
this arc with t.

iv. If there exists another node of the tree the marking of which
is Ml , then mark Xl with "old", otherwise, mark Xl with
"new".

(d) Go to 2.

4 Incidence Matrix and State Equation

Let P = (Pl,P2, ... ,Pn) (resp. T = (h, t2, ... ,tq)) be the set of places (resp.
transitions) of a Petri net. The incidence matrix of this Petri net is a matrix
A = [aij], i = 1, ... ,n; j = 1, ... ,q defined as follows:

{
W(tj,pi) if tj E °pi

aij = -W(Pi,tj) iftj EPi
o otherwise

where W is the weight function attached to the arcs.

www.manaraa.com

Petri Nets 137

Example 4.1 We consider the Petri net given in Figure 1. Its incidence
matrix is:

0 -2 0 0 0
0 4 -3 0 0

A= 0 1 0 -2 -1
0 0 0 1 0
1 0 0 0 -4

Note 4.1 An incidence matrix concerns only pure nets, i.e. nets without
self-loop since, if (Pi, tj) would be a self-loop, aij should equal simultaneously
-1 and +1, which is impossible.

Let us consider an initial marking Mo of a Petri net, and let a be a firable
sequence of transitions which applies to Mo. The counting vector Va- of a is
the vector:

Va- = [Vl,V2, ... ,vq] where Vj is the number of times tj is included in a.

If M is the marking obtained by firing a, then:

(1)

where t denotes the transpose and A the incidence matrix.

Note 4.2 1. Relation 1 is the state equation of the Petri net.

2. The counting vector Va- remains unchanged when transitions permute
in sequence a, but a firable sequence a may become non-firable by per
muting its transition. Thus the state equation applies only if we know
that a is firable: it helps us to compute the new marking M when we
know the initial marking and the fact that a is firable.

2

Figure 4: A marked Petri net

www.manaraa.com

138 Jean-Marie Proth

Example 4.2 Let us consider the net represented in Figure 4. The initial
marking is Mo = [3,0,0, 2J and the incidence matrix is:

[
1 -2 -1 0 1

A = 0 4 0 -1
o 0 1 -1
o 0 -2 2

Consider the firing sequence a =< t2, t3, t4 >. The corresponding count
ing vector is Vu = [0,1,1, IJ. It is easy to check that a is firable. Thus, firing
a leads to marking M which can be computed using state equation 1:

Note that al =< t4, t2, t3 >, which is not firable, has the same counting
vector as a, and thus would lead to the same making M when applying the
state equation.

5 p-Invariants and t-Invariants

5.1 p-Invariants

A vector X = [Xl, ... ,xnJ with non-negative integer components is a p
invariant if XA = 0, where A is the incidence matrix of the Petri net (with n
rows and q columns) under consideration. For instance, a p-invariant of the
Petri net represented in Figure 3 is such that:

[X"X2,X3,X,) [~
-2 -1

~1 1 [n
4 0
0 1 -1
0 -2 2

which leads to:

{ x,
=0

-2Xl +4X2 =0
-Xl +X3 -2X4 =0

-X2 -X3 +2X4 =0

Thus any vector X = [0,0, 2k, kj, where k is a non-negative integer, is a
p-invariant.

Theorem 5.1 If X is a p-invariant and Mo the initial marking of a Petri net,
then XMJ = XMt for any M reachable from Mo, i.e. for any ME R(Mo).

www.manaraa.com

Petri Nets 139

For instance, in the previous example:

is constant whatever M reachable from Mo = [3,0,0,2].

Definition 5.1 The set of places which correspond to the strictly positive
components of a p-invariant X is called support of X and denoted by IXI.

Definition 5.2 The support IXI of a p-invariant X is minimal if, whatever
the support IXII of a p-invariant Xl, IXI "jJ IXI/, where"jJ stands for "does
not contain".

Definition 5.3 A p-invariant X is minimal if there does not exist another p
invariant the components of which are less than or equal to the corresponding
components of X.

Theorem 5.2 Any p-invariant is a linear combination of minimal p-inva
riants.

In the previous example, we have only one minimal p-invariant which is
X* = [0,0,2, 1]. Thus, any p-invariant X can be written as X = kX*, where
k is a positive integer number.

Important properties:

(i) If a p-invariant X of a Petri net is such that all its components are strictly
positive, then the Petri net is bounded, i.e. for any place pEP there
exists a positive integer kp such that M(p) ~ kp whatever ME R(Mo).

(ii) If all the components of a p-invariant X of a Petri net are equal to one,
then the total number of tokens in the net remains constant for any
ME R(Mo).

5.2 t-Invariants

A vector Y = [YI,"" Yq] with non-negative integer components is a t
invariant if Ayt = 0, where A is the incidence matrix of the Petri net (with
n places and q columns) under consideration. For instance, a t-invariant of
the Petri net represented in Figure 3 is such that:

[~ I I ~:] [V"V2,Y3,Y'] = [~]
which leads to the system:

www.manaraa.com

140 lean-Marie Proth

-Y3 =0
-Y4 =0

Y3 Y4 =0
-2Y3 +2Y4 =0

Thus: Y3 = Y4 = 4Y2, YI = 6Y2

A t-invariant of this Petri net is Y = [6,1,4,4]. Also, any vector Y =
[6k, k, 4k, 4k] = k[6, 1,4,4], where k is a non-negative integer, is at-invariant.

Theorem 5.3 Let (J be a firable sequence and V". be the counting vector of
(J. Let M E R(Mo) be the marking reached by firing (J. If V". is at-invariant,
then M = Mo.

For instance, let us consider the firing sequence:
(J =< tl,tl,h,tl,tl,tl,t3,t2,t4,t3,t4,t3,t4,t3,t4 >, the counting vector of
which is V". = [6,1,4,4]. It is easy to verify that (J is firable and that we
come back to Mo after firing (J.

Definition 5.4 The set of transitions which correspond to the strictly posi
tive components of at-invariant Y is called support of Y and is denoted by

WI·

Definition 5.5 The support WI of at-invariant Y is minimal if, whatever
the support WIlof at-invariant YI , WIt> Wd, where t> stands for "does not
contain".

Definition 5.6 At-invariant Y is minimal if there does not exist another t
invariant the components of which are less than or equal to the corresponding
components of Y.

Theorem 5.4 Any t-invariant is a linear combination of minimal t-inva
riants.

Since we have only one minimal t-invariant in the previous example, that
is y* = [6,1,4,4], then any t-invariant Y can be written as Y = kY*, k being
a positive integer number.

Property 5.1 If, in all the minimal t-invariants of a Petri net, the same
component is equal to 0, then it is impossible to come back to the initial
marking after firing the transition corresponding to this component.

www.manaraa.com

Petri Nets 141

Figure 5: A flow-shop

6 Timed Petri Nets

Two types of timing are used by the researchers working in the Petri net field
that is timing of places and timing of transitions. A time associated with a
place represents the minimal time a token should remain in this place after its
arrival as a result of a firing. In the following of this contribution, we associate
times with transitions since, usually, transitions represent operations while
places represent buffers.

Let us assume that a time 8 is associated with a transition t, and that t
is enabled. Firing t at time J.L consists in:

• removing W(p, t) tokens from each P E °t at time J.L

• adding W(t,p) tokens to each p E to at time J.L + 8.

In the time interval (J.L, J.L+8), tokens disappear in the transition: This models
the fact that an operation is performed on the components represented by
the tokens arriving from the input places of t. The result of this operation is
represented by the tokens arriving in the output places of t. Note that the
time assigned to a transition may be deterministic or stochastic depending
on the kind of operation considered. To illustrate this concept, we present
in Figure 5 the model of two machines MI and M2 working in series to
manufacture one type of product.

tl (resp. t2) represents the operation performed by MI (resp. M2)' The
self-loops (ql, tt) and (q2, t2) are introduced to prevent tl and t2 to be fired
more than once at a time, since a machine performs at most one operation
at a time. The framed integer numbers are the manufacturing times. The
framed variables represent random variables. ZI is the random variable the
values of which represent the time intervals between consecutive arrivals of
raw material. Zo is the random variable the values of which represent the
time intervals between consecutive demands. PI (resp. P2) represent the
buffer at the entrance of MI (resp. M2), and P3 represent the inventory of
finished products.

7 Qualitative Properties

In this section, we restrict ourselves to the behavioural properties, which
depend· on both the structure of the Petri net and the initial marking. In

www.manaraa.com

142 Jean-Marie Proth

terms of applications, behavioural properties depend on the layout of the
system under consideration, the resources available in the system, the way
the system is managed, and its initial state.

7.1 Reachability

When studying the dynamics of a Petri net the initial marking of which is
Mo, it is often useful to decide if a marking M can be reached from Mo
(Le. whether M E R(Mo), or if it cannot be reached from Mo (Le. whether
M tf. R(Mo)). This kind of problem is referred to as reachability problem.

The reachability tree introduced in Section 3 provides the set of reachable
markings. Unfortunately, its size may be infinite, except if the Petri net
under consideration is bounded, Le. if the number of tokens in each place is
bounded.
The most useful information about reachability is summarised in the following
theorems, where Mo is the initial marking.

Theorem 7.1 If a Petri net is bounded, then ME R(Mo) if and only if the
reachability tree contains a node marked with M. If a Petri net is unbounded,
we have to use the coverability tree, and it is impossible to verify whether
M E R(Mo). It is only possible to verify whether there exists M* E R(Mo)
such that M ::; M* .

A more powerful theorem exists in the case of acyclic Petri nets, i.e. Petri
nets without cycles.

Theorem 7.2 For an acyclic Petri net, M E R(Mo) if and only if the fol
lowing equation has at least one solution:

where A is the incidence matrix, Mo is the initial marking and the com
ponents of the solution vector X are non negative integer numbers.
Furthermore, for each solution X, there exists a firing sequence (J such that:

Mo~M,andV".=X

where V". is the counting vector of (J.

7.2 Boundedness

A place of a Petri net is bounded if the number of tokens in this place never
exceeds an integer value k. Such a Petri net is said to be k-bounded. A Petri
net is bounded if all its places are bounded.

www.manaraa.com

Petri Nets 143

Theorem 7.3 A Petri net is bounded if and only if the markings of the
nodes of the coverability tree do not contain the symbol w. The Petri net
is k-bounded if and only if the elements of the markings of the nodes never
exceed k. A Petri net is said to be safe if it is 1-bounded.

A sufficient (but not necessary) condition for a Petri net to be k-bounded is
given by Theorem 7.4.

Theorem 7.4 A Petri net is bounded if there exists a positive integer k such
that, for any vector X the components of which are non-negative integer, the
marking M which verifies:

is such that M(p) ~ k, \lp E P.

A is the incidence matrix and Mo is the initial marking. Note that a
marking M obtained as expressed in Theorem 7.4 may be not reachable.

7.3 Liveness and Deadlock

The liveness guarantees that the system the model of which is the Petri
net at hand never blocks. It is easy to understand that liveness is of great
importance for dynamic systems.

Formally, a transition t is said to be alive if, \1M E R(Mo), 3M* E R(M)
such that t is enabled for M*. In other words, whatever the marking M
which has been reached from the initial marking Mo, it is always possible to
reach a marking M* from M such that t is enabled for M*. A Petri net is
said to be alive if all its transitions are alive.

A marking M E R(Mo) is deadlock if none of the transitions of the Petri
net is enabled for M. A Petri net is deadlock free if, whatever M E R(Mo),
M is not deadlock.

Theorem 7.5 encapsulates most of the properties related to liveness and
deadlock for bounded Petri net. Remember that nodes corresponding to the
same marking are merged in a reachability tree.

Theorem 7.5 1. A bounded Petri net is alive if its reachability tree is
such that, from any node, it is possible to find a directed path which
contains an arc marked with t E T, whatever transition t.

2. A bounded Petri net is deadlock free if it does not contain leaves.

Theorem 7.6 concerns unbounded Petri nets.

Theorem 7.6 1. Assuming that the nodes corresponding to the same mark-
ing are merged in a coverability tree, the first part of Theorem 7.5 holds
for unbounded Petri nets by replacing "reachability tree" by "coverabil
ity tree".

www.manaraa.com

144 Jean-Marie Proth

Figure 6: An event graph

2. Similarly, the second part of Theorem 7.5 holds for unbounded Petri
nets by replacing "reachability tree" by "coverability tree".

7.4 Reversibility and Home State

A Petri net is reversible if Mo E R(M) whatever M E R(Mo). In other
words, a Petri net is reversible if it is possible to come back to the initial
marking whatever the marking derived from the initial marking by firing
a sequence of transitions. A marking M* is a home state if M* E R(M)
whatever M E R(Mo). Theorems 7.7 and 7.8 summarise the conditions to
be fulfilled by a Petri net to be reversible or have a home state.

Theorem 7.7 If a Petri net is bounded:

1. it is reversible if and only if its reachability tree is strongly connected

2. it has a home state if and only if its reachability tree has one and only
one strongly connected component without an outgoing arc.

Theorem 7.8 If a Petri net has a home state, its cO'Qerability tree has one
and only one strongly connected component without an outgoing arc.

8 Event Graphs

8.1 General Properties

An event graph is an elementary Petri net in which the arcs are weighted to
one and each place has exactly one input transition and one output transition.
Figure 6 presents an event graph the marking of which is Mo = [1,3,0,4,2].

The following theorems are of the utmost importance from a practical
point of view.

www.manaraa.com

Petri Nets 145

Theorem 8.1 The number of tokens in an elementary circuit of an event
graph is invariant by any sequence of transitions firing. Another way to
express the same property is to say that X = [Xl, X2, ••• , xn] is a p-invariant
if:

{ I if Pi E 'Y
Xi = 0 otherwise

where 'Y is an elementary circuit and n is the number of places.

Theorem 8.2 The vector Y = [Yl,Y2, ... ,yq] the components of which are
all equal to 1 is the unique t-invariant of an event graph having q transitions.
Another way to express the same property is to say that we come back to the
same marking after firing exactly once each of the q transitions.

Theorem 8.3 An event graph is deadlock free and alive if and only if each
elementary circuit contains at least one token.

For instance, if we assign the initial marking Mo = [0,3,0,4,0] to the
event graph presented in Figure 6, then the event graph is neither deadlock
free nor alive since the elementary circuit 'Y =< tl,Pl, h,Pa, t4,P5 > does not
contain tokens.

8.2 Deterministic Event Graphs

We call "deterministic event graph" a timed event graph in which times
are deterministic. Let 'Y be an elementary circuit in such a Petri net, J.£b)
the sum of the firing times assigned to the transitions of 'Y and M ('Y) the
number of tokens in 'Y. Then C('Y) = J.£b)/M('Y) is the cycle time of 'Y.
Since, according to Theorem 6, M('Y) is invariant, Cb) is also invariant. In
a strongly connected event graph, the quantity C* = max-yer C('Y) , where r
is the set of elementary circuits, is the cycle time of the event graphs. An
elementary circuit 'Y E r such that C('Y) = C* is called a critical circuit.

Theorem 8.4 Assuming that a transition fires as soon as it is enabled, the
quantity 1/ C* is the throughput rate of tokens at any point of the event graph.
As a consequence, if we want to increase the speed at which tokens evolve in
the system, we should add tokens in the critical circuit.

9 Conclusion

In the previous sections, we provided the basics of Petri nets which are re
quired to model and evaluate DES. Petri nets are particularly convenient to
analyse manufacturing systems and information networks since their qualita
tive properties perfectly reflect the desirable properties of these systems. As

www.manaraa.com

146 Jean-Marie Proth

a consequence, the analysis of such a system can be decomposed into qual
itative analysis, which results in defining if this system is well designed or
not, and quantitative analysis, which concerns the management of the system
and its evaluation. Event graphs have been introduced since they are very
convenient when cyclic systems are concerned.

References

[DHPSV93] DiCesare, Fo, Harhalakis, G., Proth, J.-Mo, Silva, M., Vernadat, Fo,
Practice of Petri Nets in Manufacturing, Chapman and Hall, London,
UK, 1993

[HP92] Hillion, Ho Po, Proth, J. Mo, Mathematical Tools in Production Man
agement, Plenum, Paris, France, 1992

[Pet62] Petri, C. A., Kommunikation mit Automaten, Bonn, Institut fUr
Instrumentelle Mathematik, Schriften des IIM 3, 1962

[Pet81] Peterson, JoL., Petri Nets Theory and Modeling of Systems, Prentice
Hall, Englewood Cliffs, NJ, USA, 1981

[PX96] Proth, Jo-Mo, Xie, X.-L., Petri Nets: A Tool for Design and Manage
ment of Manufacturing Systems, John Wiley and Sons, Chichester,
UK, 1996

[Ram74] Ramchandani, Co, Analysis of Asynchronous Concurrent Systems
by Timed Petri Nets, Technical Report 120, Project MAC, MoLT.,
Cambridge, MA, USA, 1974

www.manaraa.com

CHAPTER 7

State Transition Diag.rams

Jules Desharnais, Marc Frappier, Ali Mili

State transition diagrams are a graphic notation that has long been used to rep
resent computing systems. Two basic models of state transition diagrams were
introduced simultaneously by G.H. Mealy and E.F. Moore in the mid fifties, and
have played a major role in hardware design for a long time. These basic mod
els have been expanded significantly in the recent past to include such features as
the ability to represent hierarchy, timing and communication, and have been used
to model complex software systems. In this contribution, we discuss the original
models of state transition diagrams, their semantic definition and their extensions;
then we discuss current application domains and support tools.

1 Introduction

Graphs and graphic notations playa prominent role in the representation and
analysis of software specifications and software designs: From data flow dia
grams, to entity-relation diagrams, to modular structure diagrams, to Petri
Nets, the range of application of graphs is very wide, as it varies with how
nodes and arrows are interpreted, and how they are annotated. The purpose
of this section is to give a characterization of state transition diagrams; our
characterization attempts to be specific enough to exclude all other graphic
notations, yet general enough to include all the notations that are typically
considered as such diagrams. Basically, a state transition diagram is a graph
whose nodes represent states of a system and whose arrows represent transi
tions between states.

The literature about state transition diagrams is abundant. We have
chosen to restrict our presentation to the initial models of state transition
diagrams, and to present some of their successors which have retained the
attention of both researchers and practitioners. Our presentation starts with
the models of Mealy and Moore, who have first studied several fundamental
aspects of finite state machines. We then present two extensions which were
proposed to deal with more complex concurrent systems using a graphical

www.manaraa.com

148 Jules Desharnais, Marc Frappier, Ali Mili

representation. Finally, we present a brief overview of the integration of
state transition diagrams in the practice of software engineering.

2 The Basic Model

In two seminal papers [Mea55, Moo56], Mealy and Moore laid the foundations
of finite automata theory. Moore's paper is concerned with the concept of
experimentation with a finite machine (or finite automaton), that is, with the
conclusions that can be drawn about the internal state of such a machine from
external experiments. An external experiment consists in the observation of
the outputs of the machine after sending it some inputs. Moore proves nu
merous theorems about the equivalence and the reduction of machines; these
theorems have become standard material in textbooks on automata theory
(e.g., [DDQ78]). Mealyapplied Moore's concepts to the synthesis and reduc
tion of digital circuits (even though [Mea55] was published before [Mo056],
Mealy knew about [Mo056]). The finite machines Mealy used were a variant
of Moore's machines. Because they suit our purpose better, we introduce
them first and present Moore's as a variant.

Definition 2.1 A Mealy machine (or Mealy automaton) [DDQ78, Mea55}
is a six-tuple

where

(8, I, 0, 8, 'Y, so),

8 is a finite set of states,
I is a finite input alphabet,
o is a finite output alphabet,
8 : 8 x I --+ 8 is the state transition junction,
'Y : 8 x I --+ 0 is the output function and
So E 8 is the initial state.

Thus, the 8 function prescribes what the new state of the machine is after
receiving an input and the 'Y function prescribes what the output is.

As a simple example, consider the state transition diagram of Figure 1. It
represents a Mealy machine modeling the behavior of a bounded stack with
at most two elements taken from the set {a, b}. There are seven states (the
nodes), labeled with the contents of the stack (10 denotes the empty stack).
The short arrow indicates that 10 is the initial state. The input alphabet is
{pusha' pushb' pop, top}, where

• pusha and puShb represent the actions of pushing an a or a b on the
stack, respectively,

• pop represents the action of removing the top element from the stack,
and

www.manaraa.com

top/a
pusha/error
pushb/error

State Transition Diagrams

top/b
pusha/error
pushb/error

top/a
pusha/ error
pushb/error

Figure 1: The state transition diagram of a Mealy machine

149

top/b
pusha/ error
pushb/error

• top represents the action of returning the top element of the stack.

The output alphabet is {a, b, >.., error}. The 8 and 'Y functions can be read
directly from the diagram: a label x/y, with x E I and yEO, on a transition
from state s to state t corresponds to 8 (s, x) = t and 'Y(s, x) = y. Thus,
an input PUShb in state a results in a transition to state ab and produces an
output A (the symbol A can be interpreted in a number of ways, including
that the output is a don't-care value, or a mute message, or the absence of
output). Applying the pop and top operations to an empty stack results in
an error output; similarly, a push a or a pushb operation applied to a full stack
yields an error output. The loop labeled top/a over state a means that the
top operation can be applied repeatedly to the stack containing a as a single
element, and that the output of this operation is a.

But what does one define when one draws the state transition diagram
of a Mealy machine? A related question is: When do we say that two Mealy
machines are equivalent? Once the semantics of Mealy machines is defined,
we consider that two machines are (semantically) equivalent if they have the
same semantics.

Before giving the definition of semantics, let us introduce the following
notations:

T the empty sequence,
T+ the set of non-empty finite sequences of elements of set T,
T* the set of finite sequences of elements of set T (T* = T+ U {T}).

Concatenation of elements or sequences over T is denoted by juxtaposition.

www.manaraa.com

150 Jules Desharnais, Marc Frappier, Ali Mili

Definition 2.2 The behavioral abstraction(semantics) of a Mealy machine

~ = (8,1,0,8,,,/,so)

is the junction gr, : I+ -t ° defined by the following recursive equations,
where dE : I* -t 8 is an auxiliary junction, x E I and t E I*.

gE(tX) = "/(dE{t),x).

Two Mealy machines

~ = (8, I, 0, 8, "/, so) and~' = (8',1,0,8', ,,/', so')

are equivalent if and only if gE(t) = gE' (t) for all t E I+.

In words, dE(t) is the state reached after submitting the input sequence t
to the machine, and gr,(t) is the last output of the machine. Two machines
are equivalent if they have the same last output for the same sequence of
inputs. Note that the semantics could also be defined as the following function
g; : I* -t 0*:

g;(r) = r,

That is, the semantics is a function from input sequences to output sequences.
It is easy to see that g;(t) = g;,(t) for all t E I* if and only if gE(t) = gr,,(t)
for all t E I+.

Moore machines are similar to Mealy machines, except that the output
function "/ is replaced by a function ,,/' : S -t 0. An output is associated
to a state rather than to a transition. Such an output can be viewed as
an action to take after reaching a state. Moore machines can be given a
semantics similar to that of Mealy machines by defining a function that,
when applied to a sequence of inputs, returns the last output (function gE)
or the whole sequence of outputs (function g;) produced by the machine.
A Mealy machine ~ and a Moore machine ~' are equivalent (or similar) if,
for each possible sequence of inputs, the sequence of outputs of ~' is exactly
that of ~ preceded by one arbitrary, but fixed, symbol (the symbol that the
Moore machine outputs in its initial state, before any input is submitted to
it). It is shown in [DDQ78] that, given a Mealy machine~, one can construct
a Moore machine ~' that is similar, and conversely.

3 Extensions to the Basic Model

3.1 Statecharts

When the time comes to use them for the design of large reactive systems,
Mealy machines and Moore machines prove to have significant limitations:
they provide no natural notion of depth or hierarchy, they are inherently

www.manaraa.com

State Transition Diagrams 151

airplane_plant
idle

start stop
I working I

Figure 2: A statechart

sequential in nature and do not cater for concurrency in a natural way, and
they are very uneconomical because the number of states needed for the
description of a system grows exponentially with a linear increase of the size
of the system [Har88].

Statecharts have been designed by Harel [Har87, Har88] to overcome these
limitations. Their main features are synthetically described by the formula

statecharts = state transition diagrams + depth (2)
+ orthogonality + broadcast communication.

We will explain and illustrate these features with a grossly simplified exam
ple, that of an airplane assembly plant. The informal specification of the
module airplane_plant follows; it is done in terms of events and signals, as is
appropriate for the description of a dynamic system. The external signals
(inputs) sent to the module are a start signal followed by two sequences of the
body, engine and wings signals, in that order. After receiving these signals,
the module emits a 2_units signal (output) and waits for a restart signal, fol
lowed by two sequences of the body, engine and wings signals, in that order.
The module then emits a stop signal and stops. Other output signals may
be emitted by the module for synchronization purposes. The statechart of
a possible implementation of this specification is given in Figure 2. The de
composition has been chosen for illustration purposes and is not the simplest
possible. For instance, two modulo 2 counters are used instead of one modulo
4 counter.

It is not possible to give a short definition of statecharts as we have done
for Mealy machines (Def. 2.1), so we will content ourselves with presenting

www.manaraa.com

152 Jules Desharnais, Marc Frappier, Ali Mili

the main features by means of the airplane assembly plant example. One
can find a full description of the syntax of statecharts, too lengthy to be
presented here, in [HRR92]. Note that the term statechart is not a synonym of
state transition diagram, but specifically refers to the type of state transition
diagrams introduced by Harel.

As one can see from Figure 2, a statechart is a set oflabeled nodes (states)
and labeled arrows (transitions), just like any state transition diagram; how
ever, the organization of these elements is more complex than for Mealy or
Moore machines. Conventionally, the label of a node appears on the left hand
top corner of the node, either inside, like the label assembly, or appended in
a small box, like the label working. Depth (or hierarchy) is obtained by al
lowing superstates containing substates and internal transitions. There are
two types of superstates, OR-states and AND-states. What distinguishes
them graphically is that AND-states are subdivided by dotted lines. Thus,
airplane_plant, counter!, counter2 and assembly are OR-states and working is
an AND-state. The initial state of a superstate is indicated by a small arrow;
for instance, init is the initial state of the assembly superstate (we also say
that init is the initial substate of the assembly state).

We now describe informally the semantics of statecharts in an operational
manner. Since a state containing substates and transitions can be viewed as
a program or a machine, we will sometimes use the expression execution of a
state, which would be a language misuse if states were unstructured entities.

The execution of a statechart proceeds in discrete time steps. For the
moment, assume that the statechart consists only of the assembly node of
Figure 2. This node is an OR-state. Its transitions have either the form event
or event/signal. The latter form is just the same as for Mealy machines; the
former could be put under the same form by writing it as event/invisible
signal. An event is a signal that takes no time (so that the body event, for
example, may be understood as the end of the assembly of the body of the
airplane rather than the assembly itself). The execution of the assembly state
consists in following an arrow when the event labeling the arrow occurs. The
execution starts from the initial state init. A statechart can be in only one
substate of an OR-state. These OR-states correspond to the state transition
diagrams aspect of Equation 2. The loop body, engine, wings/Lunit depicts
the assembly of an airplane from three parts and the emission of the signal
Lunit when done.

The execution of an AND-state consists in executing in parallel the sub
states of this AND-state. Execution starts with each substate in its initial
state. This default behavior can be overridden. For example, the start arrow
in Figure 2 could go from the idle node to both the break node and the one!
node (split arrow); in this case, the execution of the statechart in the working
superstate would begin in the combined state (onel,zero2,break), zero2 being
used by default.

Table 1 shows the behavior ofthe statechart of Figure 2 when the external

www.manaraa.com

State Transition Diagrams 153

time state external event internal event
1 idle start
2 (zero!, zero2, init) body
3 (zero!, zero2, body _ok) engine
4 (zero!, zero2, eng_ok) wings

(zero!, zero2, init) Lunit
5 (one!, zer02, init) body
6 (onel, zero2, body _ok) engine
7 (one!, zero2, eng_ok) wings

(one!, zero2, init) Lunit
(zero!, zer02, init) 2_units

8 (zerol, one2, break) restart
9 (zero!, one2, init) body

10 (zero!, one2, body _ok) engine
11 (zero!, one2, eng_ok) wings

(zero!, one2, init) Lunit
12 (one!, one2, init) body
13 (one!, one2, body_ok) engine
14 (one!, one2, eng_ok) wings

(one!, one2, init) Lunit
(zero!, one2, init) 2_units
(zero!, zer02, break) stop

15 idle

Table 1: An execution sequence of the airplane-plant statechart

events occur in the order shown. What happens is that after the start signal,
the assembly system and the two modulo 2 counters, counter! and counter2,
enter their initial state and start executing. When assembly has received
the signals body, engine and wings (note here that signals external ,to the
airplane_plant superstate are visible in the lower levels of the hierarchy), it
outputs Lunit, thus signaling that one airplane is completed.

When counter! has detected two such signals, it outputs a signal 2_units.
This 2_unit signal becomes visible to all the other nodes, including nodes
outside the airplane_plant node (thus satisfying the requirements concerning
this signal); this is the broadcasting aspect of Equation 2. Now, all nodes
that can react to a given event do so. Thus the signal 2_units increments
counter2 and changes the sub-state of assembly to break.

Note how a single signal, here wings (at time 7) provokes a cascade of
internal events and transitions. This cascade occurs at the same micro
instant, which is indicated in Table 1 by the system being in three different
states at the same time. There are other cascades at times 4, 11 and 14.
Note how the signal stop emitted by counter2 causes the execution to leave

www.manaraa.com

154 Jules Desharnais, Marc Frappier, Ali Mili

assembly _counter2

restart

wings/Lunit --'--
restart

engine

body engine

wings/Lunit

Figure 3: An unorthogonal statechart for counter2 and assembly states

each substate of the working AND-state (because of the arrow labeled stop
from the working state to the idle state).

The immediate substates of an AND-state are called orthogonal states.
Thus, AND-states provide the orthogonality aspect of Equation 2. This con
cept permits a compact description of systems. Removing orthogonality by
replacing an AND-state by an equivalent OR-state results in a large increase
in the number of nodes (which is the product of the number of states of
each substate of the AND-state). For example, an OR-state equivalent to
the AND-combination of the two states counter2 and assembly is given in
Figure 3. The number of nodes is 8, which is the product of the number of
nodes of counter2 and assembly.

Giving a formal semantics to statecharts is not easy, mostly because they
have many more features than what we have described here. This has resulted
in quite a few variants, which are described in [Bee94). For material on the
semantics of statecharts, we refer the reader to [Bee94, Har87a, HRR92).

www.manaraa.com

State Transition Diagrams 155

V(s)

-Br---P-(S)--+I~ 8t---x :=_x +_1 ---+-1. 8
Figure 4: A state transition diagram for the process P

3.2 The Temporal Logic of Actions

Many specification methods are based on a formal language such as predicate
logic, temporal logic or the calculus of relations. Whereas these have a very
precise semantics, their use for the description of complex systems may lead
to formulae that are difficult to understand, thus inhibiting fruitful communi
cations between clients and specifiers. For that reason, it is desirable to have
a graphical means to depict some of the properties described by the formulae;
moreover, it is desirable that the association between the graphical view and
the formula-based view be formal, so that pictures can be used in a precise
manner. We present here an example showing how this goal is achieved in
the case of the Temporal Logic of Actions (TLA) [Lam94, Lam95].

The example, drawn from [Lam95], uses a semaphore to synchronize two
concurrent processes. A semaphore is a (programming) variable with value
in the set of natural numbers, {O, I, ... }, to which two operations, called P
and V, can be applied [Dij68]. Let s be a semaphore. The effect of executing
V(s) is the same as that of executing the assignment s := S + 1, except that
V is guaranteed to be executed in a single non-interruptible step (an atomic
step). If s > 0, the effect of executing P(s) is the same as that of executing
the assignment s := s -1 atomically. A process P executing P(s) when s = °
is blocked until another process executes V(s), thus incrementing s that can
then be decremented by P.

Suppose that x is some critical resource, to be protected from arbitrary
access by means of a semaphore s (more precisely, x must be accessed by
only one process at a time). To make things simple, assume that a process P
needs to make the assignment x := x + 1. Ignoring all operations other than
those on x and s, the execution of the process might be represented by the
state transition diagram of Figure 4. That is, P repeatedly loops through
the sequence P(s); x := x + 1; V(s). Note that if s = ° when the control is in
node 0, then P is blocked and cannot execute P(s) and access x until V(s) is
executed by another process. Thus, P requests access to x (the P operation),
uses x (the x := x + 1 operation) and releases x (the V operation).

In TLA, a state is a listing of the values of the relevant variables. For the
above process P, these variables are s, x and a control variable c indicating
the control state (that is, before P(s), before x := x + 1, or before V(s)); we
can take c E {O, 1, 2}, the set of labels of the nodes of Figure 4.

www.manaraa.com

156

pes) I:>.

V(s) I:>.

PI ~

P2
I:>.

Q1
I:>.

Q2
I:>.

Rl
I:>.

R2
I:>.

81
I:>.

82
I:>.

8 I:>.

I:>.
W

A I:>.

Init
I:>.

W- I:>.

Jules Desharnais, Marc Frappier, Ali Mili

O<sl\s'=s-l
s'=s+l

V(s)

V(s)

X~ = Xl + 1

X~ = X2 + 1

Cl = 0 1\ C2 = 0 1\ pes) 1\ x~ = Xl 1\ x~ = X2 1\ c~ = 1 1\ ~ = 0
Cl = 0 1\ C2- = 0 1\ pes) 1\ x~ = Xl 1\ x~ = X2 1\ C~ = 0 1\ ~ = 1

Cl = 1 1\ C2 = 0 1\ s' = s 1\ x~ = Xl + 1 1\ x~ = X2 1\ c~ = 21\

c~ = 0
C1 = 0 1\ C2 = 1 1\ s' = s 1\ x~ = Xl 1\ x~ = X2 + 1 1\ c~ = 0 1\

~=2
Cl = 2 1\ C2 = 0 1\ V(s) 1\ x~ = Xl 1\ x~ = X2 1\ c~ = 0 1\ c~ = 0
Cl = 0 1\ C2 = 2 1\ V(s) 1\ x~ = Xl 1\ x~ = X2 1\ ~ = 0 1\ ~ = 0
PI V Q1 V Rl

P2 V Q2 V R2

81 V 82

(Cl' C2, S,X1,X2)

Cl = 0 1\ C2 = 0 1\ D(8 V w' = w)
Cl = 0 1\ C2 = 0 1\ s = 1 1\ Xl = 0 1\ X2 = 0
Init 1\ D(8 V w' = w) 1\ SF(Pt} 1\ SF(P2)

Figure 5: A TLA diagram and specification

Thus, e.g., C = 0, s = 1, X = 3 is a state of Pj if the order of presentation of
the variables (c, s, x) is understood, this state can simply be given as (0,1,3).
Because s > 1, P can execute the operation pes) and change state for the
state C = 1, s = 0, X = 3. Since a state in TLA is not a vertex in a diagram,
we will use the term node to refer to vertices in diagrams (while discussing
TLA).

We now introduce a TLA formula 'i.[I specifying a program with two pro
cesses PI and P2 , similar to the above process P, and running concurrently.
Assume that PI needs protected access to Xl in order to increment it, and
that P2 needs protected access to X2, for the same purpose. Assume also
that the synchronization between the two processes must be done using a
semaphore s. The specification W- is given in Figure 5, with other formulae

www.manaraa.com

State Transition Diagrams 157

and a diagram, called a predicate-action diagram in [Lam95]. We proceed
with the explanation of these formulae and diagram.

The variables defining a state of the system are s, Xl , X2 and two control
variables Cl and C2, taking their values in the set {O, 1, 2}; these variables
indicate the control state of each process. The diagram of Figure 5 shows how
these variables change when the P, V and increment operations are performed.
Each node of this diagram is labeled by a predicate over the variables Cl and
C2 (read the two labels in a node as a conjunction). Note how the predicate
Cl = 0 1\ C2 = 0, labeling the leftmost node, represents the set of all those
states with Cl = 0, C2 = 0 and s, Xl, X2 arbitrary. In this example, predicates
labeling different nodes are disjoint; the general case is treated in [Lam95].
Each transition is labeled by a predicate defining a relation between the values
of the variables before and after the transition. An unprimed variable refers
to the value before the transition and a primed variable to the value after.
Variables that do not appear in the predicates labeling a transition or the
nodes at the origin or destination of this transition are left unchanged (this
avoids cluttering the diagram); for example, the transition labeled by x~ =
Xl + 1 leaves X2 and S unchanged. The fully written predicate corresponding
to this transition is

Ql ~ Cl = 1 1\ C2 = 0 1\ s' = s 1\ x~ = Xl + 1 1\ x~ = X2 1\ c~ = 2 1\ c~ = 0

(the symbols ~ and 1\ denote equality by definition and conjunction, re
spectively); this indeed describes the assignment Xl := Xl + 1. Note how
the variables of the destination node are primed (C~, c~). The predicates
PI, P2 , Ql, Q2, R l , R2 of Figure 5 correspond to the six transitions of the di
agram given in the same figure (PI, Ql, Rl correspond to process PI and
P2 , Q2, R2 to process P2). These predicates use auxiliary predicates defining
the P and V operations; note how these predicates are much more concise
and precise than the informal presentation of the operations given above.

The predicates 5 i (i = 1,2) associated to each process are obtained
by taking the disjunction (denoted by V) of Pi, Qi and R i . The pred
icate 5 ~ 51 V 52 defines the next step relation of the diagram (recall
that the predicates with primed and unprimed variables relate states before
and after a transition). Such relations and diagrams can also be described
within a relational, rather than logical, formalism; for instance, they are used
in [DKFM97] to give partial descriptions of the interactions between two sys
tems (scenarios) and to formalize the integration of such partial descriptions.

Finally, the TLA formula associated to the diagram is

~ ~ Cl = 0 1\ C2 = 0 1\ 0(5 V w' = w).

In this formula, w ~ (Cl, C2, S, Xl, X2) is the list of variables composing a state.
The notation w' = w is an abbreviation for

C~ = Cl 1\ c~ = C2 1\ S' = s 1\ x~ = Xl 1\ x~ = X2.

www.manaraa.com

158 Jules Desharnais, Marc Frappier, Ali Mili

The symbol 0 is read always. To explain the formula of .6., we need to
introduce the notion of models of a TLA formula.

The models of a TLA formula are infinite sequences of states Wo, Wi, W2, ...

such that Wo satisfies the formula. The predicate Cl = 0 /\ C2 = 0 in .6. specifies
that the initial state Wo must correspond to the initial node of the diagram.
The expression S V w' = W is true at state Wi if the pair (Wi, wi+d satisfies
the formula S V w' = w, with the substitution W ~ Wi and w' ~ Wi+l. A
formula Dp is true at state Wo if p is true at state Wo and at every state
that follows it in the sequence. Thus, an infinite sequence that is a model of
.6. must be a sequence of states obtainable by starting in a state such that
Cl = 0 /\ C2 = 0 and taking steps in the diagram of S, with the possibility
of repeating a given state (this corresponds to time steps where the system
under consideration does not move). Still put differently, a model sequence
of.6. is a possible execution of the combination of processes Pi and P2 , where
each process may either take a transition or stay in the same state.

The formula for the specification IJI is

IJI ~ Init /\ D(S V w' = w) /\ SF(Pl) /\ SF(P2).

It is similar to .6., with some additional constraints:

• The predicate Init dictates the initial values of s, Xl and X2, in addition
to those of Cl and C2·

• The formula.6. (and the corresponding diagram) allows process P2 to be
stopped forever, with only Pi executing its loop. To prevent this pos
sibility, the specification IJI adds the strong fairness conditions SF(Pl)
and SF(P2), whose explicit formulae we do not present. The condition
SF(P2), for instance, says that if P2 is enabled (can take a transition in
the diagram) infinitely often, then it must take a transition infinitely
often. Thus, if only Pi were executing, P2 would be enabled each time
the control passes in the initial node Cl = 0 /\ C2 = 0; the fairness
condition SF(P2) implies that P2 would eventually have its turn in the
loop. A simple implementation of IJI could consist in letting Pi and P2
execute alternately. The fairness conditions cannot be easily expressed
in a diagram and this is why they are left out.

Thus, the diagram and its formula .6. give only a partial view (abstraction)
of the whole specification IJI. One can show (see [Lam95]) that IJI => .6..

As a final word, we mention that the diagram given in Figure 5 is only one
possible view of IJI. Depending on the abstraction chosen, other diagrams are
possible. Lamport [Lam95] gives another view of the specification IJI where
the nodes of the diagram are labeled by predicates over the semaphore vari
able s only. Obviously, a diagram of a whole specification may be too complex
to be useful, but representing relevant abstractions of a large specification by
simple diagrams promotes understanding.

www.manaraa.com

State Transition Diagrams 159

4 Practice of State Transition Diagrams

The use of state transition diagrams has rapidly spread in the software
engineering practice in various application domains (e.g., telecommunica
tions, aerospace, defense, transportation, electronics). Several software de
velopment approaches (e.g., Unified Modeling Language (UML) [UML97],
Real-Time Object-Oriented Modeling (ROOM) [SGW94], Specification and
Description Language (SDL) [EHS97]) have adopted state transition dia
grams for specifying the behavior of real-time systems or objects. Industrial
strength tools are now supporting the definition of state transition diagrams
and the execution of state transition diagrams for validation. Several of
these tools use a variant of Harel's statechart notation. In this section, we
will provide a brief overview of the integration of state transition diagrams
with other elements of these software development approaches and some of
the capabilities of these tools.

4.1 Object-Oriented Modeling

Object-oriented approaches to software development use state transition di
agrams to illustrate the behavior of objects [Bo094, JCJ092, Rum91]. The
notation used in these approaches is not formally defined; hence we rely here
on the reader's intuition to understand the informal semantics.

The nodes of an object's state transition diagram are arbitrarily chosen
by the specifier. As in TLA, we must distinguish between a state (a node) of
a state transition diagram and a state of an object. The state of an object
is given by the list of values for the object's variables. A node label IS a
meaningful name representing a set of object states. For instance, in the
stack example of Figure 6, the node labels are Init, Empty, Loaded and Full.

A perfectly valid state transition diagram for the stack could contain
only one node, but it would not be very meaningful for a reader. Node Init
is the initial state of the stack, where the values of the object's variables are
undefined. Node Loaded represents the case where some elements have been
added to the stack; hence, there are several possible values for the object's
variables (i.e., several possible object states) when the object is in this node.
An extended state transition diagram differs from a Mealy state transition
diagram in that the former implicitly contains state variables whereas the
latter does not. Variables, which will explicitly appear in the class definition,
allow a node in an extended state transition diagram to represent several
nodes of a Mealy state transition diagram. For instance, the node Loaded in
Figure 6 represents nodes a, b in Figure 1. The node Full in Figure 6 represents
nodes aa, ab, ba, bb in Figure 1. The number of nodes in Figure 6 is constant
with respect to the number of elements that a stack may contain. In a Mealy
stack state transition diagram, the number of nodes grows exponentially with
the stack capacity.

An arrow in the graph is labeled with a method name. Optionally, an

www.manaraa.com

160 Jules Desharnais, Marc Frappier, Ali Mili

pop/error

Figure 6: An extended state transition diagram for a stack object

output may be specified on the arrow, separated from the method name
by a slash, as in the Mealy notation. The object moves from one node
to another when a method of an outgoing arrow is invoked on the object.
The end point of an arrow may be a condition with two outgoing arrows.
The evaluation of the condition determines which outgoing arrow is selected.
The condition usually refers to the object's variables and to the method
invocation parameters. The behavior of a method (i.e., the modification to
the object's variables and communication with the environment) is usually
defined in a separate document (either a class description, a use-case diagram
or an interaction diagram [UML97]). The notation used in [JCJ092] allows
a (partial) definition of the behavior directly on the state transition diagram.
In any case, these notations being informal, the designer may write what
seems most appropriate to be understood as precisely as possible within the
limits of an informal notation. Finally, an object extended state transition
diagram may be hierarchically structured if the behavior is too difficult to
represent on a single diagram. Figure 7 provides a possible implementation
of the stack extended state transition diagram of Figure 6.

www.manaraa.com

State TI-ansition Diagrams

class Stack
{ const MaxStack = 1;

const EmptyStack = -1;
char items[MaxStack];
int index;

public:

};

StackO;
void create();
status push(char);
status pop 0 ;
boolean empty();
boolean full 0 ;
char topO;

Figure 7: A C++ class for the stack state transition diagram

4.2 Real-Time System Modeling

161

Several approaches for real-time system modeling have adopted variants of
Harel's statecharts for describing the behavior of communicating processes
[UML97, SGW94, EHS97]. We may take ROOM [SGW94] as an example,
since it restricts Harel's notation to a simple subset and it adopts a more
explicit communication mechanism between concurrent states. The notation
used in ROOM is object-oriented, in the sense that it allows inheritance for
various syntactic categories.

The main syntactic categories of the ROOM notation are actor, port,
protocol, state machine and data class. A system is modeled using commu
nicating processes called actors. Actors communicate through ports using
synchronous and asynchronous message exchange. A protocol is the set of
messages that may be sent or received through a port.

An actor is illustrated by two diagrams: a ROOM structure diagram,
to define communication links between actors, and a ROOMchart, to define
the actor's state transitions. In Figure 8, we present a ROOM structure
diagram for the actor AirplanePlant, whose behavior is the same as that of
the statechart in Figure 2. In this figure, the outlined little square labeled
by externalCom on the outmost rectangle is a port which allows the airplane
plant to communicate with its environment. The AirplanePlant actor contains
three (component) actors: assembly, counter! and counter2. These actors
also have ports. An arc connecting two actor ports allows these actors to
exchange messages. The assembly actor receives the environment messages.
When an airplane unit is built, it sends a message to actor counter! through
port oneUnit. When two units are built, actor counterl sends a message to

www.manaraa.com

162 Jules Desharnais, Marc Frappier, Ali Mili

twoUnits

I
twoUnitsR2

I counterl
externalCom

assembly

oneUnit oneUnit

•
twoUnitsRl

externalCom
stop twoUnits

counter2

Figure 8: A ROOM actor structure diagram

actors counter2 and assembly through ports twoUnitsRl and twoUnitsR2, re
spectively. When four units are built, counter2 sends a message to assembly
through port stop. Note that we have represented the AND-state compo
nents (the three OR-states) of Figure 2 by three actors, because AND-state
components of a statechart execute in parallel.

Figure 9 illustrates th_e behavior of the assembly actor. It is very similar
to the OR-state assembly of Figure 2, except that we have inserted the state
idle in order to make the ROOM model simpler. The label of a ROOMchart
transition is not the input signal; it is simply a meaningful annotation. The
input and output signals are given in the transition definition which is not
represented in the diagram. An actor may have variables. They are defined
using data classes: a data class is very similar to a class in an object-oriented
programming language like Small Talk. When an actor receives a message
in a given node, the transition labeled with this message is triggered. The
transition code is then executed: its effect may be to modify the actor's
variables or to send messages to other actors through ports. The arrow
labeled initialize contains the initialization code that is executed when the
actor is started. The ROOMcharts for actors counterl and counter2 are the
same as the OR-states counterl and counter2 of Figure 2.

The main distinguishing characteristics between a ROOMchart and a stat
echart are the representation of concurrency and the communication mecha
nism. AND-states are not allowed in ROOMcharts; concurrency is expressed
using actors. Events in ROOMcharts are not broadcasted but sent and re
ceived between actors through ports. An actor may only modify its own
variables.

www.manaraa.com

State Transition Diagrams 163

start

twoUnits

restart

Figure 9: A ROOM actor behavior diagram (ROOMchart)

4.3 Tools

There exist several verification tools for state transition systems, such as MEC
[Arn89, Arn92], ALDEBARAN [Fer89] and SPIN [Hol9l]. These tools allow
one to construct state machines, to apply operations on them and to verify
properties (e.g., safety, liveness, reachability, deadlock). When modeling con
current systems with state diagrams, the number of states grows extremely
rapidly; these tools become an absolute necessity.

Several other tools support variants of statecharts (e.g., ObjectGEODE
[Verilog], ObjecTime [ObjTimJ, SDT [Telelog], Statemate [i-Logix]). They
provide graphical diagram editors, syntax checkers and simulators for ani
mating state transition diagrams and verifying properties about them.

5 Conclusion

State transition diagrams are now well-established notations in the specifi
cation and design of software systems. Software developers used them in
various application domains and various system types. The seminal ideas
of Moore and Mealy have evolved to mature techniques capable of model
ing complex system behaviors in an understandable way. A key strength of
state transition diagrams is their evocative graphical representation. Harel
contributed to the power of this graphical notation by defining hierarchi
cal state machines and by adding concurrency and communication. Several

www.manaraa.com

164 Jules Desharnais, Marc Frappier, Ali Mili

other contributors have adapted these ideas in different contexts (e.g., hard
ware design, interface specification, distributed systems, real-time systems,
object-oriented modeling).

Paradoxically, the main weakness of state transition diagrams is related
to their salient characteristic, the graphical representation. Diagrams require
more resources to maintain and adapt than just a plain textual description.
It is almost mandatory to use a graphical tool to maintain them. In addition,
diagrams are not as compact as textual descriptions. Complex diagrams are
decomposed into a hierarchy of diagrams. Thus, the navigation between
several levels of diagrams may sometimes be cumbersome. Obviously, it is
difficult to achieve a balance between cost, concision and clarity.

Acknowledgments: The authors acknowledge the support of NSERC (Natural
Sciences and Engineering Research Council of Canada) and FCAR (Fonds pour la
Formation de Chercheurs et l'Aide it la Recherche, Quebec).

References

[Arn89) Arnold, A., MEC: a system for constructing and analyzing transition
systems, in: J. Sifakis (ed.), Automatic Verification of Finite State
Systems, Lecture Notes in Computer Science, Vol. 407, Springer, 1989,
117-132

[Arn92) Arnold, A., Systemes de Transitions Finis et Semantique des Processus
Communicants, Masson, 1992

[Bee94) Von der Beeck, M., A comparison of statecharts variants. in: H. Lang
maack, W.-P. De Roever, J. Vytopil (eds.), Formal Techniques in
Real-Time and Fault-Tolerant Systems, Lecture Notes in Computer
Science, Vol. 863, Springer, 1994, 128-148

[Boo94) Booch, G., Object-Oriented Analysis and Design with Applications,
2nd edition, Benjamin-Cummings, 1994

[DDQ78) Denning, P. J., Dennis, J. B., Qualitz, J. E., Machines, Languages and
Computation, Prentice Hall, 1978

[DKFM97) Desharnais, J., Frappier, M., Khedri, R., Mili, A., Integration of se
quential scenarios, in: M. Jazayeri, H. Schauer (eds.), 6th European
Software Engineering Conference / 5th ACM SIGSOFT Symposium
on the Foundations of Software Engineering, Lect. Notes in Compo
Sci., Vol. 1301, Springer, 1997, 310-326

[Dij68] Dijkstra, E. W., Cooperating sequential processes, in: F. Genuys

www.manaraa.com

State Transition Diagrams 165

(ed.), Programming Languages: NATO Advanced Study Institute,
Academic Press, 1968, 43-112

[EHS97] Ellsberger, J., Hogrefe, D., Sarma, A., SDL - Formal Object-Oriented
Language for Communicating Systems, Prentice Hall, 1997

[Fer89] Fernandez, J., An implementation of an efficient algorithm for bisimu
lation equivalence, Science of Computer Programming, 13, 1989, 219-
236

[Har87] Harel, D., Statecharts: A visual formalism for complex systems, Sci
ence of Computer Programming 8, 1987, 231-274

[Har87a] Harel, D., On the formal semantics of statecharts, Proc. 2nd IEEE
Symposium on Logic in Computer Science, Ithaca, NY, 1987, 54-64

[Har88] Hare!, D., On visual formalisms, Communications of the ACM 31(5),
May 1988, 514-530

[HoI91] Holzmann, G. J., Design and Validation of Computer Protocols, Pren
tice Hall, 1991

[HRR92] Hooman, J. J. M., Ramesh, S., De Roever, W.-P., A compositional ax
iomatization of statecharts, Theoretical Computer Science 101, 1992,
289-335

[i-Logix] i-Logix Inc. Andover, MA 01810, USA http://www.ilogix.com/

[JCJ092] Jacobson, I., Christerson, M., Jonsson, P., Overgaard, G., Object
Oriented Software Engineering: A Use Case Driven Approach,
Addison-Wesley, 1992

[Lam94] Lamport, L., The temporal logic of actions, ACM Transactions on
Programming Languages and Systems 16, May 1994, 872-923

[Lam95] Lamport, 1., TLA in pictures, IEEE Transactions on Software Engi
neering 21 (9), September 1995, 768-775

[Mea55] Mealy, G. H., A method for synthesising sequential circuits, Bell Sys
tem Tech. J. 34(5), September 1955, 1045-1079

[MLH86] Mills, H. D., Linger, R. C., Hevner, A. R., Principles of Information
Systems Analysis and Design, Academic Press, 1986

[Moo56] Moore, E. F., Gedanken-experiments on sequential machines, Annals
of Mathematics Studies, Vol. 34, Automata Studies, Princeton Uni
versity Press, Princeton, NJ, 1956, 129-153

[ObjTim] ObjecTime Corporation Limited, Kanata, Ontario, Canada,
http://www.objectime.on.ca/

[Rum91] Rumbaugh, J., Object-Oriented Modeling and Design, Prentice Hall,
1991

www.manaraa.com

166

[SGW94]

[UML97]

[Telelog]

[Verilog]

Jules Desharnais, Marc Frappier, Ali Mili

Selic, B., Gullekson, G., Ward, P. T., Real-Time Object-Oriented
Modeling, John Wiley & Sons, 1994

Rational Software Corporation, Unified Modeling Language for real
time systems design, Santa Clara, CA, USA, 1997, http://www.
rational.com/

Telelogic, Malmo, Sweden, http://www.telelogic.se/

VERILOG, Toulouse CEDEX, France, http://www.verilogusa.com/

www.manaraa.com

CHAPTER 8

PIF
The Process Interchange Format

J. Lee, M. Gruninger, Y. Jin, T. Malone, A. Tate, G. Yost

This document describes the rationales and the specification of the Process Inter
change Format (PIF). PIF is an interchange format designed to help automatically
exchange process descriptions among a wide variety of process tools such as pro
cess modelers, workflow software, flow charting tools, planners, process simulation
systems, and process repositories. These tools interoperate by translating between
their native format and PIF. Then any system will be able to automatically ex
change process descriptions with any other system without having to write transla
tors for each pair of such systems. This document specifies the PIF-CORE 1.2, i.e.
the core set of object types (such as activities, agents, and prerequisite relations)
that can be used to describe the basic elements of any process. The document
also describes a framework for extending the core set of object types to include
additional information needed in specific applications. These extended descriptions
are exchanged in such a way that the common elements are interpretable by any
PIF translator and the additional elements are interpretable by any translator that
knows about the extensions.

1 Introduction

The needs for sharing process descriptions across heterogeneous representa
tions abound. One may need to build a process model, the pieces of which
have to or can come from existing models in multiple representations. One
may want to submit that process model to a variety of tools, such as process
analyzer or simulator, that uses their own representations. One may then
want to reengineer a process model by looking up and plugging in various
alternatives for some of its components from a process library that may use
yet another representation.

The goal of the Process Interchange Format project is to support shar
ing process descriptions through a description format called PIF (Process
Interchange Format) that provides a bridge across different process represen-

www.manaraa.com

168 J. Lee, M. Gruninger, Y. Jin, T. Malone, A. Tate, G. Yost

tations. Tools interoperate by translating between their native format and
PIF.

There are several process representation languages, such as IDEF 0-3
[NIST93a, NIST93b, MME94] and LOTOS [IS089], which could be poten
tially used for the purpose of sharing process descriptions. However, most
of these languages are originally designed to satisfy a specific set of domain
and task needs. PIF differs from them for being a translation language or
an interlingua by design. As discussed in Section 3, this difference yields a
different set of design tradeoffs. Generality is preferred over efficiency. Ex
tensibility is critical as any process representation language is unlikely to ever
completely suit the needs of all applications that make use of business pro
cess descriptions. Therefore, in addition to the PIF format, we have defined
a framework around PIF that accommodates extensions to the standard PIF
description classes. The framework includes a translation scheme called Par
tially Shared Views that attempts to maximize information sharing among
groups that have extended PIF in different ways.

The PIF framework aims to support process translation such that:

• Process descriptions can be automatically translated back and forth
between PIF and other process representations with as little loss of
meaning as possible. If translation cannot be done fully automatically,
the human efforts needed to assist the translation should be minimized.

• If a translator cannot translate part of a PIF process description to its
target format, it should:

- Translate as much of the description as possible (and not, for ex
ample, simply issue an error message and give up)

- Represent any untranslatable parts as such and present them in a
way that lets a person understand the problem and complete the
translation manually if desired

- Preserve any uninterpretable parts so that the translator can add
them back to the process description when it is translated back
into PIF.

These requirements on the translators are very important. We believe that a
completely standardized process description format is premature and unre
alistic at this point. Therefore, as mentioned earlier, we have provided ways
for groups to extend PIF to better meet their individual needs. As a result,
we expect that PIF translators will often encounter process descriptions writ
ten in PIF variants that they can only partially interpret. Translators must
adopt conventions that ensure that items they cannot interpret are avail
able for human inspection and are preserved for later use by other tools that
are able to interpret them. Section 6 describes PIF's Partially Shared Views
translation scheme, which we believe will greatly increase the degree to which
PIF process descriptions can be shared.

www.manaraa.com

PIP 169

In the next section, we provide a brief history behind the PIF project
to illustrate our motivation. Section 3 provides the overview of the PIF
language itself. Section 4 discusses the rationales underlying the major PIF
CORE constructs. The detail specification of the PIF-CORE 1.2 constructs
follow in Section 5. Section 6 discusses the mechanism for extending the
PIF-CORE. Section 7 concludes this document with the discussion of the
directions in which the project is moving.

2 History and Current Status

The PIF project began in October 1993 as an outgrowth of the Process Hand
book project [MCLB93] at MIT and the desire to share process descriptions
among a few groups at MIT, Stanford, the University of Toronto, and Digital
Equipment Corporation. The Process Handbook project at the MIT Center
for Coordination Science aims to create an electronic handbook of process
models, their relations, and their tradeoff's. This handbook is designed to
help process designers analyze a given process and discover innovative alter
natives. The Spark project at Digital Equipment Corporation aims to create
a tool for creating, browsing, and searching libraries of business process mod
els. The Virtual Design Team (VDT) project at Stanford University aims to
model, simulate, and evaluate process and organization alternatives. The
Enterprise Modeling project at the University of Toronto aims to articulate
well-defined representations for processes, time, resources, products, quality,
and organization. These representations support software tools for modeling
various aspects of enterprises in business process reengineering arid enterprise
integration.

In one way or another, these groups were all concerned with process mod
eling and design. Furthermore, they stood to benefit from sharing process
descriptions across the diff'erent representations they used. For example, the
Enterprise Modeling group might model an existing enterprise, use the Pro
cess Handbook to analyze its tradeoff's and explore its alternatives, evaluate
the diff'erent alternatives via VDT simulation, and then finally translate the
chosen alternative back into its own representation for implementation.

Over the past years, through a number of face-to-face, email, and tele-
phone meetings, the PIF Working Group members have:

• Articulated the requirements for PIF

• Specified the core PIF process description classes

• Specified the PIF syntax

• Elaborated the Partially Shared View mechanism for supporting mul
tiple, partially overlapping class hierarchies

• Created and maintained a database of the issues that arose concerning
PIF's design and the rationales for their resolutions

www.manaraa.com

170 J. Lee, M. Gruninger, Y. Jin, T. Malone, A. Tate, G. Yost

• Implemented several translators, each of which translated example pro
cess descriptions (such as a portion of the ISPW-6 Software Change
Process) between PIF and a group's own process representation

• Used the translators to port process descriptions across heterogeneous
representations (between Kappa PC representation and Lotus Notes
representation of process handbook data)

Based on this work, the PIF Document 1.0 was released on December, 1994.
Since then, we have received a number of questions and comments on topics
that range from individual PIF constructs to how certain process descriptions
can be represented in PIF. We have been also assessing the adequacy of the
PIF 1.0 by testing it against more complex process descriptions than before.
AlAI at the University of Edinburgh also joined the PIF Working Group at
this time bringing along their interests in planning,. workflow and enterprise
process modeling. The Edinburgh group is also providing a valuable service
as a liaison between the PIF group and the Workflow Management Coali
tion as well as the AI planning community (in particular the DARPA/Rome
Laboratory Planning Initiative) which has been concerned with the activity
representation issues for a while. The Ontology Group at the Stanford Uni
versity has also joined the PIF Working Group and is sharing the lessons
from its experiences in providing the ontology library and the editor.

The revised structure of PIF reflects the lessons extracted from these
external and internal input. In particular, two points emerged clearly. One
is that the PIF-CORE has to be reduced to the bare minimum to enable
translation among those who cannot agree on anything else. The other point
is the importance of structuring PIF as a set of modules that build on one
another. This way, groups with different expressive needs can share a subset
of the modules, rather than the whole monolithic set of constructs. As a
result, the PIF-CORE has been reduced to the minimum that is necessary
to translate the simplest process descriptions and yet has built-in constructs
for "hanging off" modules that extend the core in various ways.

Recently we have been working with other groups whose aim is also to
share process descriptions though in their own domains. The goal of the
Process Specification Language (PSL) project at NIST is to facilitate process
sharing in the domain of manufacturing. It has finished compiling the list
of requirements that a process specification language should satisfy and is
evaluating the existing process representations with respect to these require
ments. We are working with the PSL group in assessing these requirements
and comparing the different process representations in the hope that the PSL
will be compatible with PIF. The goal of the Workflow Process Description
Language (WPDL) is to be an interlingua for sharing workflow descriptions.
We have compared the WPDL with PIF, identified similarities and differ
ences, and are communicating with them to make both PIF and WPDL
interoperable.

www.manaraa.com

PIF 171

3 PIF Overview

The PIF ontology has grown out of the efforts of the PIF Working Group
to share process descriptions among the group members' various tools. We
have used the following guidelines in developing this hierarchy:

• Generality is preferred over computational efficiency when there is a
tradeoff, for the reason that PIF is an interchange language, not a
programming language designed for efficient execution. Therefore, the
organization of the entity classes is not necessarily well-suited to per
forming any particular task such as workflow management or process
simulation. Instead, our goal has been to define classes that can ex
press a wide variety of processes, and that can be readily translated into
other formats that may be more suitable for a particular application.

• The PIF constructs should be able to express the constructs of some
existing common process representations such as IDEF (SADT) or Petri
Nets.

• PIF should start with the minimal set of classes and then expand only
as it needs to. The minimal set was decided at the first PIF Workshop
(October 1993) by examining those constructs common to some major
existing process representations and to the process representations used
by members of the PIF Working Group.

• Additions to the standard PIF classes could be proposed by anybody,
but the proposal had to be accompanied by concrete examples illustrat
ing the need for the additions. The Working Group decided, through
discussions and votes if necessary, whether to accept the proposal. PIF
allows groups to define local extensions at will (see Section 6), so new
classes or attributes should be added to the standard PIF classes only
if they seem to be of sufficiently general usefulness.

A PIF process description consists of a set of frame definitions, which are
typically contained in a file. Each frame definition refers to an entity instance
and is typed (e.g. ACTIVITY, OBJECT, TIMEPOINT) and they form a
class hierarchy (see Figure 1). A frame definition has a particular set of
attributes defined for it. Each of the attributes describes some aspect of the
entity. For example, a PERFORMS definition has an Actor and an Activity
attribute that specifies who is performing which activity. The instance of a
frame definition has all the attributes of all of its superclasses, in addition
to its own attributes. For example, all the instances of ACTIVITY have the
Name attribute, since ENTITY, which is a superclass of ACTIVITY, has the
Name attribute.

When an attribute of one frame has a value that refers to another frame,
the attribute represents a relationship between the two instances that the

www.manaraa.com

172 l. Lee, M. Gruninger, Y. lin, T. Malone, A. Tate, G. Yost

I ENTITY I
~

~~
ACTIVITY I
~ I DECISION I

OBJECT I
4- I AGENT I

TlME·POINT I

RELATION I
CREATES J
MODIFIES I

PERFORMS I

USES I

I BEFORE I

SUCCESSOR I

ACTIVITY-STATUS I

Figure 1: The PIF class hierarchy

two frames refer to. For example, if the Begin attribute of ACTIVITY-l
takes TIMEPOINT-32 as its value, then the Begin attribute represents a
relationship between the ACTIVITY-l and TIMEPOINT- 32 instances. The
value of a given attribute in a PIF file holds independent of time. Figure 2
depicts the relationships among the PIF classes. Section 5 describes all of
the current PIF classes.

An attribute in a PIF entity can be filled with the following and only the
following PIF expressions: a literal value of a PIF primitive value type or an
expression of a composite value type.

The PIF primitive value types consist of: NUMBER, STRING, and SYM
BOL

• NUMBER: A numeric value. The NUMBER type is subdivided into
INTEGER and FLOAT types.

• STRING: A sequence of characters.

• SYMBOL: Symbols are denoted by character sequences, but have some
what different properties than strings.

www.manaraa.com

PIP

Components

------+. <STRING>

------+. <QUOTEIH.IST>
L--__ NIwno __ --,

1 I SUCCESSOR Constraints ,CopabiI_.:n

~
Actor 1:n

T

00ject -

nMEPOINT

I T-;o""

. I BEFORE

....... <SYMBOL> .

t~
statu. -~L_CR_EA_TE_S_.....J

,--_MOOI_A_ES_~~O~

USES

• <PIF-SENTENCE> +-H

Figure 2: Relationships among PIF classes

CLASS

<VALUE TYPE> --

The PIF composite value types consist of: LIST and PIF-SENTENCE .

• LIST: A list .

173

• PIF-SENTENCE: A logical expression that evaluates to TRUE or FAL
SE.

An object variable is of the form, object-name[.slot-name]* , which refers to
either the object named or the object which is the value of the named slot (
or, if there are more than one slot-names specified, the object which is the
value of the named slot of the object which is the value of the next named
slot, and so on.)

4 Rationales

The goal of PIF is to support maximal sharing of process descriptions across
heterogeneous process representations. To better serve this goal, PIF consists
of not a monolithic set of constructs, but a partially ordered set of modules.
A module can build on other modules in that the constructs in a module
are specializations of the constructs in the other modules. One can adopt
some modules but not others depending on one's expressive needs. Hence, a
module typically contains a set of constructs that are useful for a particular
domain or a type of task. More details of this module structure are discussed
in Section 6.

The PIF -CORE, on the other hand, consists of the minimal set of con
structs necessary to translate simple but non-trivial process descriptions.

www.manaraa.com

174 J. Lee, M. Gruninger, Y. Jin, T. Malone, A. Tate, G. Yost

There is the usual tradeoff between simplicity and expressiveness. The PIF
CORE could have been chosen to contain only the constructs necessary for de
scribing the simplest process descriptions such as a precedence network. Such
a PIF-CORE then would not be able to translate many process descriptions.
On the other hand, the PIF -CORE could have contained constructs sufficient
for expressing the information contained in process descriptions of richer com
plexity. Such a PIF-CORE then would contain many constructs that may
not be needed for many simpler descriptions. The PIF-CORE strikes a bal
ance in this tradeoff by first collecting process descriptions, starting from the
simplest and continuing with more complex until we have reasonably many
of them, and then by looking for a set of constructs that can translate the
process descriptions in this collection. The following describes the rationales
for each of the constructs in the PIF-CORE. The attributes of each of these
constructs are described in Section 5.

In PIF, everything is an ENTITY; that is, every PIF construct is a special
ization of ENTITY. There are four types of ENTITY: ACTIVITY, OBJECT,
TIMEPOINT, and RELATION. These four types are derived from the def
inition of process in PIF: a process is a set of ACTIVITIES that stand in
certain RELATIONS to one another and to OBJECTS over TIMEPOINTS.

The following provides intuitive rationales for each of these four con
structs. Their precise semantics, however, are defined by the relations they
have with other constructs (cf. Section 5).

ACTIVITY represents anything that happens over time. DECISION,
which represent conditional activities, is the only special type of ACTIVITY
that the PIF-CORE recognizes. In particular, the PIF-CORE does not make
any distinction among process, procedure, or event. A TIMEPOINT repre
sents a particular point in time, for example "Oct. 2, 2.32 p.m. 1995" or
"the time at which the notice is received." An OBJECT is intended to rep
resent all the types of entities involved in a process description beyond the
other three primitive ones of ACTIVITY, TIMEPOINT, and RELATION.
AGENT is a special type of OBJECT.

RELATION represents relations among the other constructs. The PIF
CORE offers the following relations: BEFORE, SUCCESSOR, CREATES,
USES, MODIFIES, and PERFORMS.

BEFORE represents a temporal relation between TIMEPOINTS. SUC
CESSOR (Activity-1, Activity-2) is defined to be the relation between AC
TIVITIES where BEFORE (Activity-l.End, Activity-2.Begin) holds. It is
provided as a shorthand for simple activity precedence relations.

CREATES, USES, and MODIFIES represent relations between ACTIV
ITY and OBJECT. In these relations, the object is assumed to be created,
used, modified at some non-determinate timepoint(s) in the duration of the
activity (i.e. between its Begin and its End timepoint inclusively). Hence
the object would have been created, used, or modified by the End timepoint,
but no commitment is made as to when the object is actually created, used,

www.manaraa.com

PIF 175

or modified. PERFORMS represents a relation between OBJECT (normally
an AGENT specialization) and ACTIVITY. In the PERFORMS relation,
the actor is assumed to perform the activity at some non-determinant time
point(s) in the duration of the activity (possibly for the whole duration, but
not necessarily). We understand that there are other possible interpreta
tions of these relations. For example, we might want to specify that a given
actor is the only one who performs the activity during the whole activity
interval. Such a specification, however, will require a PSV extension of the
PIF-CORE (for example, by introducing a relation such as PERFORMS
EXCLUSIVELY, cf. Section 6). SUCCESSOR in PIF may not correspond
exactly to the notions of successor as used in some workflow or enactment
systems because it is common in these systems to bundle into a single re
lationship a mixture of temporal, causal, and decomposition relationships
among activities. PIF provides precise, separate relationships for all three
of these activities-to-activity specifications. For example, the temporal rela
tionship is specified with the BEFORE relation, the causal relation with the
Precondition and Postcondition attributes of ACTIVITY, and the decompo
sition relation with the Component attribute. Its intention is to allow the
exact meaning to be communicated. Hence, one might have to combine some
of these constructs to capture exactly the meaning of SUCCESSOR as used
in ones own system.

The attribute value of a PIF-CORE object holds independent oftime (Le.
no temporal scope is associated with an attribute value in the PIF-CORE).
Any property of an object which can change over time, should be represented
by a RELATION that links the property to a timepoint. An example orone
such RELATION in the PIF-CORE is ACTIVITY-STATUS which is used
to represent the status (e.g. DELAYED, PENDING) of an ACTIVITY at
different times. The ACTIVITY-STATUS is provided in the PIF-CORE be
cause it is the one example of a dynamic property of those objects commonly
used in process modeling and workflow systems and modeled in the PIF
CORE. Other properties of those objects included in the PIF-CORE are, for
the most part, true for all time. As mentioned before, it is possible to extend
the PIF-CORE to express additional temporally scoped properties by intro
ducing additional RELATIONS. It is also possible to add temporally scoped
version of the static attributes already in the PIF -CORE. In this case, any
such static attributes actually specified in a PIF file holds true for all time.

The attribute value of a PIF object can be one of the PIF value types spec
ified above. The PIF primitive value types consist of NUMBER, STRING,
and SYMBOL. The PIF composite value types are LIST and PIF-SEN
TENCE. LIST is used for conveying structured information that is not to
be evaluated by a PIF interpreter, but simply passed along (e.g. as in the
User-Attribute attribute of ENTITY). PIF-SENTENCE is used to specify a
condition that is either true or false, as required, for example, for the Pre
condition and the Postcondition attributes of ACTIVITY.

www.manaraa.com

176 l. Lee, M. Gruninger, Y. lin, T. Malone, A. Tate, G. Yost

PIF-SENTENCE is a logical expression that may include variables, quan
tifiers, and the Boolean operators for expressing conditions or constraints. A
PIF-SENTENCE is used in the Constraint slot of ENTITY, the Precondi
tion and the Postcondition slots of ACTIVITY, and the If slot of DECISION.
A variable in a PIF-SENTENCE takes the following positions in the three
dimensions that define the possible usage. (1) The scope of the variable is
the frame. That is, variables of the same name within a frame definition are
bound to the same object, whereas they are not necessarily so if they occur
in different frames. (2) A variable is assumed to be bound by an implicit
existential quantifier. (3) The constraints on variables in a frame definition
are expressed in the Constraints slot of that frame. These constraints are
local to the frame.

These positions are expected to be extended by some PSV Modules. Some
PSV modules will extend the scope of a variable beyond a single object. Some
will introduce explicit existential and universal quantifiers. Yet others will
allow global constraints to be stated, possibly by providing an object where
such global constraints that hold across all the objects in a PIF file (e.g. All
purchase order must be approved by the finance supervisor before sent out.).

Notable Absence:

We have decided not to include ROLE because a role may be defined wher
ever an attribute is defined. For example, the concept of RESOURCE is a
role defined by the Resource attribute of the USE relation. Any object, we
view, is a resource if it can be USEd by an ACTIVITY. As a consequence,
we have decided not to include ROLE or any construct that represents a role,
such as RESOURCE. ACTOR is not included in PIF because it is another
role-concept, one defined by the Actor attribute of the PERFORMS relation.
Any object, as long as it can fill the Actor attribute, can be viewed as an
ACTOR. Hence we resolved that explicit introduction of the constructs such
as ACTOR or RESOURCE is redundant and may lead to potential confu
sions. We should note, however, that the PIF-CORE provides the construct
AGENT, which is not defined by a role an entity plays but by its inher
ent characteristic, namely its capability (for example, of making intelligent
decisions in various domains).

www.manaraa.com

PIF

5 Alphabetic Class Reference

Activity
Parent Classes: Entity

Attribute
Component
Precondition
Postcondition
Begin
End

Value Type
Activity
PIF-SENTENCE
PIF-SENTENCE
TIMEPOINT
TIMEPOINT

Attribute Descriptions:

Multiple Values Allowed
Yes
No
No
No

o

177

• Component: The sub activities of the activity. For example, if the
activity is "Develop Software", its Component may include: "Design
Software", "Write Code", "Debug Software", and so on. The field is
inherited from ENTITY, but here it is restricted so that its values must
all be ACTIVITY entities.

• Precondition: The conditions that have to be satisfied at the Begin
timepoint of the activity before it can get executed. For example, a
precondition of the activity "Run Software" might state that the ex
ecutable code must be available. Such conditions are . expressed using
PIF -SENTENCES.

• Postcondition: The conditions that are true at the End timepoint of
the activity. For example, a postcondition of the activity "Run Soft
ware" might be that a log file has been updated. Such conditions are
expressed using PIF-SENTENCES.

• Begin: The TIMEPOINT at which the activity begins.

• End: The TIMEPOINT at which the activity ends.

In the PIF-CORE, the condition in the Precondition is to be true before the
Begin timepoint of the ACTIVITY. Similarly, the condition in the Postcondi
tion is to be true after the End timepoint of the ACTIVITY. This requirement
may be relaxed later in PSV modules (cf. Section 6) to allow the precondition
and the postcondition to be stated relative to other time points.

Many preconditions and post conditions can be expressed in PIF with
out using the Precondition and Postcondition attributes of ACTIVITY. For
example, the USE relation between an activity A and an object 0 implies
that one of A's preconditions is that R is available. In general, the Precon
dition and Postcondition attributes of ACTIVITY should only be used to

www.manaraa.com

178 l. Lee, M. Gruninger, Y. lin, T. Malone, A . Tate, G. Yost

express conditions that cannot be expressed any other way in PIF. Doing so
will maximize the degree to which a process description can be shared with
others.

I ACTIVITY-STATUS
Parent Classes: RELATION

Attribute
Activity
Status
When

Value Type
ACTIVITY
SYMBOL
TIMEPOINT

Attribute Descriptions:

Multiple Values Allowed
Yes
Yes

o

• Activity: The activity whose status is being specified.

• Status: The status being specified such as DELAYED and PENDING.

• When: The timepoint at which the status of the activity is being
specified.

AGENT
Parent Classes: OBJECT -+ ENTITY

Attribute
Capability
Component

Value Type
SYMBOL
AGE T

Attribute Descriptions:

Multiple Values Allowed
Yes
Yes

• Capability: Its possible values are SYMBOLS that represent the kinds
of skills the agent is capable of providing. The symbols are supplied by
the source language and simply preserved across translations by PIF.
A PSV Module may introduce a restricted set of symbol values.

An AGENT represents a person, group, or other entity (such as a computer
program) that participates in a process. An AGENT is distinguished from
other ENTITIES by what it is capable of doing or its skills.

www.manaraa.com

PIP

BEFORE
Parent Classes: RELATION -+ ENTITY

Attribute
Preceding
Timepoint
Succeeding
Timepoint

Value Type Multiple Values Allowed
TIMEPOINT 0

TIMEPOINT No

Attribute Descriptions:

179

• Preceding Timepoint: The time point that is before the Succeeding
Timepoint.

• Succeeding Timepoint: The time point that is after the Preceding
Timepoint.

BEFORE is a relation between TIMEPOINTS not between ACTIVITIES.
A shorthand for a common example of the BEFORE relation is available via
the SUCCESSOR relation.

I CREATES
Parent Classes: RELATION -+ ENTITY

Attribute
Activity
Object

Value Type
ACTIVITY
OBJECT

Attribute Descriptions:

Multiple Values Allowed
o

Yes

• Activity: The activity that creates the object. The object is assumed
to be created at some non-determinate timepoint(s) between its Begin
and its End timepoint inclusive.

• Object: The object that the activity creates.

www.manaraa.com

180 J. Lee, M. Groninger, Y. Jin, T. Malone, A. Tate, G. Yost

DECISION
Parent Classes: ACTIVITY -+ ENTITY

Attribute Value Type Multiple Values Allowed
If
Them
Else

PIF-SENTENCE
ACTIVITY
ACTIVITY

Attribute Descriptions:

No
Yes
Yes

• If: The condition being tested to decide which successor relations to
follow. Such conditions are expressed using PIF-SENTENCES.

• Then: The activity to follow if the condition in the If field holds (that
is, if the PIF- SENTENCE in the If field evaluates TRUE).

• Else: The activity to follow if the condition in the If field does not hold
(that is, if the PIF-SENTENCE in the If field evaluates to FALSE).

A DECISION is a special kind of activity that represents conditional branch
ing. If the PIF Sentence in its If attribute is TRUE, the activity specified in
its Then attribute follows. If not, the activity in its Else attribute follows.
If the Else attribute is empty, it means no activity follows the DECISION
activity in the case where the decision condition is false. If more than one
activity in a process is dependent on a decision, then they may be included
in the multiple value then or else attributes. To ease description of a com
plex sub-process which is dependent on the decision, it is possible to describe
a set of sub-activities (and any ordering or other constraints on them) in a
separate process and to include that process itself within the "then" or "else"
attributes.

I ENTITY
Parent Classes: None. ENTITY is the roof of the PIF class hier-
archy

Attribute Value Type Multiple Values Allowed
Name STRING 0

Documentation STRING 0

Component ENTITY Yes
Constraint PIF-SENTENCE 0

User-Attribute LIST 0

www.manaraa.com

PIF 181

Attribute Descriptions:

• Name: The entity's name.

• Documentation: A description of the entity.

• Component: This attribute is used to specify an homogeneous aggre
gate of the type itself. For example, in an AGENT object, this attribute
can be used to specify that the agent is in fact a group of sub-agents. In
an ACTIVITY object, this attribute is used to specify its subactivities
that make up the activity. If one needs to specify a group of objects
of different types, then one can do so by going up to an object of their
common ancestor type and specify them in the Component attribute of
this object. When interpreted as a relation, this relation holds between
the entity and each value, not between the entity and the set of all the
values.

• Constraint: This attribute is used to specify any constraint that
should be true of the other attribute values in the current entity, e.g.
constraints on the variables.

User-Attribute: This attribute is used to store additional ad-hoc attributes
of an entity that are not part of its class definition. For example, a process
modeling application might allow users to specify additional attributes for
AGENT entities that are not included in AGENT's PIF definition - the user
might want to add an attribute recording the AGENT's age, for example.
Such additional attributes can be stored in the User- Attribute attribute,
which all PIF entities inherit from ENTITY. Another common use is in the
Partially Shared Views translation scheme that we propose for interchanging
PIF files (see Section 6). Each value of User-Attribute is a list containing
an attribute name and its value(s). For example, an OBJECT entity might
have (User-Attribute (Color RED GREEN) (Weight 120))

MODIFIES
Parent Classes: RELATION -+ ENTITY

Attribute
Activity
Object

Value Type Multiple Values Allowed
ACTIVITY 0

OBJECT Yes

Attribute Descriptions:

• Activity: The activity that modifies the object. The object is assumed
to be modified at some non-determinate timepoint(s) between its Begin
and its End timepoint inclusive.

• Object: The object that the activity modifies.

www.manaraa.com

182 J. Lee, M. Gruninger, Y. Jin, T. Malone, A . Tate, G. Yost

OBJECT
Parent Classes: ENTITY

Attribute Descriptions: No Attributes.

An OBJECT is an entity that can be used, created, modified, or used in
other relationships to an activity. This includes people (represented by the
AGENT subclass in PIF), physical materials, time, and so forth. The PIF
Working Group has discussed adding OBJECT attributes such as Consum
able, Sharable and so forth, but so far no decision has been made on what
attributes are appropriate.

I PERFORMS
Parent Classes: RELATIO --t ENTITY

Attribute
Actor
Activity

Value Type
OBJECT
ACTIVITY

Attribute Descriptions:

Multiple Values Allowed
Yes
Yes

• Actor: The object that performs the activity.

• Activity: The activity that is performed. The actor is assumed to
perform the activity at some non-determinate timepoint(s) between its
Begin and its End timepoint inclusive.

RELATION
Parent Classes: ENTITY

Attribute Descriptions: No Attributes.

RELATION entities have no attributes of their own. PIF uses it as an ab
stract parent class for more specific relation classes such as USES and PER
FORMS.

www.manaraa.com

PIF 183

SUCCESSOR
Parent Classes: RELATION -t ENTITY

Attribute
Preceding-Activity
Succeeding-Activity

Value Type
ACTIVITY
ACTIVITY

Multiple Values Allowed
o

Yes

Attribute Descriptions:

• Preceding-Activity: The preceding activity.

• Succeeding-Activity: The succeeding activity.

SUCCESSOR with the Preceding-Activity ACTIVITY-l and the Succeeding
Activity ACTIVITY-2 is exactly the same as BEFORE with Preceding
Timepoint TP-l and Succeeding-Timepoint TP-2, where TP-l is the Begin
timepoint of ACTIVITY-2 and TP- 2 is the End timepoint of ACTIVITY-I.
That is, the SUCCESSOR relation is true if the ACTIVITY-l ends before
the ACTIVITY-2 begins.

I TIMEPOINT
Parent Classes: ENTITY

Attribute Descriptions: No Attributes.

TIMEPOINT represents a point in time. In PIF -CORE, it is used, for ex
ample, to specify the Begin and End times of an Activity or the Preceding
and Succeeding time points of the BEFORE relation.

I USES
Parent Classes: RELATION -t ENTITY

Attribute Value Type Multiple Values Allowed
Activity
Object

ACTIVITY
OBJECT

Attribute Descriptions:

o
Yes

• Activity: The activity that uses the object from its Begin timepoint
to its End timepoint. The USES relation is true from the Begin to
the End timepoint of the activity. The object is assumed to be used
at some non-determinate timepoint(s) between its Begin and its End
timepoint inclusive.

• Object: The object that the activity uses.

www.manaraa.com

184 J. Lee, M. Gruninger, Y. Jin, T. Malone, A. Tate, G. Yost

6 Extending PIF

PIF provides a common language through which different process represen
tations can be translated. Between two process representations that support
translations into PIF, one can be translated into a PIF description, which can
then be translated into the other representation, thus reducing the number
of required translators from n * (n-1) to n. However, because there· will always
be representational needs local to individual groups, there must also be a
way to allow local extensions to the description classes while supporting as
much sharing as possible among local extensions. The Partially Shared Views
(PSV) scheme has been developed for the purpose [LM90]. PSV integrates
different ways of translating between groups using different class hierarchies
(e.g. pairwise mapping, translation via external common language, transla
tion via internal common language) so as to exploit the benefits of each when
most appropriate.

A PSV Module is a declaration of PIF entities which specialize other
entities in the PIF - CORE or other PSV modules on which it builds. The class
definitions in a PSV Module cannot delete or alter the existing definitions
but can only add to them. Examples of PSV Modules are given at the end
of this section. A group of users may adopt one or more PSV Modules as
necessary for its task.

A group using a PSV module translates a PIF object X into their native
format as follows:

1. If X's class (call it C) is known to the group and the group has de
veloped a method that translates objects of class C into their native
format, then apply that translation method. C is known to the group
if either C is defined in one of the PSV Modules that the group has
adopted or the group has set up beforehand a translation rule between
C and a type defined in one of the PSV Modules adopted.

2. Otherwise, translate X as if it were an object of the nearest parent
class of C for which (1) applies (its parent class in the most specific
PSV Module that the group and the sender group both share, i.e. have
adopted).

This translation scheme allows groups to share information to some degree
even if they do not support identical class hierarchies. For examples, suppose
that Group A supports only the standard PIF AGENT class, and that Group
B in addition supports an EMPLOYEE subclass. When Group A receives
a process description in Group B's variation on PIF, they can still translate
any EMPLOYEE objects in the description as if they were AGENT objects.
What happens to any information that is in an EMPLOYEE object that is not
in a generic AGENT object? That will vary according to the sophistication of
the translator and the expressive power of the target process representation.

www.manaraa.com

PIP 185

However, the translator will preserve the additional information so that it
can be viewed by users and reproduced if it is later translated back into PIF.

For example, suppose EMPLOYEE has a "Medical-plan" attribute, which
is not part of the AGENT object in the PIF-CORE. Then Group A's trans
lator would

• Translate any Medical-plan attributes into a form that the user could
view in the target system (even if it only as a textual comment) AND

• When the information is re-translated into PIF in the future (from
Group A's native format), it is emitted as an EMPLOYEE object with
the same value for the Medical-plan attribute (and not simply as an
AGENT object with no Medical-plan attribute). MIT researchers are
currently investigating this general problem of preserving as much in
formation as possible through "round trips" from one representation to
another and back [Cha95].

Translators that can follow these conventions will minimize information loss
when processes are translated back and forth between different tools. The
details ofPSV can be found in [LM90]. In the current version ofPIF, each PIF
file begins with a declaration of the class hierarchy for the objects described
in the file. PSV uses this class hierarchy to translate objects of types that
are unknown to a translator. To eliminate the need for PIF translators to
do any other inheritance operations, however, all PIF objects should contain
all of their attributes and values. For instance, even if the value of a given
attribute is inherited without change from a parent, the attribute and value
are repeated in the child.

As the number of PSV modules grows large, we need a mechanism for
registering and coordinating them so as to prevent any potential conflict
such as naming conflict. Although the exact mechanism is yet to be worked
out, we are envisioning a scenario like the following. The user who needs
to use PIF would first consult the indexed library of PSV modules, which
documents briefly the contents of each of the modules and the information
about the other modules it presupposes. If an existing set of modules does
not serve the users purpose in hand and a new PSV module has to be created,
then the information about the new module and its relation to other modules
is sent to a PSV registration server, which then assigns to it a globally unique
identifier and updates the indexed library. We foresee many other issues to
arise such as whether any proposed PSV module should be accepted, if not
who decides, whether to distinguish an ad-hoc module designed for temporary
quick translation between two local parties from a well- designed module
intended for global use, and so on. However, rather than addressing these
issues in this document, we will address them in a separate document as we
gain more experience with PSV modules.

To date, two PSV Modules· have been specified: Temporal-Relation-l and
IDEF-O Modules. The Temporal-Relation-l Module extends the core PIF by

www.manaraa.com

186 J. Lee, M. Gruninger, Y. Jin, T. Malone, A. Tate, G. Yost

adding all possible temporal relations that can hold between two activities (cf.
Figure 3). The IDEF-O Module adds the constructs necessary for translating
between IDEF-O descriptions and PIF. IDEF-O is a functional decomposition
model, which however has been historically used widely as a process model
description language. IDEF-O has been used in various ways with no single
well-defined semantics. Hence, the IDEF-O PSV Module supports transla
tion between PIF and one particular version of IDEF-O. It introduces two
additional relations, USES-AS-RESOURCE and USES-AS- CONTROL, as
specializations of the USES relation. They are meant to capture the Control
and Mechanism input of IDEF-O. The Input and Output relations of IDEF
o may be translated into PIF by using the Precondition and Postcondition
attribute of ACTIVITY. The mapping between IDEF and PIF is shown in
Figure 4. These modules have not been officially registered. They are pre
sented here only to provide examples of PSV modules. We are soliciting
further inputs before we register them.

Meets (]

Overtaps)

Conlains

Co-Begins [)

Co-Ends

Coincides []

Figure 3: Possible Temporal Relations between Two Activities

7 Future Directions

Following the release of PIF version 1.2, PIF developments are expected to
follow the following directions .

• We plan to coordinate further development of PIF with other knowl
edge sharing projects so as to produce compatibility, if not convergence,
among the meta-models produced. We will continue working closely
with the NIST PSL Group in order to make PSL and PIF compatible.
We also plan to work with the International Workflow Management

www.manaraa.com

IDEF.IJ

x
I

COOUol

Input

W .crrvrrY.,

Mec~anism

y

PIP

Ouput

Z

PIF

ACnVITY
Precondition: W
Postconditi on: Z
; An input will be represented as a
; PIF sentence specifying the
; condition that the input exist.

USES-AS-CONTROL
Activity: ACnVITY-1
Object X
;Both slots inhented from USES

USES-AS-RESOURCE
Activity: ACnVITY-1
Object Y
;Both slots inhented from USES

Figure 4: Mapping between IDEF-O and PIF Constructs

187

Coalition (http://www.aiai.ed.ac.uk/WfMC). whose goal is to produce
interoperability among workflow applications. We have been also talk
ing to the people in the Knowledge Sharing Initiatives [NFFGPSS91],
which has produced KIF (Knowledge Interchange Format) described
earlier, tools and protocols for sharing knowledge bases, and Web-based
ontology libraries among other things. We plan to intensify these co
ordination efforts through more structured and active forms such as
workshops and regular meetings.

• We plan to elaborate on the PIF extension mechanism. We need to dis
cuss and work out the details on such issues as Who can propose and
accept PSV modules in which domain and How the modules should be
named, registered, organized, and accessed. We also need to carefully
layout the space of PSV modules by identifying an initial set of gener
ally useful ones extending the PIF-CORE. Again, this work will require
close interactions with the other knowledge sharing groups as well as
the experts in various domains. We hope to pursue this objective as a
part of pursuing the first objective of coordination with other groups .

• In order to use PIF to share process descriptions automatically, we need
a PIF - translator for each of the local process representations involved.
For example, each of the groups represented in the PIF Working Group
built a translator for translating between PIF 1.0 and its own repre
sentation. Building PIF -translators are ultimately the responsibility
of individual groups who want to use PIF. However, we would like to
provide a toolkit that will help future groups build PIF-translators.

www.manaraa.com

188 l. Lee, M. Gruninger, Y. lin, T. Malone, A. Tate, G. Yost

Acknowledgments: The PIF Working Group's activities are supported by DARPA,
NSF, Corporate Sponsors of the MIT Center for Coordination Science, sponsors and
organizations of the PIF Working Group members. This article is a revised ver
sion of Lee, J. et al (1998) "The Process Interchange Format and Framework" in
Knowledge Engineering Review 13 (1), pp. 91-122.

References

[Cha95]

[GF92]

[Gru93]

[IS089]

[LM90]

[MCLB93]

[MME94]

[NIST93a]

[NIST93b]

Chan, F. Y., The Round 'frip Problem: A Solution for the Process
Handbook, unpublished Master's Thesis, MIT Dept. of Electrical
Engineering and Computer Science, May 1995

Genesereth, M., Fikes, F., Knowledge Interchange Format v. 3
Reference Manual, available as a postscript file via anonymous
ftp from www-ksl.stanford.edu:/pub/knowledge-sharing/papers/
kif.ps, 1992

Gruber, T., Ontolingua: A 'franslation Approach to Portable
Ontology Specifications, Knowledge Acquisition 5(2), 1993, 199-
200, available via anonymous ftp from www-ksl.stanford.edu:/pub/
knowledge-sharing/papers / ongolingua-intro. ps

International Standard Organization Information processing sys
tems - Open Systems Interconnection - LOTOS - A formal de
scription technique based on the temporal ordering of observational
behaviour, ISO-8807, 1989

Lee, J., Malone, T., Partially Shared Views: A Scheme for Commu
nicating between Groups Using Different Type Hierarchies, ACM
'fransactions on Information Systems 8(1), 1990, 1-26

Malone, T., Crowston, K., Lee, J., Pentland, B., Tools for Inventing
Organizations: Toward a Handbook of Organizational Processes,
Proceedings of the 2nd IEEE Workshop on Enabling Technologies
Infrastructure for Collaborative, IEEE Computer Society Press,
1993

Menzel, C., Mayer, R., Edwards, D., IDEF3 Process Descriptions
and Their Semantics, in: A. Kusiak, C. Dagli (eds.), Intelligent
Systems in Design and Manufacturing, New York, ASME Press,
1994

National Institute of Standards and Technology Integration Defi
nition for Function Modeling (IDEFO), Federal Information Pro
cessing Standards Publication 183, Computer Systems Laboratory,
1993

National Institute of Standards and Technology Integration Defi-

www.manaraa.com

PIF 189

nit ion for Function Modeling (IDEF1X), Federal Information Pro
cessing Standards Publication 184, Computer Systems Laboratory,
1993

[NFFGPSS91] Neches, R., Fikes, R., Finin, T., Gruber, T., Patil, R., Senator, T.,
Swartout, W. R., Enabling Technology for Knowledge Sharing, AI
Magazine 12(3), 1991, 36-56

[Ste90] Steele, G., Common Lisp: The Language, Second edition, Digital
Press, 1990

[Tat95] Tate, A., Characterizing Plans as a Set of Constraints - the <I
N-OVA> Model - a Framework for Comparative Analysis, ACM
SIGART Bulletin, Special Issue on: Evaluation of Plans, Planners,
and Planning Agents, Vol. 6 No.1, January 1995, available as a
postscript file via ftp:/ /ftp.aiai.ed.ac.uk/pub/documents/1995/95-
sigart-inova. ps

www.manaraa.com

CHAPTER 9

GPN
Generalised Process Networks

Gunter Schmidt

Business process management is the task to accomplish work in organisations such
that processes are carried out in some form of "optimal" way. Two important
tasks of business process management are planning and scheduling. Planning is
concerned with structuring the processes i.e. determining what needs to be car
ried out and in what sequence to achieve the objective of the process. Scheduling
is concerned with assigning limited resources over time to competing activities of
business processes. A modelling language is presented for the purposes of planning
and scheduling in support of business process management.

1 Introduction

Modelling languages are required for building models in various application
areas. We shall focus on the management of business processes which require
the modelling of time-based activities for planning and scheduling purposes.
A business process is a stepwise procedure for transforming some input into a
desired output while consuming or otherwise utilising resources. Some generic
examples are: "Product Development", "Procurement", or "Customer Order
Fulfilment"; some more special examples would be "Claims Processing" in
insurance companies or "Loan Processing" in banks. The output of a business
process should always be some kind of achievement (good or service) which is
required by some customer. The customer might be either inside or outside
the organisation where the process is carried out [Sch97].

Two major tasks of business process management are planning and schedul
ing. Planning is concerned with determining the structures of processes be
fore they are carried out the first time. Scheduling in turn is concerned with
assigning resources over time to competing processes. Both planning and
scheduling focus on dependencies among transformations within one process
or between different processes. Malone and Crowston [MC94] formulated

www.manaraa.com

192 Gunter Schmidt

the need to merge the paradigms of business process planning and busi
ness process scheduling concerning the management of dependencies among
transformations. The reason is not only to increase the potential of applying
results from planning and scheduling theory to the management of business
processes but also to consider the relevance of problems arising from business
process management for a theoretical analysis within this area.

Planning and scheduling require a specialised model of the business pro
cess. To build the required process model we propose Generalised Process
Networks (GPN) [Sch96], a graphical language related to CPM type of net
works [SW89]. We will show that GPN are expressive enough to formulate
problems related to planning and scheduling of business processes within the
same model. Doing this we use a semi-formal kind of presentation of the
syntax and the semantics of GPN.

We start with a short discussion of business processes. Then we intro
duce a framework for systems modelling to define requirements for business
process models. Based on this we describe the GPN language and discuss its
application to business process planning and scheduling. Finally, we use an
example to demonstrate the modelling capabilities of the approach.

2 What is a Business Process?

A business process is a stepwise procedure for transforming some given input
into some desired output. The transformation is consuming or using re
sources. A business process has some form of outcome, i.e. goods or services
produced for a customer or customers either outside or inside the enterprise.
There are two usual meanings attached to the term "business process"; a
business process may mean a process type or a process instance.

The process type can be described by defining the general structure of a
process; the process instance is a real process following the rules and structure
of a given process type. A process type can be interpreted as a pattern; the
behaviour of a corresponding instance matches with the pattern. A process
type might be a pattern called "Product Development" , and the correspond
ing instance could be "Development of Product X" carried out according to
the pattern of "Product Development". In the sequel a process instance will
also be referred to as a job.

The process type is defined by its input and output, functions to be
performed, and rules of synchronisation. The process input and output are
related to tangible and intangible achievements. For example the major shop
floor functions in production have as input different kinds of raw materials
which are transformed into various types of output called processed material;
office functions are mainly transforming data or information into new data
or new information. In general input and output will consist of material and
information simultaneously.

A function represents the transformation of some input into some out-

www.manaraa.com

GPN 193

put. Functions are related through precedence relations which constrain the
possible ways a process can be executed. E.g. a precedence relation requires
synchronisation if the output of a predecessor function is part of the input
of the successor function. Before a function can be executed certain pre
conditions have to be fulfilled and after a function has been executed certain
post-conditions are fulfilled.

Starting and ending a function is caused by events. In general an event
represents a point in time when certain conditions come about, i.e. the condi
tions hold from that time on until the next event occurs. Conditions related
to events are described by values of attributes characterising the situation
related to the occurrence of an event.

These event values are compared to pre-conditions and post-conditions of
functions. Before carrying out some function its pre-conditions must match
with the conditions related to its beginning event and after carrying out
a function the conditions related to its ending event must match with the
post-conditions of the function. Synchronisation means that there must be
some order in which functions might occur over time; in its simplest form a
predecessor-successor relationship has to be defined.

To fully determine a process type a number of variables related to the
input and output of functions need to be fixed. The input defines the producer
who is responsible for carrying out a function, the required resources, and the
required data; the output defines the product generated by a function, the
customer of the product, and the data available after a function is carried out.
Once a process type is defined its instances can be created. A process instance
is performed according to the definition of the corresponding process type.
The input, output, functions, and synchronisation of a process instance relate
to some real job which has to be carried out. The input must be available,
the output must be required. Functions that make up a process type have to
be instantiated. A function instance is called task. It is created at a point in
time as a result of some event and is executed during a finite time interval.
To ensure task execution scheduling decisions need to be taken considering
the synchronisation and the resource allocation constraints as defined by the
process type and resource availability.

Scheduling process instances means to allocate all actual or predicted
instances of different process types to resources over time. The process type
represents constraints for the scheduling decision [BEPSW96]. In terms of
scheduling theory an instance of a business process is a job which consists of
a set of precedence constrained tasks. Additional attributes to tasks and jobs
can be assigned [Sch96b]. Questions to be answered for process scheduling
are: which task of which job should be executed by which resource and at
what time. Typically, performance measures for business process instances
are time-based and relate to flow time or completion time of jobs; scheduling
constraints are related to due dates or deadlines.

www.manaraa.com

194 Gunter Schmidt

3 Views to be Modelled

Modelling is a major component in planning and scheduling of business pro
cesses. A framework for system modelling is given by an architecture. An
architecture shows the requirements for building models and defines the nec
essary views on a system. Many proposals of architectures have been devel
oped and evaluated with the objective to find a generic enterprise reference
architecture [BN96). An architecture which fits in such a framework is LISA
[Sch96a). LISA differs between four views on models:

1. the granularity of the model,

2. the elements of the model and their relationships,

3. the life cycle phase of the model, and

4. the purpose of modelling.

According to granularity models for process types and for process instances
have to be considered. Concerning the elements and their relationships mod
els of business processes should represent the inputs (data, resources), the
outputs (data, products), the organisational environment (producer, cus
tomer), the functions, and the synchronisation (events, conditions, depen
dencies). According to life cycle phase models are needed for analysis, de
sign, and implementation. Finally, concerning the purpose of modelling we
need models for the problem description and for the problem solution. The
problem description states the objectives and constraints and the problem
solution is a proposal how to meet them. Figure 1 shows the different views
to be represented by business process models in the framework of LISA.

Life Cycle

Implementation
- ~

Design
G Analysis
f

a P
11 Process

11
Problem

u Type Business Representation f

I P
a Process Processes Problem 0

f
Instance Solution s

i e
t
y Input

Function
~ -

Synchronisation

Output

Elements

Figure 1: Views on business processes defined by LISA

www.manaraa.com

GPN 195

The views thus identified need to be represented by an appropriate mod
elling language. First we concentrate on the views concerning the purpose
of modelling. We will show that GPN supports the formulation of planning
and scheduling models suited both for the problem description and for the
problem solution.

4 Generalised Process Networks

There exist many modelling languages to describe business processes. Promi
nent examples can be found in this volume. Most of these languages have
been developed for planning purposes with a focus on the problem descrip
tion. Models suited for scheduling purposes in particular for optimisation
require. a representation which is suited for combinatorial problem solving.
Existing modelling languages do not support process·description which would
be suitable for the modelling of the combinatorial structure of the problem,
and therefore they are not well suited for the task of scheduling business
processes [CK092]. For this reason GPN was developed.

The modelling language has to fulfil two basic requirements:

• Completeness and consistency. All relevant views of a system must
be covered and the various view definitions must be defined in a seman
tically consistent way,

• Understandability. The syntax and semantics must be easy to un
derstand and easy to use by the target audience.

The relevant system views for business processes are defined in LISA:

• Life Cycle. It is not useful to have only one monolithic modelling lan
guage covering all phases of the life cycle. Every phase requires different
details to be represented, and different expertise which is best reflected
by the selected syntax and associated semantics of the language. GPN
is designed for the analysis phase.

• Granularity. There are two levels of granularity, i.e. the type of a
process and its instances. As these two levels are very much interrelated
the modelling language should cover both. GPN models both process
types and process instances.

• Elements. The inputs, outputs, functions, and synchronisation needs
of business processes are modelled. GPN considers all business process
elements which are required for planning and scheduling.

• Purpose. Most business process models are of descriptive nature and
there is no link from these to building constructive models for prob
lem solving. Descriptive models help to answer questions like "what

www.manaraa.com

196 Gunter Schmidt

happens if ... ?". In contrast, the purpose of constructive models is to
answer the question "what has to happen so that ... ?". Descriptive
models are mainly used to get an understanding of a problem; the do
main of constructive models is more related to (analytical) problem
solving. While using GPN a common model for process planning and
process scheduling can be formulated which is accessible by descriptive
and constructive techniques [Sch96a].

We shall differentiate between a model for a process type (used for planning)
and a model for a process instance (used for scheduling), i.e. descriptive
modelling is used to represent process types and constructive modelling is
used to represent process instances. However, both models are described
using one language. The basic syntactical elements of GPN are nodes, arcs,
and labels assigned to nodes and arcs (see Figure 2).

Nodes -------+~ Arcs

x Y Z Label

Input Part Output Part

Figure 2: Basic elements of GPN

The semantics of GPN are defined in six layers. The first layer defines the
meaning of the basic elements, the second layer is dedicated to the functional
specifications, the third to synchronisation aspects representing relationships
between functions, the fourth to input and output data, the fifth to required
resources and generated products, and the sixth layer describes the customer
producer relationship as related to a function. These semantic layers are
shown in Figure 3.

Arcs represent functions. Connected to each function is a number of pre
conditions and a number of post-conditions. The pre-conditions must be
satisfied for the function to be carried out; post-conditions are satisfied as a
result of performing the function.

Nodes represent events defining constraints for synchronisation of func
tions. An event separating two functions represents the constraint that the
two functions cannot be carried out in parallel but only in a certain sequence.
Functions which have no separating event can be performed in parallel. The
occurrence of an event is a necessary condition to perform a function. Each
event is described by a value list defining the environmental conditions repre
sented by the event. The occurrence of an event is also a sufficient condition
for performing a function if its value list meets the pre-conditions of the func
tion adjacent to this event. There are two events connected to each function;
one represents its start and the other one its end. . Figure 4 is a graphical
representation of a function (iJ) with its beginning and ending events i and

www.manaraa.com

GPN 197

Producer and Customer

Resources and Products

Data

Synchronisation

Functions

Basic Elements

Figure 3: Semantic layers of GPN

j, pre- and post-conditions and the value lists of the input and output parts
of the associated events.

j

Value List (i) Value List (j)

Figure 4: First three layers of GPN

Additional labels may be assigned to the arcs as shown in Figure 5.

• Producer-Customer label: The producer is responsible for carrying
out some function and the customer needs the results from this function.
The inputs of the function are transformed under the responsibility
of the producers, and the output of the function is consumed by the
customers.

• Resource-Product label: Resources are the physical inputs of the
function, products are its physical outputs (resources required, products
generated).

• Data-Data label: Input data represent the information required for
performing a function and output data represent the information avail
able after performing it (data needed, data generated).

www.manaraa.com

198 Gunter Schmidt

Producer Customer

Resources Required Products Generated

~
Data Needed Data Created

~(, I Function (i, j) I

~I
I I Ir~

Pre-condition I Post-condition

Value List (i) I I Value List (j)

Figure 5: Labelling nodes and arcs of GPN

Nodes represent the dependencies in processing functions. We differentiate
between six possible dependencies: three for beginning events and three for
ending events (see Figure 6).

begin

end

AND OR XOR

Figure 6: Beginning and ending events

• begin-AND: all functions triggered by this event have to be processed
(all pre-conditions of all functions must be fulfilled by the value list of
the triggering event),

• begin-OR: at least one function triggered by this event has to be
processed (at least the pre-conditions of one function must be fulfilled
by the value list of the triggering event),

• begin-XOR: one and only one function triggered by this event has to

www.manaraa.com

GPN 199

be processed (the pre-conditions of one and only one function must be
fulfilled by the value list of the triggering event),

• end-AND: this event occurs only if all functions ending with this event
have been processed (all post-conditions of all functions must be fulfilled
by the value list of the ending event),

• end-OR: this event occurs if at least one function ending with this
event· has been processed (at least the post-condition of one function
must be fulfilled by the value list of the ending event),

• end-XOR: this event occurs if one and only one function ending with
this event has been processed (the post-condition of one and only one
function must be fulfilled by the value list of the ending event).

We shall now discuss how GPN can be used to model process types and
process instances for planning and scheduling purposes.

4.1 Process Types

When building a model for describing process types we represent the process
structure on a level where all attributes are defined but their values are
not given. To represent a specific process type in some application domain
all nodes, arcs and all labels will refer to objects or object types of this
application, e.g.

• a producer and a customer might be two distinct organisational units
of an enterprise,

• resources might be specific machines or employees with certain qualifi
cations as well as material or incoming products to be processed,

• products might be types of goods or services,

• business functions represent specific activities for the transformations
of material and information,

• the value lists of the events, all pre- and post-conditions of the functions,
and all input and output data are specific to the application domain.

An example of a process type represented as a GPN schema is shown in Figure
7. The function "Generate Purchase Order" can be interpreted as an activ
ity of a procurement process. Pre-conditions represent the assumption that
there must be some "Budget Available" for purchasing. The post-condition
"Ready for Ordering" which should be fulfilled after the function "Generate
Purchase Order" is processed. The meaning is that the purchase order is
ready for sending out. Both conditions match with some values of the list of
the beginning and the ending events. Data needed for preparing a purchase

www.manaraa.com

200 Gunter Schmidt

order are the "Vendor" (address of vendor) and the "Items" (list of items)
to be purchased; data created are all purchase order related: "Total Sum"
or "Tax" (to be paid). Required resources might be a "Secretary" and a
"Computer"; the product generated is a "Purchase Order Document". The
manufacturing department "MD" (the customer) asks the purchasing de
partment "PD" (the producer) to process the function "Generate Purchase
Order".

PD MD

Secretary, Computer Purchase Order Doc

Vendor, Items Total Sum, Tax

h ~r. I Generate Purchase Order I

D I I I'~ l Budget Available
I

Ready for Ordering

Demand Exists,
Order Ready,

Demand Exists,
Budget Available Budget Available

Figure 1: An example for process planning

4.2 Process Instances

In the planning phase the required attributes are defined; their values are
determined once an instance of a business process is known. For example
the data for "Vendor" or "Items" might be "Vendor ABC" and "Item 123".
The emphasis of models for process instances is to find answers to schedul
ing questions, such as timing and resource allocation, taking into account
competing process instances (jobs).

On an instance level a GPN will have detailed labels describing individual
jobs, and there will be as many arcs (tasks) and nodes (events) as there are
instances of the process. Events will be labelled by the value list describ
ing the actual environmental situation which the event is representing for a
particular process instance.

Correspondingly, the labels for the tasks refer to operational aspects es
sential for scheduling the process instances, such as processing times and
actual required resources. Due to the competition for resources between jobs
not all events can occur simultaneously. If two tasks require the same re
source which cannot be shared only one of those tasks can proceed, i.e. the

www.manaraa.com

GPN 201

two tasks cannot be processed in parallel, i.e. neither the two beginning
events nor the two ending events can occur at the same time. In case two
or more tasks cannot be processed simultaneously, a hyperedge is introduced
between the beginning events of the corresponding tasks. A hyperedge is an
arc connecting events which cannot occur simultaneously but have to occur
in some sequence (e.g., to be determined by the scheduler). In Figure 8 there
are four events which are connected by a set of five edges showing five pairs
of events which may not happen simultaneously and the corresponding hy
peredge consists of nodes 1, 2, 3, and 4 connected by the five edges (1,2),
(1,3), (1,4), (2,3) and (2,4).

Figure 8: Nodes and edges forming hyperedges

In case of two events the hyperedge consists of one edge and two nodes
only; if there are more than two events which are not allowed to occur si
multaneously the hyperedge consists of all events and all edges connecting all
pairs. Tasks associated with events representing nodes of a hyperedge create
conflicts concerning the usage of resources. The scheduling decision has to
resolve these conflicts such that a resource-feasible schedule can be generated
(compare [Sch89] and [EGS97]).

A GPN schema representing the instance level is shown in Figure 9. There
are two instances of the process type "Generate Purchase Order" which are
"Generate Purchase Order 1" and "Generate Purchase Order 2"; both tasks
have to be performed by the same resource, the employee "Smith". The
producer and the customer are the same for both jobs. In order to resolve
resource competition for the employee we have to introduce a hyperedge con
sisting of a single edge between the two beginning events triggering "Generate
Purchase Order 1" and "Generate Purchase Order 2". The edges between the
events represent the situation that there exists a resource conflict between
the two tasks and this has to be resolved by a scheduling decision.

The introduced edges represent the combinatorial structure of the schedul
ing problem on the instance level. To solve the problem all conflicting events
have to be put in some sequence such that a resource-feasible schedule can
be constructed. Algorithms to solve this kind of problem are given in [ES93].

www.manaraa.com

202

(
\

/
I

/

\
\

"

1\
LJ

\
LJ

Gunter Schmidt

PDOll MD012

Smith Order 1

Generate Purchase I
Order 1 I

I Generate Purchase I
I Order 2 I

Smith Order 2

PDOll MD012

Figure 9: Edges representing a scheduling problem

5 Case Study

(
~~

.r
~

We shall now demonstrate how GPN can be used for integrated modelling of
a business process on the planning and the scheduling levels. The example
problem is related to procurement. This process deals with purchasing goods
and paying corresponding bills. Let us start to explain how to build a model
on the planning level considering the following setting.

If the manufacturing department (MD) of a company is running out of
safety stock for some material it is asking the purchasing department (PD)
to order an appropriate amount of items. PD fills in a purchase order and
transmits it by mail or fax to the vendor; a copy of the purchase order is
passed to the accounts payable department (APD). The vendor is sending
the goods together with the receiving document to the ordering company;
with separate mail the invoice is also sent.

Once the invoice arrives PD compares it with the purchase order and
the goods sent via the receiving document. The documents are checked for
completeness and for correctness. If the delivery is approved APD will pay
the bill; if not PD complains to the vendor. Invoices for purchased goods
come in regularly and have to be processed appropriately.

This process is shown in Figure 10. To be precise there are two processes
shown which belong to two different companies. Arcs leading from left to
right represent the functions of the purchaser's process and arcs leading from
the top to the bottom represent functions of the vendor's process. Each

www.manaraa.com

GPN 203

function mentioned above is represented by an arc. The purchasing order
can be sent either by fax or by mail. This is represented by the two functions
"Fax Order" and "Mail Order". Once the order is confirmed by the vendor
a copy of the order is also sent to APD represented by the function "Send
Copy". If the ordered goods and the corresponding invoice have arrived the
function "Check Invoice" can be carried out. Depending on the outcome of
the checking procedure the functions "Pay" or "Complain" are performed.
In case there are complains only about part of the delivery both functions
are carried out.

(]

Figure 10: Procurement process

In Figure 10 the labels for most of the layers were omitted. In order to
give a small example how labelling is done we concentrate on the function
"Check Invoice" using all six GPN layers. The result is shown in Figure
11. We assume that PD has the responsibility for this function and MD and
APD need the results. The resource needed is an auditor who is generating
a report. Data needed for the "Check Invoice" function are the order and
the invoice data; the function creates "Annotated Invoice" data. Before the
function can be carried out the ordered goods and the invoice should have
arrived; after carrying out the function the condition holds that the invoice
has been checked. The remaining parts of the process have to be labelled in
an analogous way.

Let us assume that the process structure which is defined on the planning
level is agreed on. We now investigate the scheduling decisions considering
various instances of the procurement process. We want to assume that with
each individual invoice discount chances and penalty risks arise. A discount
applies if the invoice is paid early enough and a penalty is due if the payment
is overdue.

Now we show how GPN can be used to model this business process for
scheduling purposes. Let us focus again on the function "Check Invoice" .
The corresponding tasks require some processing time related to the work
required for checking a current invoice. Moreover, for each instance two dates
are important. One relates to the time when the invoice has to be paid in

www.manaraa.com

204 Gunter Schmidt

PD MD/ APD

Auditor Report

1,\
Order, Invoice Annotated Invoice

~r: I Check Invoice I

~ I I ~
Goods and Invoice Invoice

Arrived Checked

Value List (i) I I Value List (j)

Figure 11: GPN representation of a selected function

order to receive some discount, the other relates to the time after which some
additional penalty has to be paid. For the ease of the discussion we assume
that discount and penalty rates are the same. Let us furthermore assume
that there is only one auditor available to perform these tasks and that there
are three invoices waiting to be processed. It is obvious that the sequence of
processing is of major influence on the time of payment considering discount
and penalty possibilities. Table 1 summarises the scheduling parameters
showing invoice number (Jj), total sum of the invoice (w j), time required to
check an invoice (pj), discount date (ddj), penalty date (pdj), and the rate
for discount and penalty (rj), respectively.

Jj Wj Pj ddj pdj rj
J 1 200 5 10 20 0.05

h 400 6 10 20 0.05
J 3 400 5 10 15 0.05

Table 1: Scheduling parameters for the example problem

In general there are n invoices with n! possibilities to process them using a
single resource. The range of the results for the example is from net savings
of 30 units of cash discount up to paying additional 10 units of penalty
depending on the sequence of processing.

A GPN scheduling model is shown in Figure 12. All labels except re
sources, input data, and function are omitted. Events 1, 2, and 3 cannot
occur simultaneously because there is only one "Auditor X" available for
checking the invoices. To show the conflicts between the events a hyperedge
is introduced which consists of the nodes 1, 2, and 3 and of the edges (1,2),

www.manaraa.com

GPN 205

(2,3), and (1,3). The data required for scheduling relate to the processing
times Pj, the amount of the invoice Wj, the discount and penalty rates rj,
the discount dates ddj , and penalty dates pdj ; the scheduling objective is
assumed to be to maximise the sum of cash discount minus the penalty to
be paid.

/f
1~
J /1

f 1
1 I

1 I
1 I
I I
I I
I I
I I
I I
I I
I \
I \
I \
I \
I f
I 1
I I
I I
I I
\ I
\ I
\ I
\ I
\ I
\ I
\ I
\ \

~
L/

\ \
\\
,~ ~
~

Auditor X

71' WI' PI' ddl,pdl

I CheckJI I

Auditor X

72' W2,P2' dd2 ,pd2

I CheckJ2
I

Auditor X

73' w3,P3' dd3,pd3

I CheckJ3
I

Figure 12: Scheduling model for problem representation

I ~(
I ~"~

I (
r .. ~

I (
I "~

The scheduling decision has to determine the sequence of occurrences of
the three events, i.e. the three edges have to be converted into arcs represent
ing a predecessor-successor relationship of the events. The GPN representa
tion is suited to apply directly a scheduling procedure which tries to find an
optimal sequence by converting edges into arcs. This is a standard formalism
for representing and solving scheduling problems [Ping5]. If the direction of
the arcs is determined a complete schedule for the three instances can be
generated. The optimal schedule is shown in Figure 13.

www.manaraa.com

206

/7-
I I

I I
I I

I I
I I
I I
I I
I I
I I
I I
I I
I \

10
LJ

I \
I \ ~I:\ I
I
I
I
I
I

L;
I
I
\
\
\
\
\
\
\
\

\

" 1;\
LJ

Gunter Schmidt

Auditor X

rI' wI,Pj> ddI,pdI

I CheckJ1 I

Auditor X

r2' w2' P2' dd2 , pd2

1 CheckJ2 l

Auditor X

r3' W3,P3' dd3 ,pd3

1 CheckJ3 l

Figure 13: Scheduling model for problem solution

6 Conclusions

I (
I ~

I --(
I ~

I (
I ~.~

We have presented the language GPN to plan and schedule business processes
within a single model. The language has the capabilities to structure prob
lems from a descriptive point of view and to show how to optimise business
processes when they have to be carried out. The language is easy to under
stand and easy to use and it is especially suited for modelling time-based
assignment problems with a combinatorial structure.

We have not discussed how to evaluate process plans and have not pre
sented algorithms to solve the arising scheduling problems. The scope of this
contribution is to demonstrate that planning and scheduling problems can be
modelled using a common and easy to use notational framework. We have
illustrated this by an example case study. There are many business processes
which can be analysed and optimised using the notational framework of GPN.

www.manaraa.com

GPN 207

References

[BEPSW96] Blazewicz, J., Ecker, K, Pesch, E., Schmidt, G., Weglarz, J., Schedul
ing Computer and Manufacturing Processes, Springer, Berlin, 1996

[BN96]

[CK092]

[EGS97]

[ES93]

[SW89]

[MC94]

[Pin95]

[Sch89]

[Sch96]

[Sch96a]

[Sch96b]

[Sch97]

Bernus, P., Nemes, L., Modelling and Methodologies for Enterprise
Integration, Chapman and Hall, London, 1996

Curtis, B., Kellner, M. 1., Over, J., Process modeling, Communica
tions of the ACM 35(9), 1992, 75-90

Ecker, K, Gupta, J., Schmidt, G., A framework for decision support
systems for scheduling problems, European Journal of Operational
Research, 101, 1997, 452-462

Ecker, K, Schmidt, G., Conflict resolution algorithms for scheduling
problems, in: K Ecker, R. Hirschberg (eds.), Lessach Workshop on
Parallel Processing, Report No. 93/5, TU Clausthal, 1993, 81-90

Slowinski, R., Weglarz, J., (eds.) , Recent Advances in Project
Scheduling, Elsevier, Amsterdam, 1989

Malone, T. W., Crowston, K, The interdisciplinary study of coordi
nation, ACM Computing Surveys 26(1), 1994, 87-119

Pinedo, M., Scheduling: Theory, Algorithms, and Systems, Prentice
Hall, Englewood Cliffs, 1995

Schmidt, G., Constraint-satisfaction problems in project scheduling,
in: [SW89], 135-150

Schmidt, G., Scheduling models for workflow management, in: B.
Scholz-Reiter, E. Stickel (eds.), Business Process Modelling, Springer,
1996,67-80

Schmidt, G., Informationsmanagement - Modelle, Methoden, Tech
niken, Springer, Berlin, 1996

Schmidt, G., Modelling production scheduling systems, Int. J. Pro
duction Economics 46-47, 1996, 109-118

Schmidt, G., ProzeBmanagement - Modelle und Methoden, Springer,
Berlin, 1997

www.manaraa.com

CHAPTER 10

The IDEF Family of Languages

Christopher Menzel, Richard J. Mayer

The purpose of this contribution is to serve as a clear introduction to the modeling
languages of the three most widely used IDEF methods: IDEFO, IDEFIX, and
IDEF3. Each language is presented in turn, beginning with a discussion of the
underlying "ontology" the language purports to describe, followed by presentations
of the syntax of the language - particularly the notion of a model for the language
- and the semantical rules that determine how models are to be interpreted. The
level of detail should be sufficient to enable the reader both to understand the
intended areas of application of the languages and to read and construct simple
models of each of the three types.

1 Introduction

A modeling method comprises a specialized modeling language for represent
ing a certain class of information, and a modeling methodology for collecting,
maintaining, and using the information so represented. The focus of this
paper will be on the languages of the three most widely used IDEF methods:
The IDEFO business function modeling method, the IDEFIX data modeling
method, and the IDEF3 process modeling method.

Any usable modeling language has both a syntax and a semantics: a set
of rules (often implicit) that determines the legitimate syntactic constructs of
the language, and a set of rules (often implicit) the determines the meanings
of those constructs. It is not the purpose of this paper is to serve as an exhaus
tive reference manual for the three IDEF languages at issue. Nor will it dis
cuss the methodologies that underlie the applications of the languages. There
are other sources that discuss these issues ([NIST93a, NIST93b, MMP93]).
Rather, the purpose of this paper is simply to serve as a clear introduction to
the IDEF languages proper, that is, to their basic syntax and semantics. It is
thus hoped that the paper will quickly enable the reader both to understand
the intended areas of application of the languages and, more specifically, to
read and construct simple models of each of the three types.

www.manaraa.com

210 Christopher Menzel, Richard J. Mayer

2 Background to the IDEF Languages

The IDEF suite of modeling languages arose in the 1970s out of the U.S.
Air Force Integrated Computer Aided Manufacturing (ICAM) program. The
goal of ICAM was to leverage computer technology to increase manufac
turing productivity. A fundamental assumption of the program was the
need for powerful but usable modeling methods to support system design
and analysis. Consequently, the program undertook the development of a
suite of "ICAM DEFinition," or IDEF, methods. These included an activ
ity, or "function," modeling method (IDEFO), a conceptual modeling method
(IDEF1), and a simulation model specification method (IDEF2). IDEFO was
based loosely upon the Structured Analysis and Design Technique (SADT)
pioneered by Douglas Ross [Ros77] and IDEF1 upon the Entity, Link, Key
Attribute (ELKA) method developed chiefly at Hughes Aircraft by Timothy
Ramey and Robert Brown [RB87]. Since the ICAM program there have been
several important developments. First, in 1983, the Air Force Integrated In
formation Support System (I2S2) program added several constructs to the
IDEF1 method that were felt to make it more suitable as a database schema
modeling method. The result was IDEF1X, which is now more widely used
than IDEFl. Beginning in the late 1980s, work began on a process modeling
method known as IDEF3, and was completed under the Air Force Information
Integration for Concurrent Engineering (lICE) program. IDEF3 subsumes
much of the original role of IDEF2, as it can be used for the specification
of effective first-cut simulation models. Additionally, the IDEF3 language
has an object-state component that can be used for modeling how objects
undergo change in a process. The early 1990s saw the emergence of IDEF4
and IDEF5. IDEF4 is an object-oriented software design method that inte
grates requirements specified in other methods through a process of iterative
refinement. It also supports the capture and management of design ratio
nale. IDEF5 is a knowledge acquisition and engineering method designed to
support the construction of enterprise ontologies [Gru93]. Because of space
limitations, these newer methods will not be discussed further in this paper.
Interested readers are referred to [MKB95] and [MBM94].

Recent developments have focused on refinement and integration of the
IDEF languages. That is, the focus has been on the development of both
theory and techniques to support the easy exchange of information between
different IDEF (and non-IDEF) models, and, ultimately, on the automated
exchange and propagation of information between IDEF (and non-IDEF)
modeling software applications. To reflect these developments, "IDEF" is
now usually taken to be an acronym for Integration DEFinition.

The IDEFO, IDEFIX, and, increasingly, IDEF3 methods are widely used
in both government and the commercial business sectors. The focus of this
paper will be on the languages of these methods. In many presentations of
one or another IDEF language, syntax and semantics are intermingled so as
to make them difficult to distinguish. A goal of this paper is to keep this

www.manaraa.com

The IDEF Family of Languages 211

distinction sharp. Thus, each major section begins with a discussion of the
basic semantic, or ontological, categories of the method at hand, indepen
dent of any syntactic considerations. Only then is the syntax of the language
introduced, first its lexicon (i.e., its more primitive elements), then its gram
mar (i.e., the rules determine how complex expressions are ultimately built
up from the elements of the lexicon).

3 The IDEFO Function Modeling Language

We begin with the IDEFO function modeling language, the method for build
ing models of enterprise activities.

3.1 The IDEFO Ontology: Functions and ICOMs

In general, an activity is a thing that happens, whether (in effect) instanta
neously or over some (possibly fragmented, discontinuous) period of time.
Simple examples of activities include the death of Caesar, Jessie Owens' run
ning of the 100 yard dash in the finals of the 1936 Olympics, and the writing
of this paper. In IDEFO modeling, however, attention is often focused not
just on actual "as-is" activities, but possible activities as well- the activities
of a merely envisioned company, for example, or those of a proposed virtual
enterprise. Thus, one might say, the primary focus of IDEFO's ontology -
the things that exist according to IDEFO - is the class of all possible activi
ties, whether actual or not. However, it is not concerned with just any sort of
activity, but with a certain kind, known in IDEFO as a function. Thus, IDEFO
is often referred to as a "function modeling method." An IDEFO function is a
special kind of activity, namely, one that, typically, takes certain inputs and,
by means of some mechanism, and subject to certain controls, transforms the
inputs into outputs - note the parallel with the notion of a mathematical
function wherein a given set of arguments (inputs) is "transformed" into a
unique value (output). (That noted, we shall follow common practice and
usually use the generic term 'activity'.) The notions of input and output
should be intuitively clear. Controls are things like laws, policies, standards,
unchangeable facts of the environment, and the like that can guide or con
strain an activity, and mechanisms are resources that are used in bringing
about the intended goals of the activity. Thus, for example, in an Implement
Software Prototype activity, relevant controls might be such things as a high
level software design, software documentation standards, and the operating
systems of the development environment. And the most salient mechanisms
would likely be the programmers on the project (together with their com
puters). Intuitively, there are no salient inputs to this activity, as nothing is
actually transformed or destroyed as the activity is actually carried out, and
the output is, of course, the completed prototype.

Inputs, controls, outputs, and mechanisms are referred to generally in

www.manaraa.com

212 Christopher Menzel, Richard J. Mayer

IDEFO as concepts, or ICOMs (an acronym for the four types of concept).
The former term is a bit of a misnomer, for, unlike the ordinary meaning of
the term, an IDEFO concept needn't be an abstract or mental entity. Hence,
because it has no connotations from ordinary language, the latter term will be
used here. An lCOM, then, can be any entity - mental or physical, abstract
or concrete - that plays a certain role in an activity. Note, however, that the
same entity might play different roles in different activities. Thus, a particular
NC machine might both be the output of a Make-NC-machine activity, and
the main mechanism for transforming material input into output in a Make
widget activity. Note also that an lCOM can be a complex object (a car
body, for example) that is composed of many other objects.!

3.2 IDEFO Syntax: Boxes and Arrow Segments

The world according to IDEFO, then, consists of activities (functions) and
lCOMs. Accordingly, the graphical language of IDEFO contains two basic
constructs: boxes, representing activities, and arrow segments, representing
lCOMs. Arrow segments have a head - indicated explicitly by an arrowhead
when necessary - and a tail. Arrow segments combine to form arrows,
which will be discussed below. The basic constructs of IDEFO are built up
by connecting boxes and arrow segments together in certain allowable ways.
Specifically, the head of an arrow segment can only connect to the bottom,
left side, or top of a box, or to the tail of another arrow segment. The tail of
an arrow segment can only connect to the right side of a box, or to the head
of another arrow segment. The most basic construct of IDEFO is depicted in
a general fashion in Figure 1, along with indications of the type of entity in
the IDEFO ontology each component of the construct signifies.

Notice that the box side to which an arrow segment attaches indicates
the type of lCOM that it represents relative to the activity represented by
that box. Arrow segments representing inputs, controls, and mechanisms for
the function in question attach at the head to the left side, top, and bottom
of a box, respectively, and are said to be the incoming segments of that box.
Arrow segments indicating outputs attach at the tail end to the right side
of a box, and are said to be the outgoing segments of that box. Every box
in a model must have at least one incoming control arrow segment and one
outgoing output arrow segment. A control segment is required because there
must be something that guides, determines, or constrains a well defined en
terprise function; random, unstructured, unrepeatable activities are beyond
the scope of the IDEFO method. An output segment is required because oth-

1 It should be noted that, when talking in general about a certain kind of activity, as they
are wont, by an ICOM a modeler often means a corresponding class of particular ICOMs,
e.g., the class of NC machine outputs from all Make-NC-machine activities of a certain
sort. Context typically determines whether one is speaking about classes or instances,
and, accordingly, we shall not be overly zealous in specifying which "level" we ourselves
intend at every point in this article.

www.manaraa.com

The IDEF Family of Languages 213

(controls)

... ~
" ~

I
<concept name:> <Function name> <concept name:>

(inputs) · · · · (output.v)

· ·
<n>

~
t
" 0
u ...
V

(mechanLnns)

Figure 1: The Basic IDEFO Construct

erwise there would be no purpose served by the activity, and hence it would
add no value to the enterprise. Inputs, though typical, are not required, as
not every function involves the consumption or transformation of some ob
ject, e.g., writing an email message. Similarly, some activities, e.g., high-level
planning, may require no separate, identifiable mechanism.

3.3 IDEFO Diagrams

Boxes and arrow segments are combined in various ways to form diagrams.
The boxes in a diagram are connected by sequences of arrow segments, which
can fork and join within a diagram as depicted in Figure 2.

S3 •

~
~

Joining arrow segments

Forking arrow segments

Figure 2: Arrow Segment Forking and Joining

In IDEFO, a join typically indicates either (physical or conceptual) com-

www.manaraa.com

214 Christopher Menzel, Richard 1. Mayer

position or generalization. Hence, a (three-segment2) join is often said to
indicate the bundling of two lOOMs into another, and the more complex or
more general 100M is sometimes referred to as a "bundle." Thus, in Fig
ure 2, 51 might signify the 100M Ad and 52 the !COM Envelope and 53 the
composite 100M, or bundle, Mail-promo, whose instances consist of sealed
envelopes containing copies of the advertisement in question. (In cases of
composition there is often an underlying enterprise activity, but one which is
not considered significant enough to warrant explicit representation.) Again,
51 might signify the 100M Inventory Entry, 52 the 100M Billing Entry, and
53 the more general, bundled 100M Account Entries. As the term indicates,
it is usually best to think of bundled lOOMs like fiber bundles in fiber-optic
cables: instances of two lOOMs that are bundled together into a third are
not mingled indistinguishably together, as in a confluence of two rivers; they
are simply packaged together and, without losing their original characters,
both delivered as inputs, controls, or mechanisms to the same functions.

A join can also simply indicate recognition of a single 100M whose in
stances stem from different sources. In this case, all three segments involved
in a join indicate exactly the same 100M. Such cases are usually signified by
attaching a label only to the "merged" segment (53 in Figure 2).

A fork, naturally, is the "dual" of a join. That is, a fork indicates either
(physical or conceptual) decomposition or specialization. Forks are therefore
also commonly said to indicate an unbundling of one 100M into two others
(one of which might be identical with the initial 100M). As with joins, a fork
can also simply indicate the recognition of a single 100M whose instances
are used as inputs, controls, or mechanism for different functions.

To illustrate, consider the diagram in Figure 3 which represents, from an
accounting perspective, the activities initiated by the receipt of a customer
order. As illustrated, the connected boxes in an IDEFO diagram are repre
sented in a "stair step" fashion (on a page or computer screen) from top left
to lower right. Each box from top left to lower right is numbered sequen
tially beginning with 1 (with one exception, noted below); this is the box's
box number. In the diagram in Figure 3, the two forks following the arrow
segment labeled 'Fulfillment Files' indicate that the bundled 100M Fulfillment
Files includes both Customer Records that are used as controls on the Deliver
function and the Price Tables and Tax Tables that serve as controls on the
Bill function. Similarly, the join that merges into the arrows segment labeled

2Because arrow segments in standard lDEFO syntax must be either horizontal or vertical
except perhaps for 90 degree bends, forks and joins can involve no more than four arrow
segments - to the join in Figure 2 one could add a segment symmetrical to S2 that joins
the other three from above; analogously for the fork. Theoretically, this is no limitation, as
one can get the semantic effect of an n-segment fork or join simply by means of a series of
three-segment forks or joins. This semantic equivalence is one example of why one ought
not to read any temporal significance into arrow segments. For example, a series of joins
in a model all indicating physical compositions would not have any implications for how
(instances of) the indicated leOMs are actually composed in instances of the activity being
modeled.

www.manaraa.com

The IDEF Family of Languages 215

Tax Requirements

1 Fulfillment Files
Orders Record ~

r' 1

c!tomer RecordsJ' Price Tables ~ r-Tax Tables

Inventory B1try
Deliver \. Delivered Products

Ordered Products -" Account Entitles

2~
f-'\-Billing Entry

Tralactions -.r- Bill
---' ----. Invoices

3

Dehveryman Account clerk

Figure 3: An IDEFO diagram

'Account Entries' indicates that the Account Entries bundle includes both In
ventory Entries and Billing Entries. The fact that the segments forking from
the segment labeled 'Account Clerk' are unlabeled indicates that an Account
Clerk is used as a mechanism in both the Bill and Record functions.

An arrow is a certain kind of sequence of arrow segments within a dia
gram. An arrow originating at one box and ending at another indicates a
resource connection between the indicated functions - though one of those
functions may be only implicit if one end of the arrow's initial or final seg
ment is not attached to anything in the diagram. Thus, syntactically, an
IDEFO arrow within a diagram D is defined to be a connected sequence of
arrow segments in D such that at least one end (i.e., the tail of its initial
segment or the head of its final segment) is attached to a box and the other
is either attached to a box or unattached to anything in the diagram. Thus,
for example, in Figure 3, the Orders arrow segment is itself an arrow, as is the
sequence consisting of the Fulfillment Files segment, the unlabeled segment
it is attached to it (which, by convention, also signifies the Fulfillment Files
bundle), and the segment labeled 'Tax Tables'. Arrows (arrow segments) that
are unattached at one end are known as boundary arrows (boundary arrow
segments).

www.manaraa.com

216 Christopher Menzel, Richard J. Mayer

3.4 IDEFO Models

An IDEFO model is a hierarchically arranged collection of IDEFO diagrams.3

The hierarchy is actually an (inverted) tree: there is a single root node, and
each node of the tree has some finite number of "daughters"; every node
except the root has only one "mother". The root node of an IDEFO model is
known as the top-level, or context, diagram of the model. 4 Unlike every other
diagram in the model, the top-level diagram contains only one box. This box
represents - at the coarsest granularity - the single high-level activity that
is being represented by the entire IDEFO model.

The mother-daughter relation holding between two diagrams in an IDEFO
model signifies that the daughter node is the decomposition of a box in the
mother node. A decomposition of a box B is a diagram that represents a
finer-grained view of the function signified by B. Such a diagram D is known
variously as a decomposition diagram, detail diagram, or child diagram for B,
and B is known as the parent box of D. Only one detail diagram per box is
allowed in an IDEFO model.

By convention, a detail diagram contains three to six boxes. The tradi
tional justification for this is that a diagram with fewer than three boxes does
not contain sufficient detail to constitute a useful decomposition; similarly, a
diagram with more than six boxes contains detail that should be suppressed
within that diagram and unpacked in a decomposition. Many users have
found this "3-6 box rule" too constraining and have proposed replacing it
with a "2-9 box rule," and in fact the latter rule has been incorporated into
a proposed IEEE IDEFO standard [IEEE97].5

A simple IDEFO model for a computer assembly activity can be found
in Figure 4. Each diagram within a model has a diagram number, and each
box within a diagram a unique node number. The top level diagram of a
model has the diagram number A-O ("A-minus-zero") and its single box has
the node number AO. The number of every other diagram is simply the node
number of its parent box (as every diagram but the top-level diagram is the
child diagram of some box). The node number of a box in the AO diagram
(i.e., the child diagram of the AO box) is An, where n is box's box number
within the diagram. The node number of a box within every other child
diagram is simply the result of concatenating the diagram's diagram number
with the box's box number. Thus, the node number of Assemble CPU is AI,
while that of Install Storage Devices is A13.

Let B be a box and D a diagram within a model M. B is an ancestor
of D (within M) just in case B is either the parent box of D (in M), or the

3This is not strictly correct, as an IDEFO model is typically taken also to include textual
annotations and glossary, but as the focus of this article is the graphical language proper,
we have chosen to ignore these more pragmatic elements of a model.

4In fact the top-level diagram for a model can itself be embedded within other, "envi
ronmental" context diagrams, but this subtlety will not be discussed in this paper.

5 At the time of this writing, this document had successfully gone to ballot, and was
under revision.

www.manaraa.com

The IDEF Family of Languages 217

AO

A1

Figure 4: A Simple IDEFO model

parent box of a diagram containing some ancestor of D (that is, just in case
B is either the parent box of D, or the parent box of the diagram containing
the parent box of D, or the parent box of the diagram containing the parent
box of the diagram containing the parent box of D, and so on). Conversely,
D is a descendent of B in M just in case B is an ancestor of D in M. Given
this, we note that boundary arrow segments in a non-context diagram D
within a model indicate ICOMs that are present in the activity indicated
by some ancestor B of D - for D is simply a decomposition of B or of an
activity indicated by a box in one of the descendents of B. Consequently,
a boundary arrow segment that is unattached at its tail (respectively, head)
can be correlated with an incoming (respectively, outgoing) arrow segment for
some ancestor of D. Such a correlation is typically accomplished by labeling
both arrows with the same name. 6 Conversely, and more strongly, every
incoming or outgoing segment of a box with descendents should be correlated
with an appropriate boundary arrow segment in one of its descendents (else

6Traditionally, IDEFO has used a somewhat awkward system of "ICOM codes" to
achieve such correlations. However, ICOM codes are both unnecessary, as the same ef
fect can be achieved by the consistent use of names, and are also largely rendered otiose
by modern modeling support software which can track such correlations with ease.

www.manaraa.com

218 Christopher Menzel, Richard J. Mayer

the exact function of the indicated lCOM must not be clear).
If an arrow segment S attached to a parent box is correlated with a bound

ary segment S' that is not in its child diagram, then S is said to be tunneled
downwards, and the arrow segment S' with which it is correlated is said to be
tunneled upwards. Thnneling simply provides a mechanism for "hiding" the
role of a given lCOM in a function through the successive decompositions of
the box representing that function until the appropriate level of granularity
is reached.

4 The IDEFIX Data Modeling Method

Just as IDEFO introduces a specialized ontology tailored for capturing busi
ness activities, and a specialized language for building models of those activ
ities in terms of that ontology, so IDEFIX introduces a specialized ontology
and a corresponding language tailored to build database models. We begin
with a discussion of its ontology.

4.1 The IDEF1X Ontology: Entities, Attributes, and
Relationships

Not surprisingly, the ontology of IDEFIX corresponds closely to the ontolo
gies other database modeling languages such as the Entity-Relationship (ER)
and NIAM modeling languages. The basic ontological categories of IDEFIX
are entities,attributes, and relationships. We discuss each category in turn.7

4.1.1 Entities

Entities are simply classes of actual or - when "to be" situations are being
modeled - possible things in the world. Entities can comprise concrete
objects, such as employees and NC machines; more idealized objects such
as companies and countries; and even abstract objects like laws and space
time coordinates. The things comprised by a given entity are known as the
members or instances of the entity. IDEFIX entities thus correspond to ERA
entity sets and NIAM entity classes.s

7It should be noted that we will only be discussing so-called "key-based" views. Offi
cially, IDEFIX models can contain numerous "views", where a view, like the notion of a
model here, is a structured collection of entity boxes and relationship links. Views differ
in the constraints they satisfy. Specifically, the ER view does not require the identification
of keys, and allows "nonspecific", many-to-many relationships (see below for definition of
these notions). For the sake ·of brevity, in this paper we are identifying models with what
are known as "fully-attributed" views in IDEFIX, in which keys must be identified and all
many-to-many relationships must be resolved into functional relationships.

8The term 'entity' is rather unfortunate, since in ordinary language it is a rough syn
onym for 'thing' or 'object', i.e., for individual instances of classes rather than classes
themselves. IDEFI uses the more appropriate term 'entity class'.

www.manaraa.com

The IDEF Family of Languages 219

4.1.2 Attributes

Every entity has an associated set of attributes. Attributes are simply func
tions, or mappings, in the mathematical sense: an attribute associates each
instance of a given entity with a unique value. An attribute a is for a given
entity E if it is defined on all and only the instances of E.9 In IDEFIX,
the set of values that an attribute can return is known as the attribute's
domain.1o The domain of every attribute referred to in an IDEFIX model
is always one of several familiar data types; specifically, it is either the type
string, a numerical type of some ilk, the type boolean, or else a subtype of one
of these basic types. So, for example, common attributes for an EMPLOYEE
entity might be Name (of type string), Citizenship (subtype of string, viz.,
names of countries), Yearly-salary (positive integer), Marital-status (boolean),
and so on.

A central notion in IDEFIX is that of a candidate key, or simply, key.
A key for an entity E is a set of attributes for E that jointly distinguish
every instance of the entity from every other. More exactly, where a is an
attribute, let a(e) be the value of a applied to e. Let A be a set of attributes
for an entity E. Then A is a key for E just in case, for any distinct instances
e, e' of E, there is an attribute a E A such that a(e) =I a(e'). Ideally, a key
should be a smallest set of this sort, in the sense that no proper subset of a
key is also a key. If an attribute a is a member of a key, it is said to be a key
attribute.

4.1.3 Relationships

Relationships are classes of associations between instances of two (possibly
identical) entities. In the context of IDEFIX, one of the two entities is
identified as the parent entity and the other as the child entity. Let R be a
relationship, and let EP be its parent entity and Eg its child. Then the one
general requirement on relationships is that for each instance e of Eg there
is at most one instance e' of EP such that e is associated (by R) with e'.n
Also, typically, in an IDEFIX model, no instance of a relationship's child
entity fails to be associated with an instance of its parent, though this is not
always required. (See the notion of an "optional" non-identifying relationship
below.) If E is the child of a relationship Rand E' the parent, then R will
be said to link E to E'. (This is not standard IDEFIX terminology, but it
proves very useful for exposition.)

9Partial attributes - i.e., attributes that are not defined on all the instances of an
entity - are allowed in ER views.

lOThis is another unfortunate choice of terminology, as the term 'domain' in mathematics
is the usual name for the set of arguments for a function, and the term 'range' denotes the
set of its possible values, i.e., the attribute's "domain" in the sense of IDEFIX.

11 In ER views, "non-specific" relationships are allowed that don't satisfy this require
ment; specifically, in a non-specific relationship an instance ofthe child might be associated
with more than one instance of the parent.

www.manaraa.com

220 Christopher Menzel, Richard J. Mayer

It is convenient to think of a relationship R as a class of ordered pairs
(a, b) such that the first element a of each such pair is an instance of R's
child entity and the second element b is an instance of its parent entity. The
general requirement on relationships, then, can be expressed simply as the
requirement that a relationship R be functional, in the sense that, for a E Ef}
and bEEP, if Rab (i.e., if (a, b) E R) and Rac, then b = c. Given this, to
say that a given instance e of R's child entity Ef} is associated (by R) with
an instance el of R's parent entity EP is simply to say that eRel; likewise, to
say that a given instance e of EP is associated with an instance el of Ef} is
to say that ReI e. We say that R is total if for each instance e of Ef} there is
an instance el of EP such that Reel. Otherwise R is said to be partial. Since
relationships R are functional, we will sometimes write 'R(a)' to indicate the
unique object b such that Rab (when it is known that there is such an object
b).

4.1.3.1 Cardinality The cardinality of a relationship R signifies how
many instances of the child entity a given instance of the parent is associated
with. Often a relationship has no specific cardinality; one instance of the
parent might be associated by R with two instances of the child, another with
seventeen. The most that can be said in such cases is that the relationship has
a cardinality of zero, one, or more, which is true under any circumstances.
But often enough this is not the case. IDEFIX marks out in particular the
following cardinalities for R: one or more (signifying that R, viewed as a
function from Ef} to EP, is onto, or surjective); zero or one (indicating that
R, viewed as a function, is one-to-one, or injective); exactly n; and from n to
m.

4.1.3.2 Attribute Migration The functionality of relationships leads
to the important notion of key attribute migration. Suppose R links E to
g and let 0: be a key attribute for the parent entity EI. Because R maps
each instance e of E to a unique instance el of E I , a new (migrated) attribute
for E can be defined as the composition Roo: of 0: and R. 12 Thus, more
procedurally, to discover the value R 0 0:(e) of the migrated attribute Roo: on
a given instance e of E, one first finds the instance el of g associated with
e by R, and then applies 0: to el; i.e., R 0 o:(e) = o:(R(e)). This is the value
of the migrated attribute on e. (An example is given below.)

The notion of migration is often documented misleadingly so as to suggest
that a migrated attribute in the child entity of a relationship is the very
same attribute as the migrating attribute in the parent entity. Since they are
attributes for different entities, however, the two must be distinct. It is more
correct to characterize migration as a relation involving two attributes and a
relationship. More exactly, let R be a relationship and 0: and 0:1 attributes,
and let E be the child entity of R and EI the parent entity. Then we say that

12Where, as usual, f 0 g(x) = g(!(x)).

www.manaraa.com

The IDEF Family of Languages 221

a' migrates from E' to E as a via R if and only if (i) a and a' are attributes
for E and E', respectively, (ii) R links E to E' and (iii) for all instances e
of E, aCe) = a'(R(e)). We will call a' the migrating attribute and a the
migrated attribute (relative to R). Note that a migrated attribute relative to
one relationship can itself be a migrating attribute relative another.

4.1.3.3 Categorization Relationships A particularly important type
of relationship in IDEFIX is a categorization relationship. Basically, a cat
egorization relationship is just the identity relation restricted to a certain
subclass of a given entity; that is, a categorization relation maps a mem
ber of a subclass of a given entity to itself in that entity. The importance
of these relationships is that they are used to form categorization clusters,
which divide a given entity - known as the generic entity in the cluster -
into several disjoint subclasses or category entities. Thus, the generic entity
in a cluster might be the entity EMPLOYEE, and SALARIED_EMPLOYEE and
HOURLY _EMPLOYEE the category entities in the cluster. A category cluster
is complete if the category entities jointly constitute a partition of the generic
entity, i.e., if every instance of the category entity is an instance of a (unique)
category entity.

It is often useful to identify a discriminator attribute for a category cluster
that returns, for each instance of the generic entity, a standard name for its
category. Thus, the discriminator attribute for the EMPLOYEE cluster above
would return either the string 'SALARIED...EMPLOYEE' or 'HOURLY ...EMPLOYEE'
on each generic entity instance. (For incomplete clusters, a discriminator
attribute would have to be either undefined on generic instances that are in
no category, or else would have to return a string indicating this, e.g., 'NIL'.)

4.2 The IDEFIX Language and its Semantics

Entities, attributes, and relationships constitute the basic ontology of IDE FIX,
the basic categories of things that one talks about in the IDEFIX language.
In this section we describe the language itself and its semantical connections
to these objects.

The basic syntactic elements of the IDEFIX language are entity boxes,
attribute names, and various kinds of relationship links. These elements,
of course, signify entities, attributes, and relationships, respectively. An
IDEFIX model is a collection of entity boxes, attribute names, and relation
ship links that satisfy certain conditions, which we will state in the course
of our exposition. As with our account of IDEFO, then, we will continue
to use the term 'model' to indicate a certain kind of complex syntactic en
tity. However, an entity, attribute, or relationship can be said to be "in"
a model insofar as that entity, attribute, or relationship is indicated by a
corresponding entity box, attribute name, or relationship link in the model.

Entity boxes come in two varieties, ones with square corners and ones
with rounded corners, as indicated in Figure 5.

www.manaraa.com

222 Christopher Menzel, Richard J. Mayer

<entity-namelentit),-number> <entity-namelentity-number>

Figure 5: Entity Boxes

The ai are attribute names. The names aI, ... , an, written above the line,
indicate the members of a distinguished key for the indicated entity, known
(in the context of a model containing the given entity box) as the primary key
for the entity. n here must be at least 1; that is, it is required that a primary
key be identified for every entity indicated in a model. The same entity, of
course, could have a different primary key in a different model, although,
of course, it would have to be denoted by a correspondingly different entity
box in that model. a n+l, ... , a n+m indicate other, non-key attributes for the
entity.

Which of the two kinds of box to use for an entity in a model depends on
the kinds of relationships that link that entity to other entities indicated in
the model. Perhaps the most common type of relationship between entities
in a model is an identifying relationship, the IDEFIX syntax for which is
given in Figure 6. To define this notion, note first that it is a requirement on
IDEFIX models that, for any relationship R, all and only the attributes in
the primary key of R's parent entity migrate to its child entity via R. 13 R
is an identifying relationship if all of the attributes in the parent's primary
key migrate via R as attributes in the child's primary key; otherwise R is a
nonidentifying relationship. The idea here is that, procedurally, an instance
e of the child entity in a relationship can be identified - i.e., its key attribute
values determined - only by first identifying e's associated instance e' in the
parent entity, i.e., by first determining all of its (e"s) key attribute values. If
an entity E is the child entity in an identifying relationship R in a model, then
a box with rounded corners is used to indicate E in that model. Otherwise,
a box with square corners is used.

A simple example is given in Figure 7. In this example, the primary
key attribute DepLnumber migrates as the attribute Worksjn.DepLnumber,
which appears as a primary key attribute of EMPLOYEE. The relationship
is therefore, by definition, an identifying one. In the example, Emp_numbers
alone are not in general sufficient to distinguish one EMPLOYEE from an-

13Migrated attributes are sometimes referred to as "foreign keys", or, a bit less problem
atically, "foreign key attributes", and are often marked with the expression '(FK)'. This
marking is otiose if the full name of the migrated attribute is given (i.e., if a role name is
used in naming the attribute; see below) but can be heuristically useful if role names are
suppressed.

www.manaraa.com

The IDEF Family of Languages

E'

~ Parent Entity Box

~ Relationship Link
Relationship Name ~ p

E 4 ~ [/I:] ~ Cardinality Indicator

{31

1-----------1 ~ Child Entity Box

Figure 6: Syntax for Identifying Relationships

223

otherj Emp_numbers are unique only within DEPARTMENTs. Hence, one
must also know the Dept-number of the DEPARTMENT in which an EM
PLOYEE works to distinguish him or her from every other EMPLOYEE.
Hence, the primary key for EMPLOYEE also contains the migrated attribute
Works_in. Dept-number. Note that the relationship name 'Worksjn', or some
related identifier (known in the context as a "role name"), becomes part of the
name of the migrated attribute. This is to indicate the relationship relative
to which the migration has occurred. By convention, if there is no possibility
of confusion, the very same name is used for the migrated attribute. Thus,
because there is no such possibility in the example (since there is only one re
lationship linking EMPLOYEE to DEPARTMENT), 'Dept-number' could have
been used in both entity boxes. An attribute like Dept-number or SSN that
is not migrated relative to any relationship in the model is said (relative to
that model) to be owned by the entity it is defined on.

One further construct in Figure 6 requires comment, viz., the cardinality
indicator K,. This marker, of course, indicates the cardinality of the relation.
The brackets around K, signify that cardinality indicators are optional. If no
indicator is present, then the relationship in question can have any cardinality.
'P', by contrast, indicates the relationship is many-to-onej 'Z' that it is one
to zero or onej a specific numeral v indicates that the cardinality is exactly
n, where v denotes nj and v-I-' indicates a cardinality of n to m, where v and
I-' denote nand m, respectively.

www.manaraa.com

224 Christopher Menzel, Richard J. Mayer

DEPARTMENT
DepLnumber

DepLname
BldQ...number

.EMPLOYEE
Works_in. DepLnumber
Emp_number

Emp_name
SSN (AK)
Address

Figure 7: Example of an Identifying Relationship

As noted above, if R is not an identifying relationship (and no identify
ing relationship links Eg to any other entity in the model), then a square
cornered box is used to indicate the child entity. A dashed line rather than a
solid line is used to indicate non-identifying relationships. A non-identifying
relationship R is said to be mandatory if R is a total function from Eg to
EP, i.e., if every instance of R's child entity is associated with an instance of
R's parent entity; otherwise R is said to be optional. For example, let E' be
a class of offices in a business and let E be the class of computers that exist
in the business, and let R be the Located-in relationship. Most, but perhaps
not all, computers will be located in offices, but some might, e.g., have been
sent out for repair, and hence are not located in any office. IT this can be the
case, then Located-in is an optional relationship.14

An optional relationship is indicated by a dashed line with a small dia
mond at the parent end of the link, as shown in Figure 8.

14Strictly speaking, the difference between mandatory and optional relationships really
applies more accurately to the labeled relationship links in a model. Entities, attributes
and relationships form what in mathematical logic are known as interpretation of the basic
syntactic elements of IDE FIX. An interpretation can be'said to validate an IDEFIX model
if its entities, attributes, and relationships comport with the constraints expressed in the
model (e.g., if the relationship associated with a one-to-n link really is one-n). To call a
relationship link mandatory, then, is to say that it can only be associated semantically in
any interpretation with a relationship that is a total function. The interested reader is
referred to [End72].

www.manaraa.com

The IDEF Family of Languages 225

E' E'

E • • E
(h f31

~m+1 f3m+l

Figure 8: Syntax for Non-identifying Relationships

Any subset of an entity's attributes in a model that constitute a further
key is known as an alternate key for the entity (relative to that model). The
names of members of an alternate key are marked with the string '(AK)', as
illustrated by the attribute SSN in Figure 7. Should there be more than one
alternate key, then the keys are ordered (arbitrarily) and the names of the
attributes in the first key are marked with the string '(AKl)', those in the
second with '(AK2)', and so on. (It is possible, but uncommon, that the same
attribute be in different alternate keys, and hence for an attribute name to
be marked by more than one of the terms '(AKn)').

Finally, the syntax for a complete categorization cluster with three cate
gory entities is exhibited in Figure 9. A name for the discriminator attribute
is written alongside the circle beneath the generic entity box. In general, clus
ters with n category entities are represented with n relationship links running
from the lower of the two horizontal lines beneath the circle to n entity boxes.
Note that the names of the primary key attributes for every category entity
are identical with their counterparts in the generic entity. This reflects the
fact, noted previously, that the relationship linking a category entity to its
generic entity is the identity relation. Hence, each key attribute in the generic
entity migrates to each category entity as a restricted version of itself that
is defined only on those instances of the generic entity that are instances of
the category entity. This "near identity" of the migrating and migrated at
tributes warrants using the same attribute name in the boxes for both generic
and category entities.

Incomplete categorization relationships are indicated in precisely the same

www.manaraa.com

226 Christopher Menzel, Richard J. Mayer

G

0<1

O<n ~ Generic Entity B ox

O<n+1

08 ~ Discriminator Name

CI I C2 I C3 I
0<1 0<1 0<1

O<n O<n O<n

i31 'Y1 6

Category Entity Boxes

Figure 9: Complete Categorization Cluster Syntax

way, except that a single rather than a double horizontal line is used beneath
the circle.

5 The IDEF3 Process Modeling Method

The IDEF3 modeling method is used to construct models of general enterprise
processes. Like IDEFO and IDEFIX, it has a specialized ontology and, of
course, a corresponding language, which we detail in the following sections.

5.1 The IDEF3 Ontology: DOBs, Objects, and
Intervals

Because the terms 'process' and 'activity' are rough synonyms in ordinary
language, one might wonder what distinguishes the subject matter of IDEFO
from that of IDEF3. In one sense, nothing; both are concerned with the
modeling of actual and possible situations. The difference is a matter of focus:
features of situations that are essential to IDEFO activities are generally
ignored in IDEF3; and, conversely, features essential to IDEF3 processes are
ignored in IDEFO. More specifically, because IDEFO is concerned primarily
with the ways in which business activities are defined and connected by their
products and resources, IDEFO activities are characterized first and foremost

www.manaraa.com

The IDEF Family of Languages 227

in terms of their associated inputs, outputs, controls and mechanisms. By
contrast, because IDEF3 is intended to be a general process modeling method
without, in particular, a specific focus on products and resources, an IDEF3
process - also known as a unit of behavior, or UOB, to avoid the connotations
of more familiar terms - is characterized simply in terms of the objects it
may contain, the interval of time over which it occurs, and the temporal
relations it may bear to other processes. Thus, IDEFO (by default) ignores
the temporal properties of situations (in particular, it is not assumed that
an activity must occur over a continuous interval), and it highlights certain
roles that objects play in them. By contrast, IDEF3 (by default) ignores those
roles and simply records general information about objects in situations and
the temporal properties of, and relations among, situations. IDEF3 is thus
particularly well-suited to the construction of models of general enterprise
processes in which the timing and sequencing of the events in a process is
especially critical. Notably, it is a particularly useful language to use in the
design of complex simulation models.

5.2 The IDEF3 Language and its Semantics

The basic elements of the IDEF3 lexicon for building process models are
illustrated in Figure 10. DOB boxes, of course, in the context of an IDEF3

UOB box

<UOB Label>

AND

<Node refll> I <IDEF refll>

Precedence Link

Junctions

Sync
AND

OR

Sync
OR

Figure 10: The Basic IDEF3 Process Description Lexicon

XOR

model, signify DOBs, and precedence links signify a certain kind of temporal
constraint. Every DOB box has an associated elaboration, i.e., a set oflogical
conditions, or constraints, written either in English or, more ideally, in a
formal logical language. A DOB box can signify a given DOB A only if the
latter satisfies the logical constraints in the elaboration of the former. In such
a case we say that A is an instance of the DOB box. Junctions, too, can have
elaborations.

www.manaraa.com

228 Christopher Menzel, Richard J. Mayer

5.2.1 Syntax for the Basic IDEF3 Construct

The basic construct of IDEF3 is illustrated in Figure 11. Box 1, with the

Figure 11: The Basic IDEF3 Construct

label 'A' at the "back" end of the link is known as the source of the link and
box 2 with label '8' at the "front" end of the link is known as the destination
of the link. IT Figure 11 is considered as a complete IDEF3 model, box 1
is known as the (immediate) predecessor of box 2 in the model, and box 2
the (immediate) successor of box 1. The '1' in box 1 and the '2' in box 2
a:re the node reference numbers of the boxes, and are assumed to be unique
within a model. The corresponding area to the right of the node reference
number in a UOB box is optionally filled by an IDEF reference number, a
broader identifier for the purpose of locating that model element with respect
to numerous IDEF models.

5.2.2 Semantics for the Basic Construct

The meaning of an IDEF3 model is best understood in terms of its possi
ble activations, the possible real world situations that exhibit the structure
specified in the model. In the simplest case, an activation of a model is a
collection of UOBs that satisfy the temporal constraints exhibited by the
structure of the precedence links in the model. In general, there are many
different patterns of activation for a given model. However, there is only one
possible activation pattern for simple two box models like Figure 11, viz.,
when a single UOB A of the sort specified in the box 1 is followed by a UOB
8 of the sort specified in box 2. More precisely, a legitimate activation of
Figure 11 as it stands is any pair of situations A and 8 that are instances of
boxes 1 and 2, respectively, and where 8 does not start before A finishes.

5.2.3 Junctions

Junctions in IDEF3 provide a mechanism to· specify the logic of process
branching. Additionally, junctions simplify the capture of timing and se
quencing relationships between multiple process paths.

5.2.3.1 Junction Types AnIDEF3 model can bethought of as a general
description of a class of complex processes, viz., the class of its activations.
Such a description is rarely linear, in the sense that the processes it picks out

www.manaraa.com

The IDEF Family of Languages 229

always exhibit the same linear pattern of subprocesses. More typically, they
involve any or all of four general sorts of "branch points:"

1. Points at which a process satisfying the description diverges into mul
tiple parallel subprocesses;

2. Points at which processes satisfying the description can differ in the
way they diverge into multiple (possibly nonexclusive) alternative sub
processes;

3. Points at which multiple parallel subprocesses in a process satisfying
the description converge into a single "thread;" and

4. Points at which processes satisfying the description that had diverged
into alternative subprocesses once again exhibit similar threads.

IDEF3 introduces four general types of junction to express the four general
sorts of branch points. The first two sorts are expressed by "fan-out" junc
tions: Conjunctive fan-out junctions represent points of divergence involving
multiple parallel subprocesses, while disjunctive fan-out junctions represent
points of divergence involving multiple alternative subprocesses. The last two
sorts of branch point are expressed by "fan-in" junctions: conjunctive fan
in junctions represent points of convergence involving multiple parallel sub
processes, while disjunctive fan-in junctions represent points of convergence
involving multiple alternative subprocesses. There is one type of conjunc
tive, or AND, junction, indicated by '&'. There are two types of disjunctive
junction: inclusive and exclusive junctions, or OR and XOR junctions, re
spectively, depending on whether the alternatives in question are mutually
exclusive. OR junctions are indicated by an '0', and XOR junctions by an
'X'.

Junction syntax is illustrated in Figure 12, where 'Y is either '&', '0', or
'X'. Although this figure shows only two UOB boxes to the right of a fan-out
junction and to the left of a fan-in, arbitrarily many are permitted in an
IDEF3 model in general.

8 A

A c

Figure 12: Junction Syntax

www.manaraa.com

230 Christopher Menzel, Richard J. Mayer

5.2.3.2 Junction Semantics The intuitive meaning of junctions is straight
forward. It will be enough to use Figure 12. Letting'Y be '&.' in the figure,
an activation of the model on the left will consist of an instance A of box
1 followed by instances B and C of boxes 2 and 3. If the junction is syn
chronous, then B and C will begin simultaneously. (Note in particular that,
for nonsynchronous junctions, there are no constraints whatever on the tem
poral relation between B and Cj all that is required is that both occur after
A.) Similarly, an activation of the right model in the figure will consist of
instances A and B of boxes 1 and 2 followed by a single instance C of box 3j
and if the junction is synchronous, then, A and B will end simultaneously.

For OR (XOR) junctions, if'Y is '0' ('X'), then an activation of the model
on the left in the figure will consist of an instance A of box 1 followed by either
an instance B of box 2 or an instance C of box 3 (but, for XOR junctions, not
both). If the OR junction is synchronous, then, should there be instances of
both boxes 2 and 3, they will begin simultaneously. Similarly, an activation
of the right model in the figure will consist of an instance of either box 1 or
box 2 (but, for XOR junctions, not both) followed by an instance of box 3.
If the OR junction is synchronous, then, should there be instances of both
boxes 1 and 2, they will end simultaneously.

These semantic rules generalize directly, of course, for junctions involving
arbitrarily many UOB boxes. Control conditions on branching and concur
rency on a class of processes - e.g., the conditions that determine which of
two paths to follow at an XORjunction - are often placed in the elaboration
of a junction.

5.3 Models and Schematics

An IDEF3 model is a collection of one or more IDEF3 process schematics,
which are built from UOB boxes, precedence links, and junctions in natural
ways. Intuitively, a schematic is simply a single "page" of a model, a view
of (perhaps only a part of) a process from a given perspective at a single
uniform granularity.

Figure 13: A Small IDEF3 Schematic

www.manaraa.com

The IDEF Family of Languages 231

A simple example of a schematic is seen in Figure 13. In this schematic,
a request for material is followed by either the identification of the current
supplier or the identification of potential suppliers. (A condition attached
to the junction might indicate that the latter path is taken only if there is
no current supplier; but this common sense condition, of course, cannot be
derived from the bare semantics of the language alone.) If a current supplier
is identified then an order is placed. Otherwise, the identification of potential
suppliers is followed by both a report to the manager and a request for bids
from the potential suppliers. When both of these tasks are complete, the bids
that have arrived are evaluated and an order placed to the winning bidder.1s

The formal syntax for IDEF3 process schematics is rather laissez-faire;
the onus is on the modeler to construct coherent models, i.e., models with
possible activations. However, although basically straightforward, the syntax
requires more mathematical apparatus than is appropriate here to specify
precisely. Informally, though, there are essentially two main rules:

1. A UOB box can be the source or destination of no more than than one
precedence link; and

2. A schematic must contain no loops.

The motivation behind the first rule is that precedence links with the same
box as source or destination would indicate a point at which there are par
allel subprocesses diverging or converging, or a point at which" alternative
subprocesses can be seen to diverge or converge across different processes
satisfying the description. The purpose of fan-out and fan-in junctions is
to indicate just such points in a description meant to capture the general
structure exhibited by many possible processes.

Regarding the second rule, a path through a schematic is a sequence
of UOB boxes, junctions, and precedence links such that each element of
the sequence (save the last, if there is a last element) is connected to its
successor. A loop, or cycle, in a schematic is a path in the schematic whose
first element is identical to its last. At first blush, the second rule might seem
highly undesirable, as loops appear to be very common structural features of
many processes. Consider, for example, the process depicted in Figure 14
(in apparent violation of Rule 2).

The problem with loops is that they are inconsistent with the semantics of
the precedence link. As noted above, the precedence link indicates temporal
precedence. This relation is transitive, that is, if UOB A is before B in time,
and B before C, then A is before C as well. Given that, suppose box bl
is linked to box b2, and b2 to b3 in a model M, and that A, B, and Care
instances ofb!, b2, and b3, respectively, in some activation ofM. By the basic
semantics of the precedence link, A must precede B and B must precede C.
But then, by the transitivity of temporal precedence, A must precede C. Now,

15Henceforth, junction numbers will be suppressed.

www.manaraa.com

232 Christopher Menzel, Richard J. Mayer

Paint part Move to
I--.......... ~ Assembly

3

Figure 14: Process with an Apparent Loop

notice that, on this understanding of the precedence link, a loop in a model
would mean that one point in an activation of the model - one point in a
possible or actual process - could return to an earlier point, and hence that
the later point could precede the earlier point. Clearly, though, given the
direction of "time's arrow," this is not possible; the past remains ineluctably
past and inaccessib1e; once past, no point in time can be revisited.

Why then is there a temptation to use loops in process models? The
answer is clear; in some processes - the one depicted in Figure 14, for
instance - a particular pattern is instantiated many times. It is therefore
convenient and, often, natural simply to indicate this by reusing that part
of a model that represents the first occurrence of this pattern, rather than
iterating separate instances of it. As noted, though, this is not compatible
with the general semantics of the precedence link. Strictly speaking, then,
loops must be "unfolded" into noncycling structures. If there is a bound on
the number of iterations, the corresponding noncycling model will be finite.
Otherwise it will be infinite; the infinite unfolded model corresponding to
Figure 14 is exhibited elliptically in Figure 15.

Figure 15: Unfolded Model of the Process Depicted in Figure 14

That noted, it has already been acknowledged that models with loops
are often convenient and natural. Indeed, given the ubiquity of processes
with iterated patterns, to require modelers explicitly to unfold loops in gen
eral would rob IDEF3 of a significant degree of its usability. Consequently,
IDEF3 allows models with loops - however, importantly, these are under-

www.manaraa.com

The IDEF Family of Languages 233

stood syntactically not as primitive constructs but as macros for their un
folded counterparts. So understood, loops are semantically innocuous and
can be used without qualms.

5.3.1 Referents

Loops are typically indicated in IDEF3 by means of referents in process
models. Referents are theoretically dispensable, but are useful for reducing
clutter. In the context of a process model, referents are used to refer to
previously defined UOBs. Referents therefore enhance reuse, as one can
simply refer to the indicated schematic or UOB box without explicitly copying
it into the referring model.

Referents come in two varieties: call-and-wait and call-and-continue. Their
syntax is seen in Figure 16. The referent type of a referent can be either

<Referent type!
<Label>

<Locator>

Call and Continue Referent

Figure 16: Referent Syntax

<Referent type!
<Label>

<Locator>

Call and Wait Referent

'UOB', 'SCENARIO', 'TS', or 'GOTO'. A UOB referent points to a previ
ously defined UOB box, a scenario referent points to a model ('scenario' is
the name for the complex UOB described by a model), a TS referent points
to an object state transition schematic (see below), and a GOTO points to a
UOB box or model. A GOTO referent indicates a change of process control
to a UOB or scenario indicated by the referenced UOB box, model, or junc
tion. In each case, the locator in a referent specifies the (unique) reference
number of the UOB, scenario, or state transition in question. Referents, too,
have associated elaborations.

As the names suggest, a call-and-wait referent calls a particular UOB or
transition, and execution of the calling model halts until the called UOB or
transition completes. By contrast, a call-and-continue referent simply calls
a UOB or transition without any halt in the execution of the calling model.
Typically, in IDEF3, a GOTO referent, rather than a backward-pointing
precedence link, is used to express looping;16 thus, on this approach, the
process intended by Figure 14 would be captured as in Figure 17. Use of
precedence links to express looping, however, is permitted.

16More than anything, perhaps, this simply reflects the way most IDEF3 support soft
ware works.

www.manaraa.com

234 Christopher Menzel, Richard J. Mayer

Paint part Test paint Move to
job X assembly

1 I 2 I 3 I

'---+
I GOTO:

Paint part

Figure 17: Looping with a GOTO Referent

5.3.2 Decompositions

A decomposition of a UOB box in a model is simply another IDEF3 schematic,
one that purports to provide a "finer-grained" perspective on the UOB signi
fied by the box. In a fully-fledged IDEF3 model, each schematic is either the
decomposition of a UOB box in some other schematic, or else is the unique
"top-level" schematic which is not the decomposition of any other schematic.
That a given box in a schematic in a model has a decomposition in the model
is indicated by shading, as illustrated in Figure 18.

Paint part

1 I

Figure 18: Decomposition Syntax

5.4 Object State Transition Schematics

Initially, process schematics were the only part of the IDEF3language. How
ever, it soon became apparent that modelers often desired to take "object
centered" views of processes, views that focus not so much on the situations
that constitute a process, but on the series of states that certain objects
within those processes pass through as the process evolves. This led to the
addition of object state transition schematics, or simply transition schematics
to the IDEF3 language.

5.4.1 Syntax for Basic Transition Schematics

The basic lexicon for transition schematics is shown in Figure 19.
As can be seen, the label for a state symbol displays the name of a state

and, optionally, the name of the general kind of thing that is in the state.
For example, the state of being hot might be labeled simply by means of

www.manaraa.com

The IDEF Family of Languages 235

State Symbol Transition Junctions

® @ @
AND OR XOR

Transition Link

Figure 19: Lexicon for State Transition Schematics

the label HOT. If it is hot water in particular, though, and that fact is
relevant, then the more complex label WATER:HOT could be used. (Node
references and IDEF numbers in state symbols have the same role as in
process schematics, and will be suppressed in the examples to follow.) An
arrow (indistinguishable from a precedence link), known as a transition link,
is used to indicate a transition from one state to another, as illustrated in
Figure 20. 'K1' and 'K2' indicate optional kind (class) names, and '51' and
'52' names for states.

~8
Figure 20: Basic Transition Schematic Syntax

5.4.2 Semantics for Basic Transition Schematics

In general, the semantics of a basic transition schematic is simply that, in
an occurrence of the indicated transition, there is first an object x (of kind
K1) in state 51, and subsequently an object y (of kind K2) that comes to
be in state 52j that is, to have an instance of the transition schematic in
question, it is required that x be in state 51 before y comes to be in state 52.
It is permitted, though perhaps not typical, that x f:. Yj and it is permitted,
though perhaps not typical, that x remain in state 51 after Y comes to be in
state 52.

It is important to note that, despite having the same appearance, the
semantics of the arrow of transition schematics is somewhat different than the
semantics of the precedence link. The precedence link implies full temporal

www.manaraa.com

236 Christopher Menzel, Richard J. Mayer

precedence: in an activation of a simple precedence connection, an instance
of the UOB box at the tail of the link must end no later than the point
at which an instance of the UOB box at the head of the link begins. By
contrast, in an object schematic, the arrow implies precedence only with
regard to starting points: the object that is in the state indicated at the tail
of the arrow must be in that state before the transition to an object in the
state indicated at the head of the arrow. The reason for· this weaker sort
of precedence in state transition schematics is simply the point noted in the
previous paragraph: a transition only involves a change from an object in one
state to an object (possibly the same object, possibly different) in another;
though it may not be typical, the object in the initial state of the transition
needn't cease being in that state after the transition. To allow for this type
of transition, the weaker semantics is used for the arrow in object transition
schematics. There is no potential for confusion, however, as the meaning of
the arrow remains constant within each type of schematic.

5.4.3 Using UOB Referents in Transition Schematics

Because (in the context of process modeling) objects are in states within
UOBs, and because transitions occur inside UOBs, it is useful and infor
mative to be able to record information about related UOBs in a transition
schematic. This is accomplished by attaching UOB referents to various parts
of a transition schematic. The most common use of UOB referents is to attach
them to the arrow in a transition schematic, as illustrated in Figure 21.

UOBI
A

Figure 21: Use of a UOB Referent in a Transition Schematic

The default semantics here is fairly weak. The figure signifies only that in
transitions of the indicated sort there will be an object x in state 51 prior to
or at the start of a UOB A (satisfying the conditions specified in the referent),
and subsequently an object y at some point after the beginning of A. Stronger
conditions - e.g., that x=y, that x and y occur in A, that x be in 51 at the
start of A and y in S2 at its end, etc. - can be added to the elaborations of
appropriate components of the schematic.

Additional referents can be added to a transition link to indicate more
information about associated processes. Relative placement on the transition

www.manaraa.com

The IDEF Family of Languages 237

arrow indicates the relative temporal placement of the associated UOBs.
For instance, the schematic in Figure 22 indicates a transition involving the
occurrence of a pair of UOBs A and B that start simultaneously, and a third
UOB C that starts after A and B. Additionally, because the "B" referent
is a call-and-wait, in any instance of the transition, UOB B must complete
before C can begin. (This will generally be the only sort of context in which
call-and-wait referents are used in transition schematics.)

UOBI
C

Figure 22: Multiple UOB Referents in a Transition Schematic

The semantics for transitions in schematics with multiple referents is
slightly more involved than for simple schematics. In the case of the schematic
in Figure 22, for example, the indicated object x in any such transition is in
Sl at the start of A and B, and it is in state S2 by the end of C. This semantics
generalizes straightforwardly to other cases of multiple referents.

If the relative temporal ordering of the UOBs involved in a transition is
unknown or indeterminate from case to case, a small circle is used to "anchor"
the referents indicating those UOBs, as illustrated in Figure 23.

Figure 23: Temporally Indeterminate UOB Referents in a Transition Schematic

It is not uncommon for a given situation to "sustain" an object in a given
state; a refrigeration process, for example, might sustain a given substance

www.manaraa.com

238 Christopher Menzel, Richard J. Mayer

in a solid state. Situations of this type can be represented by the construct
in Figure 24.

UOBI
A

Figure 24: Sustaining an Object in a State

More generally, in any instance of the schematic in Figure 24, there is
a UOB A of the sort specified by the referent and an object x in state 51
throughout the duration of A. This requires that such an x must exist when
A begins. x could, however, be in state 51 prior to the start of Aj that
is, it could be brought into state 51 by some other process prior to A (the
substance noted above might actually become solid through some sort of
chemical reaction), and then sustained in that state by A.

5.4.4 Complex Transition Schematics

More complex transition schematics can be constructed by adding further
transition arrows and state symbols to existing schematics or by using tran
sition junctions. A complex schematic is illustrated in Figure 25.

UOBI
Refine initial
design

UOBI
Develop
prototype

UOBI
Write final
report

Figure 25: A Complex State Transition Schematic

www.manaraa.com

The IDEF Family of Languages 239

For the most part, the semantics of complex schematics such as this is a
straightforward generalization of simple schematics, only instead of a single
transition there are several successive transitions. Thus, the schematic in
Figure 25 expresses a transition in which a project evolves from an initial
state to a first milestone state and thence to a second milestone state via the
UOBs of the sort indicated.

Transition junctions permit the construction of more subtle schematics
that express concurrent and alternative paths in a series of transitions. Junc
tions can take any of the three forms illustrated in Figure 26.

(B)

0*
(C)

Figure 26: Transition Junctions

The semantics of these junctions parallels their process schematic coun
terparts. If * is '&' in schematic (A) in Figure 26, for example, then the
schematic indicates a transition in which objects Xl. .•. , Xi in states 51, ... , 5i ,

respectively, transition to an object y in state 5. If * is 'X' in (B), then the
schematic indicates a transition of an object X to an object y in exactly one of
the states T1, ... , Tj . Form (C) allows for even more complex transitions. For
example, if * is '0' and ** is '&', then the schematic indicates a transition
in which one or more objects Xl, ••• ,Xi in states 51, ... , 5i transition to objects
Y1, ... ,Yj in the states T1, ... ,Tj , respectively. Similarly for the remaining
possibilities. The syntax and semantics of referents with transition junctions
is straightforward but subject to a number of conventions. The reader is
referred to [MMP93] for details.

www.manaraa.com

240 Christopher Menzel, Richard J. Mayer

5.5 General Kind Schematics

Early in its development, IDEF3 was focused entirely on the representation
of process knowledge, and its language included no transition schematics
(see, e.g., [MME94]). The desire of modelers to describe processes from an
object.:.centered perspective led to the introduction of transition schematics.
Realization of the importance of general ontologies for understanding, shar
ing, and reusing process models, however, has led to a deeper integration
of the IDEF3 method with the IDEF5 ontology capture method. Indeed,
the IDEF5 ontology description language has become incorporated into the
IDEF3 transition schematic language. This language permits a modeler to
express, not only information about state transitions, but general information
about the objects, classes, and relations. Space limitations prevent a detailed
discussion of this component of IDEF3. Once again, interested readers are
referred to [MMP93j.

Acknowledgments: Christopher Menzel would like to thank Alexander Bocast for
numerous illuminating discussions concerning IDEFO, and for allowing the authors
to borrow heavily from several figures that he designed.

References

[End72] Enderton, H., A Mathematical Introduction to Logic, New York, Aca
demic Press, 1972

[Gru93] Gruber, T., A Translation Approach to Portable Ontologies, Knowledge
Acquisition 2, 1993, 199-220

[IEEE97] Standard Users Manual for the !CAM Function Modeling Method -
IDEFO, IEEE draft standard, P1320.1.1, 1997

[MMP93] Mayer, R. J., Menzel, C., Painter, M., deWitte, P., Blinn, T., Ben
jamin, P., IDEF3 Process Description Capture Method Report, Wright
Patterson AFB, Ohio, AL/HRGA, 1993

[MKB95] Mayer, R., Keen, A., Browne, D., Harrington, S., Marshall, C.,
Painter, M., Schafrik, F., Huang, J., Wells, M., Hisesh, H., IDEF4
Object-oriented Design Method Report, Wright-Patterson AFB, Ohio,
AL/HRGA, 1995

[MBM94] Mayer, R., Benjamin, P., Menzel, C., Fillion, F., deWitte, P., Futrell,
M., and Lingineni, M., IDEF5 Ontology Capture Method Report,
Wright-Patterson AFB, Ohio, AL/HRGA, 1994

[MME94] Menzel, C., Mayer R., Edwards, D., IDEF3 Process Descriptions and

www.manaraa.com

The IDEF Family of Languages 241

Their Semantics, in: A. Kusiak, C. Dagli (eds.), Intelligent Systems in
Design and Manufacturing, New York, ASME Press, 1994

[NIST93a] Integration Definition for Function Modeling (IDEFO), Federal Infor
mation Processing Standards Publication 183, Computer Systems Lab
oratory, National Institute of Standards and Technology, 199317

[NIST93b] Integration Definition for Information Modeling (IDEF1X), Federal In
formation Processing Standards Publication 184, Computer Systems
Laboratory, National Institute of Standards and Technology, 1993

[RB87]

[Ros77]

[Sof81]

Ramey, T., Brown, R., Entity, Link, Key Attribute Semantic Informa
tion Modeling: The ELKA Method, ms, Hughes Aircraft, 1987

Ross, D., Structured Analysis (SA): A Language for Communicating
Ideas, TSE 3 (1), 1977, 16-34

SofTech, Inc. Integrated computer-aided manufacturing (ICAM) archi
tecture, Pt. II, Vol. V: Information modeling manual (IDEF1), DTIC
B062457, 1981

17 At the time of this writing, the IDEFO, IDEFIX, IDEF3, IDEF4, and IDEF5 reports
listed here are available on the World Wide Web at http://www.idef.com.

www.manaraa.com

CHAPTER 11

The CIMOSA Languages

Fran~ois Vernadat

CIMOSA is an open system architecture for Enterprise Integration (EI), and espe
cially for integration in manufacturing. The architecture comprises an Enterprise
Modelling Framework, an Integrating Infrastructure and a System Life Cycle. This
contribution presents the modelling languages used in the Enterprise Modelling
Framework. The CIMOSA languages are based on an event-driven process-based
model and cover functional, information, resource and organisational aspects of
an enterprise (including a workflow language for specifying enterprise behaviour).
They can be used at various modelling levels along the system life cycle, including
requirements definition, design specification and implementation description. Prin
ciples of these languages have influenced standardisation work in the field (CEN
and ISO) as well as the development of commercial tools for business process mod
elling and analysis.

1 Introd uction

Enterprise Integration(EI) is a concept emerging from three major Informa
tion Technology areas: open distributed processing, co-operative information
systems (especially federated databases) and integration in manufacturing,
originally named Computer-Integrated Manufacturing (CIM). However, it
is now well understood that in addition to these technical aspects, EI also
strongly relies on organisation and human resource management principles to
include organisational aspects and place people at the heart of the paradigm
[BN96, Ver96].

EI is concerned with breaking down organisational barriers and facilitat
ing information exchange and sharing throughout an enterprise to make it
more competitive and more reactive in a dynamic and global economy.

Information Technologies, and especially information systems, are of para
mount importance in the development of enterprise integration solutions in
terms of high speed computer communications networks, distributed data
bases, distributed computing environments, information exchange (adminis-

www.manaraa.com

244 Franr;ois Vernadat

trative or product data exchange), application interoperability, inter-working
or computer supported co-operative work.

Enterprise Modelling(EM) is another fundamental component in the plan
ning and development of EI projects [Ver96]. EM is a generic term which
covers the set of activities, methods and tools related to developing models
for various aspects of an enterprise.

The aim of EM is threefold: (1) to assist in building an enterprise model
or common view of the enterprise which can be shared by the various actors,
i.e. building a consensus, (2) to support enterprise analysis and decision
making about the parts to be integrated, and (3) to support model-based
integration, i.e. using the enterprise model as a federation mechanism to
integrate humans, business processes and information systems.

This article presents the CIMOSA languages used for enterprise modelling
in the CIMOSA architecture. They cover functional, information, resource
and organisation aspects of a manufacturing enterprise at various modelling
levels: requirements definition, design specification and implementation de
scription. An application example is provided.

2 CIMOSA

CIMOSA [AMI93] is an Open Systems Architecture for Enterprise Integra
tion. It has originally been developed for Computer-Integrated Manufactur
ing (CIM) applications as a series of ESPRIT Projects (EP 688, 5288 and
7110) over a period ranging from 1986 until 1994 with the support of the
European Commission. More than 30 European companies (including CIM
users and IT vendors) as well as academic institutions have contributed to
its design and validation.

Its aim is to provide the manufacturing industry with (1) an Enterprise
Modelling Framework (EMF), which can accurately represent business oper
ations, support their analysis and design, and lead to executable enterprise
models; (2) an Integrating Infrastructure (IIS), used to support application
and business integration as well as execution of the implementation model
to control and monitor enterprise operations; and (3) a methodology to be
used along the System Life Cycle (SLC) to assist users in applying CIMOSA
principles [CIM96].

CIMOSA provides a Reference Architecture (known as the CIMOSA
cube) from which particular enterprise architectures can be derived. This Ref
erence Architecture and the associated enterprise modelling framework are
based on a set of modelling constructs, or generic building blocks, which alto
gether form the CIMOSA modelling languages. These languages are based on
an event-driven process-based model centered on two fundamental and com
plementary concepts: business process to mod.el enterprise behaviour and
enterprise activity to model enterprise functionality [Ver93]. Other concepts,
defined as modelling constructs, are also used to represent various aspects

www.manaraa.com

The CIMOSA Languages 245

of an enterprise as summarised by Figure 1. For the sake of simplicity, this
figure does not show constructs of the organisation view.

The System Life Cycle defines the set of essential and generic phases
that an enterprise integration project has to go through, irrespectively of
their sequence. It is based on the GERAM (Generalised Enterprise Ref
erence Architecture and Methodology) life cycle [BN96] and comprises the
following phases: identification phase, concept phase, requirements definition
phase, design specification phase, implementation description phase, opera
tion phase and maintenance and decommissioning phase.

The CIMOSA Integrating Infrastructure is not discussed in this paper.
The interested reader is referred to [AMI93] for more details.

)
)

Event

Enterprise
Object

state
of

Information
View

: :

uses/produces

Domain
Relationship

Objective/
Constraint

,---+~ Capability
. Set

reqUITes

I provides

i
needs I Resource

;
employs . is Isubc1ass of

1

executed by Functional

Entity

Resource
View

Figure 1: Relationships among essential CIMOSA constructs

3 Business Process Modelling

The earlier methods for enterprise modelling focused very much on the func
tional aspects, providing an activity constructs and the principle of functional

www.manaraa.com

246 Fran~ois Vernadat

decomposition (such as IDEFO or GRAI). Later on, new methods have been
proposed to focus on causal and precedence relationships among activities and
information flows (e.g. ARlS, CIMOSA, IDEF3, IEM). However, in addition
to traditional functional and information aspects as found in most business
process modelling languages, resource and organisation aspects must also be
covered to model industrial business processes [Ver96].

CIMOSA defines an enterprise as a large collection of:

• concurrent processes being executed on request to achieve business
goals, and

• interacting agents, or functional entities, executing processes, i.e. pro
cessing enterprise objects.

Thus, CIMOSA emphasises a clear separation between processes (what has to
be done) and resources (the doers). The link between the two is materialised
by primitive actions, called functional operations (as required by process steps
and provided by functional entities). Functional operations are grouped into
enterprise activities to form elementary process steps.

The processes can be logically organised into functional areas called do
mains to break down system complexity. These processes must be synchro
nised over time and compete for resources. Top-level processes are called
domain processes. They are triggered by nothing but events. An event is
a solicited or unsolicited happening. Sub-processes are called business pro
cesses in the CIMOSA jargon. They employ enterprise activities which con
sume time and require resources for their complete execution to transform
input object states into output object states. These object states are called
object views (Figure 1).

Three separate types of flows can be distinguished within any enterprise
with CIMOSA:

• the control flow defined as a workflow, which defines the enterprise
behaviour,

• the material flow, which defines the flow of products or physical com
ponents, and

• the information flow, which defines the flow of information objects and
decisions.

These flows can be modelled separately or altogether. For the sake of clarity,
it is recommended to model them separately starting with the control flow,
then adding the material flow and finally analysing the information flow. The
information flow can be further specialised into a document flow, a data flow
or a decision flow, if necessary.

The model must then be enriched with resource constraints indicating for
each process step what are the resources required. Conflicts occur in the case

www.manaraa.com

The CIMOSA Languages 247

of shared resources among several processes and resolution policies must be
foreseen.

as:
Finally, according to Bussler [Bus96], business processes can be classified

• well-defined processes (or deterministic processes), i.e. processes for
which the sequence of steps is known and deterministic, and

• ill-structured (or semi-structured) processes, i.e. processes for which
the complete sequence of steps is partially known.

These are important aspects to be taken into account in business process mod
elling languages in addition to synchronisation, co-operation, non-determinism
and exception handling features of processes. In [Bus96], Bussler presents a
workflow modelling language to specify business processes which addresses
some of these issues. This language has some similarities with the CIMOSA
languages presented in the subsequent sections.

4 The CIMOSA Languages

The CIMOSA modelling paradigm is based on an event-driven process-based
modelling approach to cover business requirements definition, system de
sign and implementation description [Ver93]. It places the business process
concept at the heart of the approach and it is supported by a set of mod
elling languages. These languages are made of modelling constructs for each
modelling level. A workflow language is also included to describe enterprise
behaviour.

Note: A business process is a partially ordered set of activities, as per
ceived by the business user. It is defined in terms of a flow of control, a
flow of materials, a flow of information and resource needs and allocation to
process steps. A workflow is a computer representation of the flow of control
(or sequence of steps) of a business process.

4.1 Workflow Language

Process behaviour is expressed in terms of a simple declarative workflow
language in which all statements are defined as 'HEN (condition) DO action'
rules called behavioural rules. A complete process behaviour is defined by a
Behavioural Rule Set (BRS) as follows in Backus-Naur form:

behavioural_rule_set ::= <starting_rules> <behavioural_rules>

<starting_rules> ::= <simple_starting_rule> <event_driven_rules>
<simple_starting_rule> ::= WHEN (START) DO <action>
<event_driven_rules> ::= <event_driven_rule> <event_driven_rule>

<next_event_driven_rules>

www.manaraa.com

248 Franr;ois Vernadat

<next_event_driven_rules> ::= <event_driven_rules> nil
<event_driven_rule> ::= WHEN (<event_condition>) DO <action>
<event_condition> ::= START WITH <event_list>
<event_list> ::= event-id <next_event>
<next_event> ::= AND event-id <next_event> nil

<behavioural_rules> ::= <behavioural_rule> <next_behavioural_rules>
<next_behavioural_rules> ::= <behavioural_rules> nil
<behavioural_rule> ::= WHEN (<triggering_conditions>) DO <action>
<triggering_conditions> ::= <triggering_condition>

<next_triggering_condition>
<next_triggering_condition> ::= AND <triggering_condition>

<next_triggering_condition>
AND event-id <next_triggering_condition> nil

<triggering_condition> ::= ES (process-step-id) = <ESvalue>
<ESvalue> ::= ending-status-id ANY

<action> ::= process-step-id <asynchronous_spawning>
<synchronous_spawning> FINISH

<asynchronous_spawning> ::= process-step-id <other_steps>
<other_steps> ::= & process-step-id <other_steps> nil
<synchronous_spawning> ::= SYNC (<asynchronous_spawning>

where: event-id is the identifier of an event, process-step-id is the identifier of
a process step (process or activity), ending-status-id is the name of an ending
status of a process step, & is the parallel operator in the action clause.

Using this syntax, it is therefore possible to specify the following situa
tions:

1. Process triggering rules: There are two possible cases:

(a) Starting a domain process by means of one or more events. In the
following case, a domain process starts with process step EFI any
time after an occurrence of both event-i and event-j occurred (not
necessarily at the same time):

WHEN (START WITH event-i AND event-j) DO EF1

(b) Starting a business process called by a parent process using a sim
ple starting rule:

WHEN (START) DO EF1

2. Forced sequential rules: These rules are used when a process step EFx
must follow another step EFy whatever the ending status (given by the
built-in function ES) of EFx is. The reserved word 'ANY' is used in
this case (not an ending status).

WHEN (ES(EFx) = ANY) DO EFy

www.manaraa.com

The CIMOSA Languages 249

3. Conditional sequential rules: These rules are used to represent branch
ing conditions in a flow of control. For instance, if EFI has three
exclusive ending statuses, one can write:

WHEN (ES(EF1) = end_staLl) DO EF2
WHEN (ES(EF1) = end_staL2) DO EF3
WHEN (ES(EF1) = end_staL3) DO EF4

4. Spawning rules: These rules are used to represent the parallel execution
of process steps in a flow of control. Two types of spawning rules can
be defined:

(a) Asynchronous spawning: For instance, when EFI finishes with
status 'value', EF2, EF3 and EF4 will all be requested to start
as soon as they are enabled, i.e. when their preconditions are
satisfied (& is the parallel operator).
WHEN (ES(EF1) = value) DO EF2 & EF3 & EF4

(b) Synchronous spawning: For instance, when EFI finishes with sta
tus 'value', EF2, EF3 and EF4 will all be requested to start exactly
at the same time assuming that they are all enabled (SYNC indi
cates the synchronisation).
WHEN (ES(EF1) = value) DO SYNC (EF2 & EF3 & EF4)

5. Rendez-vous rules: These rules are used to synchronise the end of
spawning rules. For instance, if EF5 must be started after EF2 fin
ishes with status value-2 and EF3 finishes with status value_3 and EF4
finishes with status valueA, we will write:

WHEN (ES(EF2) = value_2 AND ES(EF3) = value_3
AND ES(EF4} = value-4} DO EF5

6. Loop rules: These rules are used to execute the same process step(s)
several times as long as a loop condition is true. For instance, the
following statement repeats EFI as long as EFI finishes with status
loop_value:

WHEN (ES(EF1) = loop_value} DO EF1

7. Process completion rules: These rules are used to indicate the end of
a process and only contain the word FINISH in their action part. For
instance,

WHEN (ES(EF1) = end_stat-x AND ES(EF2) = end_staLy)
DO FINISH

Using these rules, a process behaviour is said to be consistent if FINISH can
be reached from all STARTs and all process steps used in the rules belong to
at least one path from START to FINISH (no isolated process steps and no
dead-ends are allowed) in the control flow.

www.manaraa.com

250 Frant;ois Vernadat

Remark: Using this syntax, it is correct to write in CIMOSA:

WHEN (START) DO FINISH
In this case, the process behaviour is limited to one behavioural rule. This is
the empty process, i.e. a process which does nothing (neutral element in the
set of processes).

Two types of behavioural rules have been added to the previous set to
model semi-structured processes: run-time choice rules and unordered set
rules. In these rules, the action part refers to a compound action (variable
S), meaning that it is considered as a whole to make possible the definition of
its ending status. The extension of the language syntax is as follows (where
XOR is the exclusive choice operator):

<action> ::= ... <run_time_choice> <unordered_set>
<run_time_choice> ::= compound-action-id = (process-step-id XOR

process-step-id <other_run_time_steps>)
<other_run_time_steps> ::=

XOR process-step-id <other_run_time_steps> nil
<unordered-set> ::=

compound-action-id = { process-step-id , process-step-id
<other_unordered_set_steps> }

<other_unordered_set_steps> ::=
process-step-id <other_unordered_set_steps> nil

1. Run-time choice rules: These rules are used when there is an exclusive
choice among several alternatives. Exactly one process step in the list
will be executed as decided by the resource at run-time, which must be
common to all steps in the list.

WHEN (ES(EF1) = end_staLl} DO S = (EF2 XOR EF3 XOR EF4)

2. Unordered set rules: They are used to indicate that a set of process
steps must be executed next but the order of execution is unknown. In
this case, all steps must be executed at least once (the semantic is the
semantic of the AND logical operator).

WHEN (ES(EF1) = end_staLl} DO S = {EF2, EF3, EF4}

4.2 Functional Languages

Within a domain, domain processes are made of enterprise activities and sub
processes, also called business processes, and are triggered by events. Let P
denote the set of process classes, A the set of activity classes, OV the set of
object view classes, R the set of resources and E the set of event classes of a
business entity. Let also 28 denote the power set of S.

Activities: Enterprise activities are functional units which require the
allocation of time and resources for their full execution. By essence, an
activity performs something (at least it consumes time), except the activity

www.manaraa.com

The CIMOSA Languages 251

NIL which does nothing (neutral element of set A). By definition, an activity
class A of A is a function f which transforms inputs into outputs when some
pre-conditions are satisfied. In other words, its occurrences transform an
initial state into a final state under the condition Cf (i.e. a logical expression
called a guard). We can therefore write:

A: final state = f(initial state) if Cf (initial state) = true,

Input states and output states are defined in terms of object views of OV.
The guard can be used to specify special triggering conditions or resource
requirements. It is always possible to associate with each activity class A of
A a finite set ESA of so-called ending statuses. Ending statuses are defined
as O-argument predicates. They summarise the termination status of the
execution of an occurrence of the activity (such as 'successful execution',
'aborted', 'done' or 'less than 100 items produced'). The generic function
ES returning the ending status at the end of an activity execution can be
defined as follows:

ES: A -+ uA E A ESA such that ES(A) E ESA

In CIMOSA, an activity class A is defined as a lO-tuple A = < Aid,FIA,
FOA,CIA,COA,RIA,ROA,8AA,CapA,ESA > where Aid is the name of
the activity class, FIA,FOA,CIA,COA,RIA,ROA are the function input,
function output, control input, control output, resource input and resource
output of A, respectively (with FIA U FOA UClA ¥ 0; FIA n CIA = 0;
FIA,FOA,ClA,ROA ~ 2ov;RIA ~ 2R;COA ~ 2E),8A defines the activity
behaviour, i.e. the function f and guard Cf performed by occurrences of A
(usually defined as an algorithm for machines and a script for humans) such
that 8A(FIA, CIA, RIA) = (FOA, COA, ROA), CapA is the set of required
capabilities for this activity (defined in the resource view) and ESA is the
finite set of ending statuses. Function input and function output provide the
list of object views which are respectively transformed and produced by the
activity. Control input indicates object views used by the activity but not
modified (control information). Control output provides the list of events
which can be generated by the activity. Resource input defines resource
requirements. Resource output provides data on resource status after the
execution of the activity (optional). If an input (output) receives (sends) a
flow of object views, we then use the term STREAM OF <object-view-class>

At the design level, time is added in the form of minimum and maximum
durations (real numbers dmin and dmax, dmin ~ dmax), defining the time
it takes to execute an activity (dmin = dmax for deterministic activities and
dmin ¥ dmax for stochastic activities). An average duration davg with stan
dard deviation could also be specified. Furthermore, the activity behaviour
8A is defined in terms of elementary actions performed by the activities of
class A. These elementary actions are called functional operations. These
are atomic operations either performed on request by functional entities, i.e.

www.manaraa.com

252 Fran~ois Vernadat

active resources or actors of the system (e.g. drill a hole, move a part, write
a letter or fetch data in a data store), or by a CIMOSA model execution
service. Each functional operation is formally denoted as (by analogy to a
message sent to a method of an agent):

FE.FO (parameter-list)

where FE is the name of the functional entity able to execute the func
tional operation FO and parameter-list is the list of formal (input/output)
arguments of the operation. Input/output arguments are syntactically dif
ferentiated (such as in languages like Ada or CORBA IDL).

A special built-in functional operation, defined as GreateEvent (e), can be
used in any activity. It will be used within an activity to raise an occurrence
of event class e of E. Using this function, it is possible to raise an event within
an activity of process Pl which will trigger another process P2 (within or
outside the domain considered). This facility makes it possible to synchronise
processes using events.

The activity behaviour 8 A of an activity class A has the following syntax
[Ver94]:

Activity Behaviour {<A-behaviour>} [Exception Handling :
<exceptions>]

<A-behaviour> ::= <declarations> <pre-conditions> <statements>
<post-conditions>

where < declarations> is used to declare local variables, <pre-conditions> is a
set of predicates defining pre-conditions on the execution of the activity (e.g.
access to non-empty files, availability of necessary function or resource inputs,
variable initialisation, ...), <statements> are either functional operation calls
or Pascal-like procedural statements (including variable assignments, if-then
structures, case structures, loops, etc.) involving functional operation calls,
<post-conditions> defines a (possibly empty) set of actions to be executed at
the end of the activity (e.g. forcing variables to values, closing files or setting
ending status values). The <exceptions> clause (optional) allows the defini
tion of exception handling mechanisms (such as time-outs or watch-dogs) to
face non-deterministic situations (e.g. detection of an infinite loop, conditions
never realised or deadlock situations). It has the following structure:

< exception> : < excep_action> ;

where <exception> is a Boolean condition (e.g. elapsed-time = 100 or Not
(Gl) or Var-A > Threshold-A) and <excep_action> is a set of statements to
be applied if the exception condition becomes true or a call to raise an event
(using the CreateEvent operation).

An activity can only be executed within a process workflow if its trig
gering conditions and all its pre-conditions are satisfied, and if its required
resources are available. If the pre-conditions are not satisfied, control is ei
ther passed to the exception handling mechanism, which can either force the

www.manaraa.com

The CIMOSA Languages 253

value of the ending status for normal process continuation or call an exception
handling procedure if one is defined, or suspend execution and pass control
to a supervisor level (i.e. CIMOSA model execution services).

Co-operative Activities: Co-operative activities are activities which in
volve the exchange of messages (i.e. data, information or object views) and
need synchronisation (synchronous or asynchronous mode). Thus, they make
use of the following predefined functional operations (where a is an activity
identifier, m is the message and c is a communication channel):

• request (a, m, c) to ask a for message m via channel c

• receive (a, m, c) to receive message m via channel c from a

• send (a, m, c) to send message m via channel c to a

• broadcast (m, c) to send message m via channel c to anyone interested

• acknowledge (a) to let a know that its message has been received

Events: Events are unsolicited happenings (e.g. customer orders, signals, or
machine failures) or solicited happenings (e.g. requests, planned orders, or
timers) conditioning the execution of the enterprise operations, i.e. execution
of business processes and their activities. An event class E of E is defined as
a 4-tuple:

E =< Eid,q,OV,t >

where Eid is the name of the event class, q is a first-order logic predicate,
OV is an object view class (optional) defining information carried by events
of this class, if any, and t is a time-point indicating when the occurrence of
the event happened. q defines a condition describing a real-world situation
in the enterprise. When it evaluates to true, an occurrence of the event class
is created. For instance, the arrival of a customer order is an event, the
customer order itself is an object view. Starting or terminating an enterprise
activity can also be considered as events if required.

Processes: Enterprise processes describe the enterprise behaviour, i.e. the
order in which activities are chained and executed. Let P be a process class
of P. P is defined as a 5-tuple:

P =< Pid,ap,{3p, 8p, ESp >

where Pid is the name of the process class, ap is called the alphabet of P
and represents the set of steps (i.e. activities) in which occurrences of P
can engage, {3p is the set of triggering conditions c (see workflow language)
under which a process of P can be started ({3p = (c/(c -t P)), 8p is a set of
behavioural rules which defines the process behaviour and ESp is a finite set
of ending statuses of processes of P such that ESp = s~, s~, ... , S~j' 1 :::; j :::;
Card(P) , mj EN (set of natural numbers). Ending statuses are O-argument

www.manaraa.com

254 Franr;ois Vernadat

predicates indicating the termination status of the process. They must be
ending statuses or logical combinations of ending statuses of enterprise ac
tivities employed in the process.

At the design specification modelling level, functional models can be auto
matically translated into timed Petri nets, and especially generalised stochas
tic Petri nets. This allows for qualitative analysis (liveness, boundedness,
reversibility, p-invariants, etc.) and quantitative analysis (cycle times, bot
tlenecks, etc.) of business processes using Petri net theory [DHP93, Mur89].
Petri nets are directed graphs made of two types of nodes: places (repre
sented by circles) and transitions (represented by bars). Time is associated
to transitions. Translation rules can be provided in graphical form as indi
cated by Figure 2 (where EFi denotes a process step, e represents an event,
Sj is an ending status, 0 denotes an immediate transition represented by a
black bar with firing time equal to zero and places with double circles are con
trol places, i.e. their marking is controlled by an external agent to represent
external actions on the system).

4.3 Information Languages

At the requirements definition modelling level, CIMOSA uses two constructs
in the information view: enterprise objects and object views.

Enterprise objects are actual entities of the enterprise. They are defined
by their object class (i.e. structure), their state (i.e. occurrence values) and
are characterised by their unique identifier. An enterprise object class 0 of ° is defined as a 3-tuple 0 =< Oid, {akh=1,2, {Pih=l,n > where Oid is the
object class name, ak is an abstraction mechanism (al is the generalisation
mechanism for 'is-a' links associated to property inheritance and a2 is the
aggregation mechanism for 'part-of' links) and each Pi is an object property
({pih#) such that:
Pi : 0 ~ Di where Di is a basic domain (i.e. a set of values such as integers,
reals, character strings, etc.), if Pi is an atomic property.
Pi : 0 ~ 0 1,01 E 0, if Pi is defined as an object (for compound objects).
Pi : 0 ~ 2°',01 EO, if Pi is defined as a set of objects of class 0'.

Methods, i.e. procedural attachments, can be added to object class defini
tion, but this is not necessary for the scope of this paper. Integrity constraints
can also be defined on properties.

Object Views: Material and information objects of the enterprise used as
control input, function input and/or function output of at least one enterprise
activity are described as object views. An object view, or object state, is a
representation or physical manifestation of an object as perceived by users or
applications at a given point in time. It is characterised by its embodiment
and is described by a set of properties. A class OV of V of similar object
views can be defined as a 4-tuple (object views are occurrences of the class
OV):

www.manaraa.com

The CIMOSA Languages 255

where OVid is the name of the object view class, nature = 'physical' if the
object view class represents physical objects (e.g. materials, work-pieces or
tools) or nature = 'information' if the object views are only made of data
(e.g. forms, computer screens, reports, files or messages), {Pili is a set of
properties of objects of classes {OJ}j of 0 on which the object views of the
class OV are defined.

At the design specification modelling level, all object views are specified
as external schemas of one global conceptual schema derived from enter
prise object specification. The conceptual schema defines the structure of
the databases to be implemented to support the integrated system. Both the
conceptual schema and the external schemas can either be expressed in terms
of an extended entity-relationship model or an object-oriented model accord
ing to users' requirements. These specifications can then be implemented
using the relational model and the SQL language at the implementation de
scription modelling level [JV90j.

4.4 Resource Languages

CIMOSA provides two modelling constructs for resource modelling: resource
and capability set. Resources can be classified into active resources (func
tional entities) and passive resources (components) in the sense that one
class can execute functional operations and the other cannot. Components
and functional entities can be aggregated to form new resources.

Resources: Resources represent any kind of physical enterprise means used
to perform tasks (e.g. machines, tools, materials handling systems, devices,
computers or database systems) as well as application systems such as CAD
systems, CAPP systems or MRP systems and also human beings. Thus, the
set of resource classes R is such that ReO.

Functional entities are active resources offering a finite set of capabilities
and able to perform a defined set of so-called functional operations on request
or on their own. They represent actors or doers of the system. A class R of
functional entities of R can be defined as a 5-tuple:

where Rid is the name of the functional entity class, OVR defines the ob
ject view providing the set of descriptive properties (variables) describing
the state of a resource of class R, CapR is the finite set of capabilities of
fered by resources of class R, FOR is the set of functional operations (basic
commands) that resources of class R can understand and execute and fR
is a table (optional) indicating for a given resource of R when and for how
long this resource object is allocated to specific activities (resource scheduling
problem). Allocation and assignment modes can also be added.

www.manaraa.com

256 Pran~ois Vernadat

Basic building blocks Equivalent Petri net structures
t1

1) ST~ START ©--D EF ~

e~~ ~ 2) EF ~ ST~O START
t1 S t2

3)~ ~ ~

~ 1 S
4) ~ t3

S =s I}--o
t

S"=S 2

5)
~

~
t1

E~
6) EF3 ~

~ s2

s1 t1

7)

8)~s2
s1

,--.r--.. __ I--.J". __ S = s1

9) 6- FINISH

Figure 2: Workflow translation rules into generalised stochastic Petri nets

Functional entities are similar in their definition to the one of agents
as used in artificial intelligence. They can receive, send, process or even
store information. Active and passive resources can be aggregated into larger
functional entities. CIMOSA classifies functional entities into three generic
classes: machines (for any device having some degree of autonomy or intelli
gence), applications (for computer applications) and humans [AMI93]. Each

www.manaraa.com

The CIMOSA Languages 257

class has characteristics of its own, especially in terms of the set of provided
capabilities (i.e. skills, abilities or and competencies) and can in turn be
further specialised.

Capability Set: Capability set is a construct used to define capabilities
required by an activity and capabilities provided by a resource. When the
activity is executed, the resource(s) allocated to the activity must offer the
right capabilities.

Capabilities are defined in terms of technical characteristics or constraints
for machines and applications (e.g. repeatability or reachability of a robot
arm, data access time for a database server or speed and feed range of a
machine-tool). They are defined in terms of qualifications, skills and compe
tencies for human beings (for instance, to have a driver's licence for cars and
trucks, to speak English, French and German or to be a certified industrial
engineer). CIMOSA distinguishes between function, object, performance and
operation related capabilities of a resource (for instance, to be able to move
50 Kg heavy parts over a distance of 10 meters, 20 times per hour).

At the requirements definition modelling level, only required capabilities
are defined for each activity as resource input. At the design specification
modelling level, resources, and especially functional entities, are defined with
their complete sets of provided capabilities and functional operations. The
same constructs are used at the implementation description level.

4.5 Organisation Languages

CIMOSA defines the organisation view of an enterprise in terms of responsi
bilities and authorities to be allocated to managerial units being in charge of
a particular job or various elements of a particular enterprise architecture (i.e.
processes, activities, object views, resources). Two constructs are defined:

Organisation Units: An organisation unit is a decision centre reduced to
one functional entity with a specified job profile and well-defined responsibil
ities and authorities.

Organisation Cells: An organisation cell is an aggregation of organisation
units to form a higher level decision centre in the organisation hierarchy. It
is placed under the management of one functional entity (must be a human)
and it has a set of well-defined responsibilities and authorities on specified
elements of the enterprise architecture, i.e. processes, activities, object views,
resources or lower level organisation units.

These constructs are used at all modelling levels.

5 Application Example

Let us consider a customer order processing domain. The domain consists of
two domain processes: a customer order processing procedure (process-cust
order), occurrences of which are triggered by the arrival of new customer

www.manaraa.com

258 Prant;ois Vernadat

orders (order-AI-arrival events) and a procedure for sending acceptance no
tification with price and delay (send-notification). The process-cust-order
domain process uses four classes of activities: check-customer, check-order,
process-order and reject-order. Check-customer and check-order can be done
in parallel.

The definitions of the domain, the process-cust-order process and the
order-AI-arrival event follow. The domain construct provides a 'table of con
tents' of this part of the model, stating domain objectives and constraints,
listing involved domain processes, events and object views. The domain
process template has been provided with entries for process objectives and
constraints, which must be sub-objectives and constraints of the domain. It
has also an entry for declarative rules which are imperative rules (business
rules, administrative rules, regulations, etc.) constraining the design of the
process. It has also been provided with input and output entries for trace
ability of inputs and outputs. However, their use is optional for processes.
Finally, the process behaviour is defined by a set of procedural rules. The
event template indicates the domain processes to be triggered and the related
object view.

DOMAIN cust-ord-processing
Domain Description: Concerns receipt, acceptance, processing

of customer orders and price and delay
notification to customers

CIMOSA Compliant: Yes
Domain Objectives:

Domain Constraints:

Domain Processes:
Boundary:
Object Views:

Events:

to accept or reject customer orders
and notify customers
to be able to process at least 100
customer orders per day
process-cust-order, send-notification
Finance-relationship, MRP-relationship
order-A1, customer-file, customer-data,
cust-notification
order-A1-arrival

EVENT order-A1-arrival
Triggers: process-cust-order
Object View: order-A1
Predicate: arrival (order-A1)

DOMAIN PROCESS process-cust-order
Objectives: to receive customer orders, to check the order, to check

the customer, and to process or reject the order
Constraints: to be able to process at least 100 customer orders per

day
Declarative Rules: DC-cust-ord-proc
Function Input: customer-file
Function Output: customer-data

www.manaraa.com

Control Input: order-Al
Control Output: Nil
Resource Input: Nil
Resource Output: Nil
Events: order-Al-arrival
Process Behaviour: {

The CIMOSA Languages

WHEN (START WITH order-Al-arrival) DO check-order & check-customer
WHEN (ES(check-order)=' OK' AND ES(check-customer) 'OK')

DO process-order
WHEN (ES(check-order)='NOT-OK' AND ES(check-customer)=ANY)

DO reject-order
WHEN (ES(check-order)= ANY AND ES(check-customer)='NOT-OK')

DO reject-order
WHEN (ES(process-order)='done') DO FINISH
WHEN (ES(reject-order)='done') DO FINISH}

259

Each enterprise activity identified must be defined by description of its
inputs and outputs and definition of its full set of possible ending statuses.
For instance, the activity check-customer is defined as follows (no activity
behaviour is defined at this modelling level and resource requirements are
defined in the required capabilities RC-check-customer):

ENTERPRISE ACTIVITY check-customer
Objectives: to verify the validity of this customer
Constraints: to be able to process at least 100 customer orders per

day
Declarative Rules: DC-customer-rejection-rule
Function Input: customer-file
Function Output: customer-data
Control Input: order-A!
Control Output: Nil
Resource Input: Nil
Resource Output: Nil
Required Capabilities: RC-check-customer
Ending Statuses: {'OK' for valid customer, 'NOT-OK' otherwise}

where DC-customer-rejection-rule is a declarative rule (CIMOSA construct)
stating, for instance, that the customer order will be rejected if customer debit
is greater than ECU 20.000, customer-file and customer-data are information
object views about the customer, order-A1 is an object view defining the
customer order and providing the customer identification, and RC-check
customer defines the set of capabilities required for the activity (e.g. process
a customer order in less than 5 min).

Finally, all object views identified in the previous constructs must be de
fined in terms of their properties (information elements with relevant data
types or other object views). An object view can be made of other object
views (for instance, a technical document structured into sections and in
cluding pictures). As an example, the template for the order-A1 object view

www.manaraa.com

260 Franfois Vernadat

is given. The object view defines the leading object and related objects on
which this object view is defined and the list of properties describing occur
rences of the object view. Among these, customer-id, status and date are
information elements and the others are object views.

OBJECT VIEW order-A1
Description: Describes customer orders of type A1 sent

by customers by EDI
Leading Object: customer
Related Objects: end-products
Properties:
customer-id: string [10]
date: date
customer-address: address
delivery-address: address
itemlist: setof item-quantity
status: (new, in-process, accepted, rejected)

At the design specification modelling level, the model is specified in more
details. Especially, time is added. Thus, the order-A1-arrival event and
the check-customer activity are further detailed as follows (where FE-1 and
printer-A are functional entities, customer is a local variable and SD the
system wide information access system of the CIMOSA Integrating Infras
tructure):

EVENT order-Ai-arrival
Source: outside (* means outside domain *)

Triggers: process-cust-order
Object View: order-A1
Predicate: Arrival (order-A1)
Timestamp: time

ENTERPRISE ACTIVITY check-customer
Objectives: to verify the validity of this customer
Constraints: to be able to process at least 100 customer orders per

day
Declarative Rules: DC-customer-rejection-rule
Function Input: customer-file
Function Output: customer-data
Control Input: order-A1
Control Output: Nil
Resource Input: FE-1, printer-A
Resource Output: Nil
ReqUired Capabilities: RC-check-customer
Minimum Duration: 100
Maximum Duration: 200
Activity Behaviour: {
Declare cust-id: string [10]; (* declares local variables *)

www.manaraa.com

The CIMOSA Languages

Preconditions: not-empty (customer-file);
Begin (* activity behaviour processing *)
SD.Get (customer-file);
SD.Get (order-A1);
cust-id := order-A1.customer-id;
FE-1.Check (cust-id, customer-file, customer-data, success);

(* implements the Declarative Rule *)

if success = 0 then begin
printer-A.print (customer-data);
ES (check-customer) := 'OK' end
else ES (check-customer) := 'NOT-OK' end
end;
Postconditions: order-A1.status := 'in-process';

SD.Put (order-A1);
SD.Put (customer-data)}

Ending Statuses:
{'OK' for valid customer, 'NOT-OK' othervise}

261

Pre-conditions and post-conditions can be declared for activities. If the
pre-conditions are not verified when the activity is started, control is passed
to the entity having responsibility for this construct (organisation unit). This
example shows that a type inference mechanism is required to recognise the
type of arguments of the functional operations used in the activity behaviour.
Formal arguments of functional operations are defined in the specification of
functional entities able to execute the functional operations. The example
also illustrates how ending status values are initialised during activity be
haviour processing. In some cases, ending statuses can be forced by post
conditions.

An example of a resource is given by the functional entity FE-l which
is a software application installed on a computer workstation to perform
functional operations of the check-customer activity. We assume that there
is only one copy of this software in the company.

RESOURCE FE-1
Description: Software program installed on UNIX station US-1 used to

check customer data for new customer orders
Class: Functional Entity (* other classes are: Component,

Resource Set, Resource Cell *)

Object View: FE-1-desc (* object view containing descriptive data
about the resource *)

Cardinality: 1 (* only one occurrence of this resource, called
resource unit, exists *)

Location: port-a (* the UNIX station is connected to the CIM
architecture by an entry point logically
called port-a in the model *)

Capability: C-FE-l (* set of capabilities provided described in a
separate construct *)

Command Set: (* set of functional operations provided by

www.manaraa.com

262 Fran~ois Vemadat

the resource *)

Check (IN cid: string [10], cust-file: customer-file,
OUT cust-data: customer-data, success: FOstatus)

Allocation Mode: FIFO (* first requesting activity is served first *)
Assignment Mode: FIFO (* first request is processed first *)

6 Conclusion

The CIMOSA modelling approach is a business process oriented modelling
approach covering functional, information, resource and organisation aspects
of an enterprise. It provides a different modelling language for each of the var
ious modelling levels of an enterprise, namely requirements definition, design
specification and implementation description. However, consistency among
modelling levels is ensured by preserving major concept description from one
level to another one.

The languages, although complex because of their richness in terms of
number of constructs, can be parsed to check model consistency and be used
for model simulation and execution. Especially, transformation rules have
been proposed to translate a control flow, expressed in terms of a workflow,
into generalised stochastic Petri nets, making its qualitative and quantita
tive analysis and simulation possible [Ver94]. Finally, CIMOSA ideas and
constructs have influenced standardisation work dedicated to enterprise mod
elling at the European level [CEN90, CEN95] or at ISO (ISO/TC184/SC5)
as well as the development of commercial enterprise modelling packages (such
as ARlS, FirstSTEP or even IBM's FlowMark).

References

[AMI93]

[BN96]

[Bus96]

[CEN90]

[CEN95]

[CIM96]

CIMOSA: Open System Architecture for CIM, 2nd extended and re
vised version, Springer-Verlag, Berlin, 1993

P. Bernus, L. Nemes (eds.), Modelling and Methodologies for Enter
prise Integration, Chapman & Hall, London, 1996

Bussler, C., Specifying enterprise processes with workflow modelling
languages, Concurrent Engineering: Research and Applications 4 (3),
1996, 261-278

CEN/CENELEC, Computer-Integrated Manufacturing, Systems Ar
chitecture, Framework for Enterprise Modelling, CEN, Brussels, 1990

CEN/CENELEC, Advanced Manufacturing Technology, Systems Ar
chitecture, Constructs for Enterprise Modelling, CEN, Brussels, 1995

CIMOSA Formal Reference Base, Version 3.2. CIMOSA Association
e.V., Germany, 1996

www.manaraa.com

[DHP93]

[JV90]

[Mur89]

[Ver93]

[Ver94]

[Ver96]

The CIMOSA Languages 263

Di Cesare, F., Harhalakis, G., Proth, J-M., Silva, M., Vernadat, F.,
Practice of Petri Nets in Manufacturing, Chapman & Hall, London,
1993

Jorysz, H. R., Vernadat, F. B., CIM-OSA Part 2: Information View,
Int. J. Computer-Integrated Manufacturing 3 (3), 1990, 157-167

Murata, T., Petri nets: Properties, analysis, and applications, Pro
ceedings of the IEEE 77 (4), 1989, 541-580

Vernadat, F., CIMOSA: Enterprise modelling and enterprise integra
tion using a process-based approach, in: H. Yoshikawa, J. Goosse
naerts (eds.), Information Infrastructure Systems for Manufacturing,
North-Holland, Amsterdam, 1993, 65-84

Vernadat, F., Manufacturing systems modelling, specification and
analysis, in: C. Walter, F. J. Kliemann, J. P. M. de Oliveira (eds.),
Production Management Methods (B-19), Elsevier Science, Amster
dam, 1994, 75-83

Vernadat, F. B., Enterprise Modeling and Integration: Principles and
Application, Chapman & Hall, London, 1996

www.manaraa.com

CHAPTER 12

ConceptBase
Managing Conceptual Models
about Information Systems

M.A. leusfeld, M. larke, H. W. Nissen, M. Staudt

ConceptBase is a meta data management system intended to support the cooper
ative development and evolution of information systems with multiple interacting
formalisms. It supports a simple logic-based core language, O-Telos, which inte
grates deductive and object-oriented features in order to support the syntactical,
graphical, and semantic customization of modeling languages as well as analysis in
multi-language modeling environments.

1 Multi-Language Conceptual Modeling

Conceptual models offer abstract views on certain aspects of the real world
(description role) and the information system to be implemented (prescrip
tion role) [You89]. They are used for different purposes, such as a communica
tion medium between users and developers, for managing and understanding
the complexity within the application domain, and for making experiences
reusable. The presence of multiple conceptual modeling languages is common
in information systems engineering as well as other engineering disciplines.
The reasons are among others:

• the complexity of the system requires a decomposition of the modeling
task into subtasksj a frequent strategy is to use orthogonal perspectives
(data view, behavioral view, etc.) for this decomposition

• the information system is decomposed into subsystems of different type,
e.g. data storage system vs. user interfacej experts for those subsystems
tend to prefer special-purpose modeling languages

www.manaraa.com

266 M.A. Jeusfeld, M. Jarke, H. W. Nissen, M. Staudt

• the modeling process is undertaken by a group of experts with different
background and education; the experts may have different preferences
on modeling languages

• conceptual modeling has different goals (e.g., system analysis, sys
tem specification, documentation, training, decision support); hetero
geneous goals lead to heterogeneous representation languages, and to
heterogeneous ways-of-working even with given languages.

The pre-dominant approach to solve the integration problem is to "buy"
an integrated CASE tool which offers a collection of predefined modeling
languages and to apply it in the manner described in the manual. There
are good reasons to do so: the method design has already been done and
the interdependencies between the multiple modeling languages have already
been addressed by the CASE tool designers. Moreover, a CASE tool supports
the standardization of information systems development within an enterprise.

Still, there are information systems projects that require more flexibility
in terms of modeling language syntax, graphical presentations, and semantics
of modeling language interactions. The Telos meta modeling language has
been developed to address these concerns. Its implementation in Concept
Base, a meta data management system based on the integration of deductive
and object-oriented technologies, supports an Internet-based architecture in
tended to support flexible and goal-oriented distributed cooperation in mod
eling projects.

1.1 A Brief History of Meta Modeling

In the mid-1970s, several semiformal notations supporting the development
of information systems were developed. The use of some of these became
standard practice in the 1980s, especially entity-relationship diagrams for
data modeling and dataflow diagrams for function modeling. More recently,
object-oriented methods have added notations for behavior modeling, such
as Statecharts, giving a broader picture of the specification and an easier
mapping to implementations in languages like C++ or Java.

It was recognized early On that managing large specifications in these
notations posed serious problems of inconsistency, incompleteness, mainte
nance, and reuse. Conceptual modeling languages incorporate ideas from
knowledge representation, databases, and programming languages to provide
the necessary formal foundation for users with limited mathematics back
ground.

In early 1980s, Sol Greenspan was the first to apply these ideas to re
quirements engineering, when he formalised the' SADT notation in the RML
language [GMB94]. This was a precursor to numerous attempts worldwide.
Initially, these languages embodied a fixed ontology in which requirements
engineering could be described. As early as 1984, it was recognized that mod
eling formalisms must be customizable. Jeff Kotteman and Benn Konsynski

www.manaraa.com

ConceptBase

M2-model 8 } Method engineering

~~~;! B ·················· ....... ··········B }env:::I:~~n B B B B engmeenng 
Models on • • • •• ••• } e.n\'iron~t 

Usage eO"'1fonme.nt 
Instances 

and 
Scenarios 

Figure 1: The ISO IRDS architecture applied to conceptual modeling 

267 

proposed a basic architecture that included a meta meta model (M2-model 
for short) as the basis for using different notations within a development en
vironment [KK84J . ISO's Information Resource Dictionary System (IRDS) 
[IS090J standard generalized this idea to propose an architecture that com
bines information systems use and evolution. Figure 1 shows its four-layer 
architecture applied to the conceptual modeling activity. 

The Instances and Scenarios level contains objects which cannot have 
instances. Examples are data, processes, system states, measurements and so 
on. Objects may have attributes and they may have classes (reSiding in the 
model level). During design, when the information system and therefore the 
instances do not yet exist, this level also contains scenarios of the intended 
use of the system. 

The Models level represents the classes of the objects at the instance 
level. Those classes define the schema (attributes, properties) of the instance 
level objects as well as rules for manipulating these objects. At the same time 
the classes are themselves instances of the schema defined at the modeling 
language level. 

At the Modeling languages level, meta classes define the structure of 
the objects (classes) at the model level. In other words, a model is instanti
ated from the meta classes of the modeling language level. In section 3, the 
modeling language level will be used to define specific graphical notations 
and their interrelationships. 

The M2-model level contains meta meta classes (M2-classes). They 
are classes with instances at the modeling language level. Multiple modeling 
languages are possible by appropriate instantiations from these M2-classes. 
Moreover, the dependencies between the multiple languages can be repre
sented as attributes between M2-classes in the M2-modellevel. 

The four IRDS levels can be grouped in pairs that define interlocking 
environments, as shown on the right side of Figure 1: usage environments, 
application engineering environments, and the method engineering environ
ment, which manages the interrelationships among modeling languages and 
the interactions among modeling tools. The interlocking between the models 



www.manaraa.com

268 M.A. Jeusfeld, M. Jarke, H. W. Nissen, M. Staudt 

can be read down or up. Reading down, the architecture supports the gen
eration of a distributed modeling environment; reading up, it supports the 
integration of existing environments. In either case, the choice of metamodels 
is crucial for the support the model definition and integration environments 
can offer. 

However, modeling languages do not just have a programming language 
syntax which needs to be customized. The customization should ~so address 
graphical conventions of the modeling formalisms; for example, the mobile 
phone developer Nokia employs more than 150 method variants in terms 
of notation, graphics, and ways-of-modeling. Moreover, the correct usage 
of each formalism and the consistency of models that span across different 
modeling formalisms should be definable. 

Since the late 1980s, more dedicated M2-models have been developed, as 
discussed in the next subsections. In parallel, the need to have generalized 
languages dedicated to meta modeling and method engineering was recog
nized by several people. In several iterations, a number of European projects 
[JMSV92] jointly with the group of John Mylopoulos at the University of 
Toronto developed the language Telos [MBJK90] which generalized RML to 
provide a meta modeling framework which integrates the three perspectives 
of structured syntax, graphical presentation, and formal semantics. 

However, early attempts to implement the full Telos language (as in the 
first version of ConceptBase [JJ89]) showed that its semantics was still too 
complicated for efficient repository support based on known technologies. 
Three parallel directions were pursued by different, but interacting and par
tially overlapping groups of researchers. 

The MetaEdit environment developed at the University of JyviiskyUi. 
[KLR96] is a good example of an effort focusing on graphics-based method 
engineering, i.e. the graphical definition of graphical modeling formalisms. 

Starting from early experiences with ConceptBase in the DAIDA project 
[JR88, JMSV92] the Semantic Index System developed in ESPRIT project 
ITHACA [CJMV95] focused on an efficient implementation of the structurally 
object-oriented aspects of the Telos language. It may be worth noting that 
the recently announced Microsoft Repository [BHSSZ97] has generalized such 
an approach to full object orientation based on Microsoft's Common Object 
Model. 

Complementing these structural concerns, the first step in the further de
velopment of ConceptBase within ESPRIT project Compulog focused on the 
simplification of the logical semantics. The dissertation [Jeu92] showed that 
the non-temporal part of Telos, with very minor modifications, can be based 
on the fixpoint semantics of deductive databases (also known as Datalog) 
with negation [CGT90], resulting in the a-Telos dialect used in the present 
version of ConceptBase1 [JGJSE95]. Thereby, the diagrams denoting the 

lThe current version of the system can be obtained from the address http://www
i5.informatik.rwth-aachen.de/CBdoc for research and evaluation purposes. 



www.manaraa.com

ConceptBase 269 

structure became explicit facts in the database (of concepts), the syntactical 
constraints are represented as deductive rules or queries or integrity con
straints, and the manipulation services are expressed as restrictions on how 
to update the database. This simple formalization thus was a prerequisite 
of the re-integation of syntactical, graphical, and semantic aspects of meta 
modeling, as discussed in section 2 below. 

1.2 Three Basic Modeling Methodologies 

As observed in [Poh94], modeling processes proceed along three dimensions: 
representational transformation, domain knowledge acquisition, and stake
holder agreement. Existing methodologies tend to emphasize one of these 
dimensions over the others: the modeling notations, the available knowledge 
within a specific domain, or the people involved in the analysis project. All 
three methodologies have long histories, with little interaction between them. 
All of them use multiple modeling perspectives but the purpose of these and 
therefore the integration strategies are quite different. 

Notation-oriented methods manifest their assistance in the set of 
modeling notations they offer. Their philosophy can be characterized by the 
slogan In the language lies the power. Examples of notation-oriented meth
ods are structured analysis approaches, as, e.g., Modern Structured Analysis 
(MSA) [You89], and object-oriented techniques, as, e.g., the Unified Modeling 
Language (UML) [FS97]. A large number of CASE tools in the market offer 
graphical editors to develop models of the supported notations and check the 
balancing rules that must hold between models of different notations. The 
notations as well as the constraints are hard-coded within the tools and are 
not easily customizable by users. 

A completely different strategy is employed by the dOlnain-oriented 
analysis methods. For a specific application domain, e.g., public adminis
tration or furniture industry, they offer a predefined set of reference models. 
Reference models describe typical data, processes and functions, together 
with a set of consistency tests which evaluate relationships between the mod
els. Reference models represent the knowledge collected in multiple analysis 
projects within a particular domain: In the knowledge lies the power. The 
reuse of reference models can strongly reduce the analysis effort. However, 
it can be inflexible since the user can tailor the notations, the constraints 
or contents only to the degree foreseen by the developers of the reference 
models, or completely loses the help of the method. 

The ARIS Toolset [IDS96] offers a platform for working with reference 
models. It also offers hard-coded constraint checks within and across the 
models. These tests are programmed individually and new tests can be added 
manually, without a coherent theory, even though the concept of event-driven 
process chain (EPC) provides a semi-formal understanding [Sch94]. Towards 
a more formal approach, the NATURE project has defined formal problem 



www.manaraa.com

270 M.A. Jeusfeld, M. Jarke, H. W. Nissen, M. Staudt 

abstractions [MSTT94] via a M2-model which defines principles for the spec
ification of domain models. 

Goal- and team-oriented approaches specifically address the objec
tive to capture requirements from multiple information sources and to make 
arising conflicts productive. They incorporate stakeholder involvement and 
prescribe general process steps rather than notations or contents: In the 
people lies the power. Prominent examples include IBM's JAD (Joint Appli
cation Design) [Aug91], SSM (Soft Systems Methodology) [Che89], and PFR 
(Analysis of Presence and Future Requirements) [Abe95]. In these methods 
highly skilled group facilitators animate the participants, guide the analysis 
process and keep an eye on the compliance with the specified analysis goals. 
The general idea is to get as much information as possible from different 
sources in a short time. 

Teamwork remains very informal to enhance creativity. Neither notations 
nor analysis goals are predefined by the methods but specified by the par
ticipants according to the actual problem to be solved. To accommodate 
the change of goals during project execution, the customization of analysis 
goals and notations is required even during a running project. Outside Con
ceptBase few supporting tools are available beyond simple groupware tools. 
The main reason for this dilemma is the high degree of customizability the 
tools must offer. They must be extensible towards new notations and flexible 
enough to support changing analysis goals. 

1.3 Goals and Architecture of ConceptBase 
The design of ConceptBase addresses the following goals: 

1. The system should include a feature to define and interrelate specialized 
conceptual modeling languages in an cost-effective way. The language 
should reflect the modeler's need of key concepts types and their inter
pretation of those concepts. 

2. The system should be extensible at any time. When the need for a new 
. concept type occurs, it should be possible to include it into the con
ceptual modeling language definition in terms of language constructs, 
graphical presentation, and semantic constraints. 

3. The system should not only check the syntactic correctness within and 
between models, but also allow to memorize patterns that indicate se
mantic errors in the models. The memory of those patterns should be 
extensible and adaptable to the user's growing experience, thus support 
organizational knowledge creation [Non94]. 

ConceptBase is realized in a client-server architecture (Figure 2). The Con
ceptBase server stores, queries, and updates Telos models. The server offers 
the method TELL for updating the object base and the method ASK for 



www.manaraa.com

ConceptBase 

\~ ______ ~~ ____ ~~~ __ ~c~~~m=u=ni~=ti=OO~C=ha~nn=e~I(I=n~=m=et~)~\ 
TELLlj 
ASq 

I S;~er I 

Figure 2: ConceptBase is a client-server meta data manager 

271 

querying its contents. Persistent object storage is implemented in C++. 
Reasoning services for deductive query processing, integrity checking, and 
code generation are implemented in Prolog. 

A ConceptBase client is often a modeling tool, either graphical or textual, 
but it could be another application, such as a simulation tool. The Internet 
is the medium for the communication between the server and the clients. 
Programming interfaces for various toolkits, including Andrew, TcljTk, nog 
Views and Java exist. The distributed version of ConceptBase includes a 
standard usage interface, along with advice on how to develop your own. 

2 The 0-Telos Language 

Like other conceptual modeling languages, 0-Telos offers a textual and a 
graphical representation. Both are structurally extensible through our meta 
modeling approach, encoded in the basic language structure. However, the 
distinguishing feature of 0-Telos in comparison with other meta modeling 
approaches is its simple logical foundation which enables (a) efficient imple
mentation using experiences from deductive database technology, (b) cus
tomization of the semantics of modeling formalisms, and most importantly, 
(c) customization and incremental organizational learning about the analysis 
of interactions between modeling formalisms. We first discuss the user view 
of the language (textual and graphical syntax), then the logical foundations 
and finally its usage in customization and model analysis. 

2.1 User View 

The four IRDS levels discussed in the introduction define different user classes 
for 0-Telos. Method engineers define a modeling language (here: ER) based 
on common principles (M2-classes NodeConcept and LinkConcept in the ex
ample). Application engineers learn such a modeling language (symbolized 
by the meta class EntityType) and develop a model (containing for exam
ple a class Employee). Finally, application users manipulate instance level 



www.manaraa.com

272 M.A. Jeusfeld, M. Jarke, H. W. Nissen, M. Staudt 

Figure 3: IRDS and 0-Telos 

objects that conform to the model. 

NodeCoJlcept . ... 
t "---..AJnkConcept 

, , 

.....,.-
.. 

8;1I~1500 

-
Domain 

-

.... -

A closer look at Figure 3 reveals that any modeling facility supporting 
such an interlocked way-of-working requires at least three basic language 
concepts - one for self-standing labeled objects, a second one for labeled links 
between them, and the third one to express the instantiation relationship 
between the IRDS levels. In order to provide formal control over the usage 
of these base constructs, a fourth concept, that of a logical assertion, is also 
desirable. 

As shown in Figure 4, the kernel of the 0-Telos language is just that. 
All other language facilities (such as generalization hierarchies, cardinality 
constraints, and so on) can be bootstrapped from this kernel. 

In the textual view we group together all information for an object (e.g. 
Employee). The class (e.g. EntityType) of that object precedes the object 
name, the attributes of the object (e.g. salary) are sorted under attribute 
categories (e.g. entity_attr) which refer to the attribute definitions of the 
object's classes. Note that all objects, i.e. links and nodes, are instances of 
the builtin object Object. 

Object EntityType with 
attribute 

entity-attr: Domain 
end 

EntityType Employee with 
entity-attr 

end 

name String; 
salary: Integer 

Besides inserting and modifying 0-Telos objects (TELL function), the 
second main function of the server is the ASK facility. Queries are formu-



www.manaraa.com

ConceptBase 

attrib~1 Object I~ 

Figure 4: O-Telos' builtin objects 

'-
rule/~ 
constrain~" 

I'A-ss-erti-· 0-0-'1 

273 

lated like ordinary classes with a (membership) constraint [SNJ94j. They are 
recognized by the system via the keyword QueryClass. The query evaluator 
computes the answers and establishes an intensional instantiation relation
ship between the query class and the answers. 

The following example presents a query class RichEmployees computing 
all employees with salary greater than 120.000. We restrict the set of answers 
to the employees by defining the query class as a specialization of Employee. 
The attributes which should be part of the answer are specified as attributes 
of the query class. In the example we will get the msalary attribute for all 
computed employees. The constraint forms the membership condition, i.e. 
all only employees that satisfy this constraint become answers to the query 
class. For the example we require that the value of the salary attribute is 
greater than 120.000. 

QueryClass RichEmployees isa Employee with 
attribute 

salary : Integer 
constraint 

c : $ salary> 120.000 $ 
end 

Note that updates (TELL) and queries (ASK) may refer to any abstrac
tion level. Thus, instance level objects are updated and queried in exactly 
the same way as the concepts of the modeling language level. 

The ConceptBase user interface includes a customizable graph-browser. 
The base function is to display node objects like Employee and link objects 
like Employee! salary. The customization is done by assigning graphical 
types to nodes and links directly or via deductive rules. It is therefore possible 
to specify a certain graphical type to all instances of a specific object. An 
example of graphical customization will be given in section 3. 

2.2 Logical Foundations of 0-Telos 

0-Telos is fully based on the framework of deductive databases, more pre
cisely Datalog with stratified negation [CGT90j. It employs a single relation 



www.manaraa.com

274 M.A. Jeusfeld, M. Jarke, H. W. Nissen, M. Staudt 

P to store nodes and links of a semantic network. Nodes are represented by 
self-referring objects P (x, x, n, x) stating that an object identified by x and 
labelled by n exists. An attribute labelled a of an object x having the at
tribute value y is written as P (0, x, a, y). The attribute itself is regarded as a 
full-fledged object with identifier 0. We distinguish two attribute labels with 
predefined interpretation: The fact that an object x is an instance of a class 
c is represented by an object P (0 ,x, in, c). Moreover, the specialization re
lationship between two objects c and d is stored as an object P(o,c,isa,d) 
where c is sometimes called a subclass of its superclass d. 

The P relation allows the representation of arbitrary semantic networks. 
It serves as the so-called extensional database in the deductive interpretation 
of O-Telos: all explicit information (e.g., a diagram) is stored as objects in 
the P relation. It should be noted that instances and classes are uniformly 
represented as objects. Classes may be instances of objects themselves2 • The 
ability of 0-Telos to represent instances, classes, meta classes, M2-classes 
etc. uniformly as objects makes it a good framework to store information at 
different abstraction levels as presented in the subsequent sections. 

The extensional database is accompanied by the so-called intensional 
database, i.e. a set of deductive rules and integrity constraints that are stored 
as attributes of objects. The rules and constraints are logical expressions that 
are evaluated against the extensional database. The formal interpretation of 
rules is based on a fixpoint semantics [CGT90] which precisely defines which 
facts can be derived from the database (extensional plus intensional part). 
Intuitively, the derivation follows the Modus Pones rule: if the condition A 
holds and we have a rule "A then B", then the fact B holds. Constraints 
are special rules of the form "if A does not hold then we have discovered 
an inconsistency". The object-oriented structure of 0-Telos is defined on the 
simple P-relation via predefined rules and constraints included in any 0-Telos 
database - the so-called 0-Telos axioms. 

forall o,x,c P(o,x,in,c) ==> (x in c) 

If we explicitly state that x is an instance of c than the fact (x in c) 
holds. 

forall o,x,c,d (x in c) and P(o,c,isa,d) ==> (x in d) 

If x is an instance of a subclass, then it is also an instance of its super
classes. 

forall p,c,m,d,o,x,l,y P(o,x,l,y) and P-(p,c,m,d) 
and (0 in p) ==> (x mil y) 

forall x,m,l,y (x mil y) ==> (x m y) 

2If X is an instance of a class e and e is an instance of a class me, then we refer to me as 
a metaclass of x. 



www.manaraa.com

ConceptBase 275 

The first rule derives an attribute predicate (x mIl y) whenever an at
tribute 0 is declared as an instance of another attribute p at the class level. 
The label m is called the category of the attribute p. The second rule omits 
the label of the instance level attribute. 

Alltogether only 30 such rules were predefined in O-Telos [Jeu92]. The 
two important things to memorize are 

• The single P relation is able to capture semantic networks ("nodes 
connected by links"). 

• Rules and constraints are used to fix the interpretation of abstractions 
like instantiation and specialization. These abstractions are predefined 
node and link types in the semantic network. 

2.3 Conceptual Modeling Languages as Meta Models 

The foundation of 0-Telos just provides the facilities for representing graphs, 
plus to constrain and query them via logical conditions. In the following 
we show that this is enough for not only describing a large collection of 
conceptual modeling languages but also to relate them in a formal way. 

0-Telos treats information at each abstraction level uniformly as objects. 
The fact that some object is an instance of a class at the upper level is 
represented as a (derived or stored) fact (x in c). A meta class me of an 
object x is represented by the derived fact (x [in] me). The corresponding 
deductive rule in 0-Telos is simply3: 

forall x,e,me (x in c) and (e in me) ==> (x [in] me) 

Attributes are also full-fledged objects: attributes at a class level are the 
classes of the attributes at the instance level. 

Constraints are employed to specify conditions on the instantiation of 
classes. Rules define information that is derived from explicit information. 
Note that constraints and rules can be defined at any abstraction level, even 
crossing several abstraction levels. For example, the instance inheritance rule 
above is applicable for objects at the model level as well as for objects at the 
M2-model level. We distinguish the following types of formulae according 
to the levels involved in the logical condition. As an example, we again use 
pieces of a formalization of the Entity-Relationship (ER) approach within 
O-Telos. 

• Model conditions. Such formulae quantify over instances of classes de
fined at the model level. For example, there may be a class Employee 
at the model level with an attribute 'salary': 

3 All rules and constraints presented in this paper are part of the intensional database. 
In principle, any such formula can be inserted into or deleted from the database at any 
time. This holds for the axioms of 0-Telos as well. 



www.manaraa.com

276 M.A. Jeusfeld, M. Jarke, H. W. Nissen, M. Staudt 

forall e,s (e in Employee) and (e salary s) ==> (s > 0) 

• Modeling language conditions. Such formulae quantity over instances 
of meta classes. For example, the meta class, Enti tyType could have 
a constraint that each instance (like Employee) must have at least one 
attribute (like salary): 

forall c (c in EntityType) ==> exists d (d in Domain) 
and (c entity_attr d) 

• M2-model conditions. Here, the formulae talk about objects at the 
modeling language level. In our running example, we can think of 
the two M2-classes NodeConcept and LinkConcept that shall be used 
to define EntityType and RelationshipType. A M2-model condition 
could be that links connect nodes but not vice versa: 

forall x,y (x connects y) ==> 
(x in LinkConcept) and (y in NodeConcept) 

The reader should have noticed that there is no formal difference between 
those three kinds of formulae; they are just quantifying over objects at differ
ent abstraction levels. The uniform representation of 0-Telos objects provides 
this feature quasi for free. The above examples showed formulae quantify
ing over objects at the next lower level of abstraction (class to instance). 
It is also possible to express conditions spanning more than two IRDS lev
els. Such conditions are needed when the semantics of certain concept types 
(meta classes) can only be expressed in terms of the instances of the instances 
of the meta classes. As an example consider "key attributes" of entity types 
in the ER modeling language. 

forall x,y,e,k,a,d,v (x,y in e) and 
(e in EntityType) and P(k,e,a,d) and 
(k in Key) and (x a v) and (y a v) 
==> (x = y) 

The formula states that when two entities X,y of the same entity type e 
have the same value for the key attribute a, then they must be the same. 

Such conditions are typical for formal interpretation of conceptual model
ing languages. The interesting thing is that those conditions are expressible 
in the Datalog logic of 0-Telos. Thereby, they can be added and evaluated 
to the (deductive) database at any time. This makes it possible to define 
specialized modeling languages just by storing appropriate meta classes with 
their axioms (rules and constraints) in the database. More examples of such 
formulae crossing multiple IRDS levels can be found in [JJ96]. 



www.manaraa.com

ConceptBase 277 

3 Case Study 

The following case study illustrates the management of conceptual models in 
the context of computer-support for an informal, teamwork-oriented analysis 
method used by a consulting company. Details and experiences can be found 
in [NJJZH96]. 

The consulting firm uses the analysis method PFR (Analysis of Presence 
and Future Requirements) for rapid, focused requirements capture in settings 
that alternate between team workshops and individual interviews: 

1. In a two-day workshop, stakeholders define an initial shared vision. The 
group makes a rough analysis of the current business processes (mostly 
in terms of information exchange among organizational units), analyses 
the goal structure behind the current pattern, identifies goal changes, 
drafts a redesigned business process, and identify the perspectives of 
some stakeholders as critical to success. 

2. The modeling perspectives identified as critical are then captured in 
detail by interviews, workflow analyses, and document content studies. 
This step has the goal of testing the initial vision against the existing 
and expected organizational context, and to elaborate it, both in terms 
of deepened understanding and in terms of more formal representations 
(e.g. in the form of activity sequences or data flow models). The 
acquisition process is accompanied by a cross-analysis of the captured 
conceptual models for consistency, completeness, and local stakeholder 
agreement. 

3. A second workshop is intended to draw the individual perspectives to
gether and to achieve global stakeholder agreement on the requirements. 
The step is accompanied and followed by the development of a compre
hensive requirements document of typically several hundred pages. 

Even for rather complex projects, the goal is to complete the whole process 
in a matter of weeks rather than months. A major obstacle in achieving this 
goal has been the cross-analysis of heterogeneous conceptual models in step 
2. Due to time pressure, this analysis often remained incomplete. This led 
to repeating cycles of steps 2 and 3 due to problems detected only during 
the second workshop. In a few cases, it even led to problems in the final 
requirements document which showed up later as errors in the design, coding, 
or even usage testing phase. 

Initially, standard modeling languages like Entity-Relationship diagrams 
were used both for describing the current procedures and the new (improved) 
procedures. 

Problems with the standard tools emerged with respect to interpretation, 
extensibility, and analysis functionality. Regarding interpretation, customers 
complained that they wouldn't understand the difference between certain 



www.manaraa.com

278 M.A. Jeusfeld, M. Jarke, H. W. Nissen, M. Staudt 

activity sequence information exchange document 
notation notation structure 

notation 
II Employee I 

~erform.r .. n1\~ I Form I 
includes + I Action I p,::' I Information I I Org. unnl I Package I I Item I 

\Allows 

Figure 5: Syntax of the standard PFR notations 

concepts of the modeling languages. For example, discussions emerged on 
whether a certain property of an entity would be a relationship or just an 
attribute. During these discussions, computer scientists would take the lead 
and the other participants would loose interest. Customers asked for a graph
ical method where one has just nodes and links. 

Another issue mentioned was extensibility. The consulting company has 
developed its own approach to IT controlling where media was a central con
cept, i.e. the physical carrier of data like paper and floppy disk. Information 
on which data would be stored on which medium was important to decide 
how to improve the current workflow of the customer. Unfortunately, no 
CASE tool on the market fitted to these needs or could be easily adapted to 
it. 

Finally, the analysis capabilities of standard packages were regarded as in
sufficient. Standard tools concentrate on syntactical correctness of the models 
and their interdependencies. However, the semantic correctness was seen as 
much more urgent. The following situation occured in a customer project: 
A complex data object (tax form) was modeled which contained a smaller 
data object (tax rate) as a part. A system function was provided to update 
the tax rate. In this application however, it was required that the numbers 
in the tax form are updated whenever the tax rate is changed. Since this 
dependency was detected only after implementation, major error correction 
costs were induced. As a consequence, the consulting company wanted to 
memorize this pattern as a possible (not sufficient) cause for a semantic error 
in the system model. 

3.1 Customizing ConceptBase 

To tailor 0-Telos to the standard PFR modeling languages the consulting 
firm first defined their syntax in O-Telos, as shown in Figure 5. 

The 'activity sequence' notation comprises the concept of an Employee 
who is the performer of an Action. The Action gets and produces Infor
mation. The follows relation describes dependencies between different Act
ions. The 'information exchange' notation captures Organisational Units 



www.manaraa.com

ConceptBase 279 

Figure 6: A media-centered meta meta model for PFR 

which may send a Package to another unit. Finally, the 'document structure' 
notation comprises concepts to define a Form and the Items it includes. 

The semantic properties of these notations are specified by integrity con
straints and deductive rules. The PFR analysts required, e.g., that every in
formation exchange between Organisational Units must be accompanied 
with the exchanged Package. The following integrity constraint expresses 
this requirement in a formal way: 

forall s (s in OrgUnit!sends) exists p,a (p in Package) and 
(a in OrgUnit!sends!a) and From(a,s) and To(a,p). 

Similar constraints specify the semantic properties of the modeling con
cepts of the other notations. 

The semantic analysis of the individual conceptual models exploits the 
properties of the observed domain and the analysis goals of the specific 
project. The consulting firm specified the domain structure within a con
ceptual model on the M2-model level, shown in Figure 6. The modeling 
language definitions in Figure 5 form partial instances of this model which 
describes the corresponding perspective. It interrelates all three perspectives 
mentioned before. An Agent supplies another Agent with the Medium. 
This Medium may contain some Data. On this Data an Agent performs his 
Activity. The Data can be used as input or output. This model defines the 
extent of the analysis project: exactly the concepts mentioned in this model 
must be captured and modeled within the acquisition part of the project. It 
also reflects some of the expected problems. The explicit distinction between 
the Medium and the Data it contains allows for the detection of optimizable 
workflows in the business process. Since the analysis goals may change from 
project to project, also this domain model may change to cover the actual 
problems to be investigated. 

Beside the domain structure, the meta meta model contains the formal
ization of the analysis goals. They reflect the problems the analysis project 
is supposed to discover. Many customers of the consulting firm want to op
timize their document flow. Therefore an analysis goal is to detect agents 



www.manaraa.com

280 M.A. Jeusfeld, M. Jarke, H. W. Nissen, M. Staudt 

who get a document, but perform no activities on data contained on that 
document. Thanks to the formal semantics of 0-Telos we are able to specify 
this analysis goal as a formal multi-level condition and to evaluate it on the 
contents of the object base. We use a special syntax to indicate multi-level 
literals: A literal of the form (i [in] c) describes an instantiation rela
tionship between i and c that crosses multiple classification levels. A literal 
of the form (a em] b) where m is an arbitrary label describes an attribute 
predicate that crosses multiple levels. In our case we use a label from the 
M2-modellevel to form a condition on the schema level. 

forall supply ,user ,medium (supply [in] Agent!supplies) and 
(user [in] Agent) and (supply [to] user) and 
(medium [in] Medium) and (supply [the] medium) 
==> exists info,action (info [in] Data) and 

(medium [contains] info) and (action [in] Activity) 
and (action [performed_by] user) and 
«action [input] info) or (action [output] info)) 

In the example environment more than 80 standard analysis goals make 
semantic statements about single models, inter-relationships between multi
ple models and properties of the modeled business process. These analysis 
goals cannot be hard-coded because they may change from one project to 
another. Further experiences in applying the PFR method lead to the de
tection of further patterns of potential errors in business processes. These 
patterns are then formulated as analysis goals to be available in following 
analysis projects. An example of such a pattern is the situation where an 
agent gets a document that contains only data that is already supplied to 
him by other media. This pattern does not always describe an error of the 
business process, but it is a hint for further investigation. It may indicate 
an unnecessary media supply which is subject for optimization. But it may 
also be an intended situation where the agent performs a comparison check 
of the same data located on different media. 

The syntactic and semantic extension of ConceptBase is complemented by 
a graphical extension. A graphical type can either be specified for a specific 
object or for all the instances of an object. 

Figure 7 presents a screendump of the ConceptBase graph browser. It 
shows a part of the three repository levels using the graphical types defined 
by the consulting firm. The part of the meta meta model defining the infor
mation exchange is shown on the top. The shape of a human is the graphical 
presentation of the object Agent and the shape of a set of papers of Medium. 
They used the shapes to indicate the abstract nature of these concepts. Below 
these objects the notation of the corresponding conceptual models is shown. 
The Organisational Unit is presented as a rectangle and the Package as 
a diamond. On the bottom a small excerpt of the 'information exchange' 
model is given. For the modeled agents and documents they used the filled 



www.manaraa.com

ConceptBase 281 

graphical types of the concepts of the meta meta model to indicate that these 
objects are more concrete. 

4 Summary and Outlook 

Conceptual modeling requires the use of multiple interdependent languages. 
Selecting the right collection of languages and focusing the analysis of their 
interactions is a not trivial task. For example, the mobile phone company 
Nokia claims to employ more than 150 different notations and/or methods 
in their software development processes. In such new application domains, 
standard languages may very well miss the modeling goal by distracting the 
modelers to details of notation instead to details of the domain to be modeled. 

In 0-Telos, as supported by the ConceptBase system, experts can de
fine an adapted collection of languages via meta classes. The customized 
languages are interrelated via a meta meta model which encodes the overall 
modeling goals independently from details of the notation of the modeling 
languages. 

MD)'O ... 

Figure 7: The three levels within Concept Base 

Er_ 

hrf _A _ _ .... -
ShJv Clan .. __ 1_ 

SIMJV ~rcl ..... 

~ Layout 

Load Loywt 

.... lp 
Quit 



www.manaraa.com

282 M.A. Jeusfeld, M. Jarke, H. W. Nissen, M. Staudt 

Versions of ConceptBase have been distributed for use in research, teach
ing, and industrial development since the early 1990s. Currently, a few hun
dred groups worldwide use the system, a number of such efforts have resulted 
in spin-off products derived from the ConceptBase prototypes. The main ap
plications have been in cooperation-intensive projects which we have here 
placed in contrast to notation-oriented standards such as UML or domain
oriented reference models as in the ARlS framework. Especially for the ref
erence models, there is good reasOn to believe that this competitive situation 
should be turned into a cooperative one - a cooperative, customized, and 
goal-oriented modeling process should still be enabled to take advantage of 
external experiences as encoded in reference models. This attempt to bring 
goals, teamwork, and formal analysis into the customization process of com
ponent software strategies such as SAP or Baan is a major methodological 
goal of our ongoing research. 

In order to support such methodological advances, some advances in the 
technical support by ConceptBase are also being investigated. The descrip
tion in this paper corresponds roughly to version 4.1 of the system which 
has been distributed since 1996. In the following, we sketch some exten
sions which have been developed for integration into the next versions of the 
system. 

Any extensions aim to preserve the decisive advantage of 0-Telos, its 
firm basis on standard predicate logic with clear semantics. Its ability to 
uniformly represent instances, classes, meta classes, and attributes as objects 
makes it an ideal framework for meta data management and meta modeling. 
Its implementation, ConceptBase, adds persistent storage of objects, a query 
evaluator, and a collection of graphical and frame-based tools. 

In order to offer even more scalability in cooperative modeling tasks, 
the most important extension is the introduction of a concept of modeling 
perspectives, i.e. interacting modules, into the language such that models can 
be organized according to accepted principles of software architecture. In 
[Nis97, NJ97], the language M-Telos has been developed (and prototypically 
implemented) which is upward compatible with O-Telos and preserves the 
simple foundations based on Datalog. 

A second important extension under development is a more active role 
the ConceptBase server can take with respect to its clients; an important 
special case is the transformation across notations (as opposed to just analy
sis queries). To preserve consistency, such transformations with materialized 
results should be incrementally maintainable over change. In [Sta96, SJ96], 
formalisms and algorithms to achieve incremental maintenance of material
ized views not only inside the server, but also in external clients have been 
developed and implemented. The power of such algorithms and the user com
fort are significantly enhanced if they are realized using mobile code that can 
move to the client without local installation effort. Starting from experiences 
with the CoDecide client that offers spreadsheet-like interfaces to the kind 



www.manaraa.com

ConceptBase 283 

of data cubes used in data warehousing [GJJ97], a complete Java-based user 
environment is being developed. 

Last not least, many cooperative modeling processes require inconsistency 
management not just for static logical interactions, but along possibly com
plex process chains. The current deductive approach only allows the analysis 
of process chains consisting of very few steps. Recently developed process rea
soning techniques [BMR93] in a logical framework that is comparably simple 
to ours appear as a promising candidate for an integration into ConceptBase, 
without sacrificing its uniform framework and conceptual simplicity. 

References 

[Abe95] Abel, P., Description of the USU-PFR analysis method, Technical 
report, USU GmbH, Moglingen, 1995 

[Aug91] August, J. H., Joint Application Design: The Group Session Approach 
to System Design, Yourdon Press, Englewood Cliffs, 1991 

[BHSSZ97] Bernstein, P. A., Harry, K., Sanders, P., Shutt, D., Zander, J., The 
microsoft repository, in: Proc. of the 23rd IntI. Conf. on Very Large 
Data Bases (VLDB), Athens, Greece, August 1997, 3-12 

[BMR93] Borgida, A., Mylopoulos, J., Reiter, R., " ... and nothing else changes": 
The frame problem in procedure specifications, in: Proc. of the Fif
teenth IntI. Conf. on Software Engineering (ICSE-15), May 1993 

[CGT90] Ceri, S., Gottlob, G., Tanca, L., Logic Programming and Databases, 
Springer Verlag, 1990 

[Che89] Checkland, P. B., Soft systems methodology, in: J. Rosenhead (ed.), 
Rational Analysis for a Problematic World, John Wiley & Sons, Chich
ester, 1989, 71-100 

[CJMV95] Constantopoulos, P., Jarke, M., Mylopoulos, J., Vassiliou, Y., The 
software information base: A server for reuse, VLDB Journal 4 (1), 
1995, 1-43 

[FS97] Fowler, M., Scott, K., UML Destilled: Applying the Standard Object 
Modeling Language, Addison-Wesley, 1997 

[GJJ97] Gebhardt, M., Jarke, M., Jacobs, S., A toolkit for negotiation support 
interfaces to multi-dimensional data, in: Proc. of the ACM SIGMOD 
IntI. Conf. on Management of Data, May 1997, 348-356 

[GMB94] Greenspan, S., Mylopoulos, J., Borgida, A., On formal requirements 
modeling languages: RML revisited, in: Proc. of 16th IntI. Conf. on 
Software Engineering (ICSE), Sorrento, Italy, May 16-21 1994 

[IDS96] IDS Prof. Scheer GmbH, Saarbriicken, AR1;8-Toolset Manual V3.1, 
1996 



www.manaraa.com

284 M.A. leusfeld, M. larke, H. W. Nissen, M. Staudt 

[IS090] ISO /IEC International Standard, Information Resource Dictionary 
System (IRDS) - Framework ISO/IEC 10027, 1990 

[Jeu92] Jeusfeld, M. A., Update Control in Deductive Object Bases, PhD 
thesis, University of Passau, (in German), 1992 

[JGJSE95] Jarke, M., Gallersdorfer, R., Jeusfeld, M. A., Staudt, M., Eherer, S., 
ConceptBase - a deductive object base for meta data management, 
Journal of Intelligent Information Systems, Special Issue on Deductive 
and Object-Oriented Databases 4 (2), 1995, 167-192 

[JJ89] Jarke, M., Jeusfeld, M. A., Rule Representation and Management in 
ConceptBase, SIGMOD Record 18 (3), 1989, 46-51 

[JJ96] Jeusfeld, M. A., Jarke, M., Enterprise integration by market-driven 
schema evolution, Inti. Journal Concurrent Engineering Research and 
Applications (CERA) 4 (3), 1996 

[JMSV92] Jarke, M., Mylopoulos, J., Schmidt, J. W., Vassiliou, Y., DAIDA: An 
environment for evolving information systems, ACM Transactions on 
Information Systems 10 (1), 1992, 1-50 

[JR88] Jarke, M., Rose, T., Managing knowledge about information system 
evolution, in: Proc. of the SIGMOD Inti. Conf. on Management of 
Data, Chicago, Illinois, USA, June 1988, 303-311 

[KK84] Kottemann, J. E., Konsynski, B. R., Dynamic metasystems for in
formation systems development, in: Proc. of the 5th Inti. Conf. on 
Information Systems, Tucson, Arizona, November 1984, 187-204 

[KLR96] Kelly, S., Lyytinen, K., Ross, M., MetaEdit+: A fully configurable 
multi-user and multi-tool CASE and CAME environment, in: P. Con
stantopoulos, J. Mylopoulos, Y. Vassiliou (eds.), Proc of the 8th Inti. 
Conf. an Advanced Information Systems Engineering (CAiSE'96), 
Heraklion, Creta, Griechenland, May 1996, Springer-Verlag, LNCS 
1080, 1-21 

[MBJK90] Mylopoulos, J., Borgida, A., Jarke, M., Koubarakis, M., Telos: Rep
resenting knowledge about information systems, ACM Transactions 
on Information Systems 8 (4), 1990, 325-362 

[MSTT94] Maiden, N., Sutcliffe, A., Taylor, C., Till, D., A set of formal problem 
abstractions for reuse during requirements engineering, Engineering 
of Information Systems 2 (6), 1994, 679-698 

[Nis97] Nissen, H. W., Separation and Resolution of Multiple Perspectives 
in Conceptual Modeling, PhD thesis, RWTH Aachen, Germany, (in 
German), 1997 

[NJ97] Nissen, H. W., Jarke, M., Goal-oriented inconsistency management in 
customizable modeling environments, Technical Report 97-12, RWTH 
Aachen, Aachener Informatik-Berichte, 1997 



www.manaraa.com

[NJJZH96] 

[Non94] 

[Poh94] 

[Sch94] 

[SJ96] 

[SNJ94] 

[Sta96] 

[You89] 

ConceptBase 285 

Nissen, H. W., Jeusfeld, M. A., Jarke, M., Zemanek, G. V., Huber, 
H., Managing multiple requirements perspectives with metamodels, 
IEEE Software, 1996, 37-47 

Nonaka, I., A dynamic theory of organizational· knowledge creation, 
Organization Science (1), 1994, 14-37 

Pohl, K., The three dimensions of requirements engineering: A frame
work and its application, Information Systems 19 (3), 1994 

Scheer, A.-W., Business Process Engineering, Springer-Verlag, 1994 

Staudt, M., Jarke, M., Incremental maintenance of externally mate
rialized views, in: Proc. of the 22nd IntI. Conf. on Very Large Data 
Bases (VLDB'96), Bombay, India, September 1996,75-86 

Staudt, M., Nissen, H. W., Jeusfeld, M. A., Query by class, rule and 
concept, Journal of Applied Intelligence 4 (2), 1994, 133-156 

Staudt, M., View Management in Client-Server Systems, PhD thesis, 
RWTH Aachen, (in German), 1996 

Yourdon, E., Modern Strnctured Analysis, Prentice Hall, Englewood 
Cliffs, New Jersey, 1989 



www.manaraa.com

CHAPTER 13 

Conceptual Graphs 

John F. Sowa 

Conceptual graphs (CGs) are a system of logic based on the existential graphs of 
Charles Sanders Peirce and the semantic networks of artificial intelligence. Their 
purpose is to express meaning in a form that is logically precise, humanly readable, 
and computationally tractable. With their direct mapping to language, conceptual 
graphs can serve as an intermediate language for translating computer-oriented for
malisms to and from natural languages. With their graphic representation, they 
can serve as a readable, but formal design and specification language. CGs have 
been implemented in a variety of projects for information retrieval, database design, 
expert systems, and natural language processing. A draft ANSI standard for CGs 
has been developed by the NCITS T2 committee, the liaison to the ISO Conceptual 
Schema Modelling Facility (CSMF) project under ISO/IEC JTCl/SC21/WG3. 

1 Assertions and Constraints 

As a system of logic, conceptual graphs can be used to describe or define 
anything that can be implemented on a digital computer. But their graphic 
structure resembles the informal diagrams and charts that are commonly 
used in systems documentation. They have been used as a bridge between 
the informal diagrams used by computer practitioners and the formalized 
notations of computer scientists. As an example, Figure 1 shows a CG for an 
assertion that might be added to a university database: Student Tom Jones 
majors in the Biology Department, he enrolls in Section M1B, and Course 
Calculus I has Section M1B. 

The boxes in a conceptual graph are called concepts. Each box has two 
parts: on the left of the colon is a type label, which represents the type of 
entity; on the right is a referent, which can name a specific instance of the 
type, such as Tom Jones or MIB. The circles or ovals are called conceptual 
relations; they represent instances of relationships as expressed in the tuples 
of a relational database. The labels inside the concept and relation nodes may 
be copied directly from the relations of a relational database, or they may 
be taken from a more primitive set of relations, which are used to express 



www.manaraa.com

288 John F. Sowa 

Student: Tom Jones I--'~-( Emolls )1---1~~ Section: MIB 

Department: Biology I Course: Calculus I I 

Figure 1: An assertion stated as a conceptual graph 

the thematic roles or case relations of linguistics. The arrows on the arcs 
distinguish the different arguments of a relation: the arrow pointing towards 
the relation is the first argument, and the arrow pointing away is the second 
argument; if a relation has more than two arguments, the arcs are numbered. 

The box and circle notation for conceptual graphs, which is called the 
display form, is highly readable, but it takes up a lot of space on the printed 
page. To save space, there is an equivalent linear form, which can be typed 
at a keyboard. Following is the linear form of Figure 1: 

[Department: Biology] +-(Major) +-[Student: Tom Jones]
(Enrolls)-t[Section: MlB]+-(Has)+-[Course: Calculus I]. 

In the linear form, the boxes are represented by square brackets and the 
ovals are represented by rounded parentheses. If a CG is too long to fit on 
one line, a hyphen is used to show that it is continued on the next line. 

Although Figure 1 looks like an informal diagram, it is a formal repre
sentation that can be translated automatically to other formalisms. A com
panion notation for logic, which is also being standardized by the NCITS T2 
committee, is the Knowledge Representation Format (KIF) [KIF95]. When 
Figure 1 is translated to KIF, a concept like [Student: Tom Jones] becomes 
the parenthesized pair (student Tom_Jones). Each relation with n arguments 
becomes a list of n+ 1 elements, starting with the name of the relation. The 
dyadic relation between Tom Jones and Section M1B would become the list 
(enrolls Tom_Jones M1B). The order of the arguments corresponds to the 
direction of the arrows: Tom_Jones is first, and M1B is second. Following is 
the complete KIF representation for Figure 1: 

(and (student Tom_Jones) (department Biology) (section MlB) 
(course Calculus-!) (major TomJones Biology) 
(enrolls Tom Jones MlB) (has Calculus-I MlB) ) 



www.manaraa.com

Conceptual Graphs 289 

In KIF, the operator "and" is used to combine all the information from the 
concepts and relations in a single expression; its arguments may be listed in 
any order. 

In Figure 1, each concept box has a name of a specific instance in its 
referent field. Besides names, conceptual graphs also permit quantifiers in 
the referent field. In predicate calculus, the two basic quantifiers are the ex
istential quantifier represented by the symbol :3, and the universal quantifier 
represented by the symbol V. In conceptual graphs, the quantifier :3 is the 
default, represented by a blank referent field; and the quantifier V is repre
sented by the symbol V or @every in the referent field. The following table 
compares the quantifiers in English, predicate calculus, conceptual graphs, 
and KIF: 

English 
some student 
every student 

PC CG 
:3x : student [Student] 
Vx: student [Student: V] 

KIF 
(exists ((?x student)) ... ) 
(forall ((?x student)) ... ) 

Figure 2 shows a conceptual graph with four concepts, each of which is 
existentially quantified (blank referent). Surrounding the graph is another 
concept box marked with a negation symbol,. The complete graph may be 
read, It is false that there exists a student who is enrolled in two different 
sections of the same course. 

Has 

Has 

Figure 2: A constraint stated as a conceptual graph 

Figure 2 has branches that cannot be drawn on a straight line. In the 



www.manaraa.com

290 John F. Sowa 

linear form, it would be represented on severallinesj continuations are shown 
by hyphens, and cross references are shown by coreference labels, such as *z 
and ?z: The first occurrence or defining label is marked with an asterisk, such 
as *Zj the subsequent occurrences or bound labels are marked with a question 
mark, such as ?z. 

-,[[Student]-
(Enrolls) -7 [8ection]-

(#) -7 [Section: *z] 
(Has) f- [Course: *w], 

(Enrolls) -7 [?z] f- (Has) f- [?w]]. 

In the linear form, hyphens show that relations are continued on sub
sequent lines, and commas terminate the most recent hyphens. When the 
linear form is translated back to the display form, the concepts [?z] and [?w] 
are overlaid on the corresponding concepts [Section: *z] and [Course: *w]. 
As this example illustrates, complex graphs are usually more readable in 
the display form than in the linear form, but both forms are semantically 
equivalent. Their formal syntax is presented in Section 4. 

When Figure 2 is translated to KIF, a variable is associated with each of 
the four concept boxes: ?x for the student, ?y for one section, ?z for another 
section, and ?w for the course. The question mark distinguishes a variable 
like ?x from a constant like MIBj the coreference labels in conceptual graphs 
correspond to variables in KIF, and similar symbols are used for both. The 
operator "exists" is used for the existential quantifier and "not" for the nega
tion. Following is the KIF form of Figure 2: 

(not (exists «student ?x) (section ?y) (section ?z) (course ?w)) (and 
(enrolls ?x ?y) (enrolls ?1.. ?z) (/= ?y ?z) (has ?w ?y) (has 
?w ?z)) )) 

This statement may be read, It is false that there exists a student x, a section 
V, a section z, and a course w, where x is enrolled in V, x is enrolled in z, V 
is not equal to z, w has V, and w has z. For readability, conceptual graphs 
may use special symbols like # for not equal j but KIF uses /=, since it has 
a more restricted character set. 

2 Database Queries 

Besides representing tuples and constraints, conceptual graphs can also ex
press any database query that can be expressed in SQL. Figure 3 shows a 
query that might be used to look for students who violate the constraint 
in Figure 2: Which student is enrolled in two different sections of the same 
course? 

The question mark in the concept [Student: ?] of Figure 3 characterizes 
the graph as a query. When used by itself, the question mark asks the 



www.manaraa.com

Conceptual Graphs 291 

Has 

Has 

Figure 3: A query stated as a conceptual graph 

question Which student? When used with a variable, as in ?x, the question 
mark indicates a variable that corresponds to KIF variables like ?x or ?y. 
These two uses of the? symbol correspond to the two uses of the word which 
in English: ? by itself corresponds to the interrogative which for asking 
questions; and ?x corresponds to the relative pronoun which used to make a 
reference to something else in the sentence. In the query language SQL, the 
question mark maps to the SELECT verb that designates which field in the 
database contains the answer. Figure 3 would be translated to the following 
query in SQL: 

SELECT A.8TUDENT 
FROM ENROLLS A, ENROLLS B, HAS C, HAS D 

WHERE A.STUDENT = B.STUDENT 
AND A.SECTION...,= B.SECTION 
AND A.SECTION = C.SECTION 
AND B.SECTION = D.SECTION 
AND C.COURSE = D.COURSE 

The SELECT clause in SQL lists the concepts that were marked with the 
? symbol; the FROM clause lists the relations; and the WHERE clause is a 
translation of the conditions stated in the CG. 

Any or all of the four concepts in Figure 3 could contain a question mark 



www.manaraa.com

292 John F. Sowa 

in the referent field. If all four were marked with the? symbol, the answer 
would be the constraint violation in Figure 4, which says Student Tom Jones 
is enrolled in two different sections, M1A and M1B, of the course Calculus I 

Section: 
MIB 

Figure 4: A constraint violation as an answer to a query 

3 Relational and Object-Oriented Databases 

Besides relating natural language to expert systems, conceptual graphs can 
be used to relate different kinds of databases and knowledge bases to one 
another. Relational databases present the data in tables, and object-oriented 
databases group data by objects. The two kinds of databases have different 
advantages and disadvantages, but either kind could be translated to the 
other by means of definitions written in conceptual graphs. To illustrate the 
differences, consider Figure 5, which shows two structures of blocks and their 
representation in a relational database. 

At the left of Figure 5, the two structures are composed of objects that 
support other objects. On the right, the Objects relation lists each object's ID 
(identifier), its Shape, and its Color; the Supports relation lists the Supporter 
and Supportee for each instance of one object supporting another. In Figure 
5, the separation between the two structures is not shown directly in the 
database: the tuples that represent each structure occur in both tables, and 
each table mixes tuples from both objects. 

Figure 6 shows a conceptual graph that represents the top structure of 



www.manaraa.com

Conceptual Graphs 293 

OBJECTS SUPPORTS 
ID SHAPE COLOR SUPPORTER SUPPORTEE 
A pyramid red A D 
B pyramid green B D 
C pyramid yellow C D 
D block blue D E 
E pyramid orange F G 
F block blue R G 
G block orange 
R block blue 

Figure 5: Two structures represented in a relational database 

Figure 5 in an object-oriented style. Each object in the structure is rep
resented by a concept of type Block or Pyramid. The conceptual relations 
that link them are derived from the more primitive linguistic relations, such 
as Characteristic (Chrc), Theme (THME), and Instrument (Inst). Starting 
from the upper left-hand corner, Figure 6 could be read Pyramid E has a 
color orange, it is being supported by block D, which has a color blue; D is 
being supported by pyramid A, which has a color red, pyramid B, which has 
color red, and pyramid C, which has a color yellow. However, the physical 
placement of the nodes of a CG has no semantic meaning, and the same 
graph could be translated to different sentences that all express the same 
proposition. Another way of reading Figure 6 would be A red pyramid A, 
a green pyramid B, and a yellow pyramid C support a blue block D, which 
supports an orange pyramid E. 

The concept and relation types in Figure 6, which map directly to the 
semantic relationships in natural languages, do not correspond to the names 
of the tables and fields of the relational database in Figure 5. As an alternate 
representation, Figure 7 shows another conceptual graph that uses the same 
names as the relational database. 

The graphs in Figures 6 and 7 could be related to one another by selecting 
a basic set of types and relations as primitives: the types Object, Color, 
Shape, and Support; and the linguistic relations Chrc, THME, and Inst. 
Then all of the types and relations in both graphs could be defined in terms 
of the basic set. For example, following is a definition of the concept type 
Block: 

type Block(*x) is [Object: ?x]-+(Chrc)-+[Shape: block]. 



www.manaraa.com

294 John F. Sowa 

Figure 6: A conceptual graph that represents the top structure in Figure 5 

This definition says that a block x is an object x with a characteristic 
(Chrc) shape of block. Next is a similar definition for the type Pyramid: 

type Pyramid(*x) is [Object: ?x]-t(Chrc)-t[Shape: pyramid]. 

Following is a definition of the dyadic relation Supports: 

relation Supports(*x,*y) is [Object: ?x]+-(THME)+-[Support]-t 
(Inst)-t[Object: ?y]. 

This definition says that the Supports relation links an object x, which is 
the theme (THME) of the concept [Support], to another object y, which is 
the instrument (Inst) of the same concept. The Objects relation has three 
formal parameters: 

relation Objects{*x,*y,*z) is 
[Object: ?x]

{Chrc)-t[Shape: ?y] 
(Chrc)--t[Color: ?z]. 

This definition says that the first parameter x is of type Object; the 
second y is a Shape that is characteristic of the Object; and the third z is a 
Color that is characteristic of the Object. 



www.manaraa.com

Conceptual Graphs 295 

Figure 7: A conceptual graph generated directly from the relational database 

For the relational database in Figure 5, the Supports relation has domains 
named Supporter and Supportee. Those two domain names could also be 
related to the conceptual graphs by type definitions: 

type Supporter(*x) is [Object: ?x]~(Inst)~[Support]. 
type Supportee(*x) is [Object: ?x]t-(THME)t-[Support]. 

The first line says that Supporter is defined as a type of Object that is the 
instrument (Inst) of the concept [Support]; the second says that Supportee 
is a type of Object that is the theme (THME) of [Support]. By expanding or 
contracting these definitions, Figure 6 could be converted to Figure 7 or vice 
versa. The definitional mechanisms provide a systematic way of restructuring 
a database or knowledge base from one format to another. 

Restructuring a large database is a lengthy process that may sometimes 
be necessary. But to answer a single question, it is usually more efficient 
to restructure the query graph than to restructure the entire database. To 
access a relational database such as Figure 5, the definitions can be used 
to translate the concept types in the query graph to concept types that 
match the domains of the database. As an example, the English question 
Which pyramid is supported by a block? would be translated to the following 
conceptual graph: 

[Pyramid: ?]t-(THME)t-[Support]--t(Inst)--t[Block]. 



www.manaraa.com

296 John F. Sowa 

The question mark in the referent field of the concept [pyramid: ?] shows 
that this graph is a query graph. The identifier of the pyramid that makes 
this graph true would be the answer to be substituted for the question mark. 
The answer, Pyramid E, could be derived by matching the query graph to the 
conceptual graph in Figure 6. If the data is in a relational database, however, 
the query graph must be translated to SQL. Figure 8 shows how the type 
and relation definitions are used to translate the original query graph to a 
form that uses the same types and relations as the corresponding SQL query. 

Figure 8: Translating a query graph to a form that maps directly to SQL 

The graph at the top of Figure 8 is the original query graph generated 
directly from English. The second graph replaces the concepts [Pyramid] and 
[Block] by the definitions Object with Shape pyramid or Object with Shape 
block. The third graph replaces the concept [Support] and the relations 
THME and !nst with the relation Supports, which links the supporting object 
[Supporter] to the supported object [Supportee]. Finally, the bottom graph 
replaces the two occurrences of the Chrc relation with the Objects relation. 
Since the Objects relation has three arcs, two concepts of type Color are 
also introduced; but they are ignored in the mapping to SQL, since colors 
are irrelevant to this query. By translating the bottom graph of Figure 8 
to SQL, the system can generate the following SQL query for the original 
English question Which pyramid is supported by a block? 

SELECT SUPPORTEE 
FROM SUPPORTS, OBJECTS A, OBJECTS B 

WHERE SUPPORTEE = A.ID 
AND A.SHAPE = 'PYRAMID' 
AND SUPPORTER = B.ID 
AND B.SHAPE = 'BLOCK' 



www.manaraa.com

Conceptual Graphs 297 

The question mark in the concept [Supportee: ?] maps to the SELECT 
verb in the first line of the SQL query. The three relations in the query 
graph are listed in the FROM clause on line two. Since the Objects relation 
appears twice, it is listed twice on line two - once as OBJECTS A and again 
as OBJECTS B. Then the WHERE clause lists the conditions: the supportee 
must be equal to the identifier of object A; the shape of object A must be 
pyramid; the supporter must be equal to the identifier of object B; and the 
shape of object B must be block. Every feature of the SQL query is derived 
from some feature of the transformed query graph at the bottom of Fig. 8. 

4 Dataflow Graphs and Recursive Functions 

Functional programs, which do not have side effects, are the easiest to repre
sent in conceptual graphs, KIF, or any other system of logic. By definition, 
a function is a relation that has one argument called the output, which has a 
single value for each combination of values of the other arguments, called the 
inputs. In conceptual graphs, the output concept of a function is attached to 
its last arc, whose arrow points away from the circle. If F is a function from 
type Tl to type T2, the constraint of a single output for each input can be 
stated by the following conceptual graph: 

[Tl: V]-t(F)-t[T2: @1]. 

This graph says that for every input value of type Tl, F has exactly one 
output value of type T2. Combinations of functions can be linked together 
to form dataflow diagrams, as in Figure 9. 

Figure 9: A dataflow diagram written as a conceptual graph 

The input labels ?a, ?b, and ?c refer back to defining labels *a, *b, and 
*c on other concept nodes of other diagrams. The output label *x defines a 
node that could be referenced in another graph by ?x. The functions (Sum) 
and (Prod) take two numbers as input and generate their sum or product as 
output. The function (CS2N) converts a character string input to a number 
as output. Figure 9 could be mapped to the following statement in KIF: 

(=?x (* (+?a ?b) (cs2n ?c))) 



www.manaraa.com

298 John F. Sowa 

In a more conventional programming language, Figure 9 or its KIF equiv
alent would correspond to an assignment statement 

x := (a + b) * cs2n(c)j 

Figure 10: Defining a recursive function with a conceptual graph (relation 
Facto(*n,*x) is functional) 

Dataflow diagrams by themselves are not sufficient for a complete com
putational system. But when combined with a conditional relation and the 
ability to define recursive functions, they form the basis for a complete pro
gramming language that can compute any function that is computable by a 
Turing machine. Figure 10 shows a conceptual graph for defining the function 
Facto, which computes the factorial x of a nonnegative integer n It could be 
translated to the following function definition in KIF: 

(deffunction facto ((?n nonnegint)) := 

(cond ((> 2 ?n) 1) 
(true (* ?n (facto (1- ?n)))) )) 

In Figure 10, both variables ?n and ?x are marked with? rather than * 
because their defining occurrences are already specified in the top line with 
the keyword "relation". The relation (Subl) corresponds to the KIF function 
1-, which subtracts 1 from its input. The relation (Cond) corresponds to the 
conditional in KIF or the ternary?: operator in C. Its first argument is a 
Boolean valuej if true, the output of Cond is equal to the second argumentj 
otherwise, the output of Cond is equal to the third argument. The features 
illustrated in Figures 9 and 10 represent all the structure needed for a lan
guage that can specify any computable function. The inference rules of logic 
can make such diagrams executable, and a compiler can translate them to 
more conventional programming languages. 



www.manaraa.com

Conceptual Graphs 299 

5 Encapsulated Objects 

To represent the encapsulated objects of object-oriented systems, logic must 
support contexts whose structure reflects the nest of encapsulations. In con
ceptual graphs, contexts are represented by concept boxes with nested graphs 
that describe the object represented by the concept. In KIF, the nesting is 
represented by the description relation dscr and a quoted KIF statement that 
describes the object. As an example, Figure 11 shows a graph for a birthday 
party that occurred at the point in time (PTIM) of 26 May 1996. 

1 Birthday Party ~ Date: 26 May 19961 

Figure 11: A birthday party on 26 May 1996 

The concept with the type BirthdayParty says that there exists a birthday 
party, but it doesn't specify any details. The PTIM relation for point-in-time 
indicates that it occurred on the date 26 May 1996. To see the details of what 
happened during the party, it is necessary to open up the box and look inside. 
With a graphic display and a mouse for pointing, a person could click on the 
box, and the system would expand it to the context in Figure 12. In that 
graph, the large box is the same concept of type BirthdayParty that was 
shown in Figure 11, but it now contains some nested conceptual graphs that 
describe the party. 

Inside the large box in Figure 12, the first graph says that 40 guests are 
giving presents to a person named Marvin, and the second one says that 
50 candles are on a cake. The relations AGNT, THME, and RCPT are 
linguistic case relations that indicate the agent (guests who are giving), the 
theme (presents that are being given), and the recipient (the birthday boy, 
Marvin). The generic set symbol * indicates a set of unspecified things; the 
types Guest and Candle indicate the types of things; and the qualifiers "@40" 
and "@50' indicate the count of things in each set. 

6 Zooming in and Zooming out 

At the bottom of the box in Figure 12 is another concept [Process], which 
says that there exists some process in the birthday party. By clicking on 
that box, a viewer could expand it to a context that shows the steps in the 
process. In Figure 13, the process box contains three other nested contexts: a 
state with duration 15 seconds, followed by an event that occurs at the point 
in time 20:23:19 Greenwich Mean Time, followed by a state with duration 
5 seconds. The relation Dur represents duration, PTIM represents point in 
time, and Succ represents successor. Dur links each state to a time interval 
during which the graphs that describe the state are true; PTIM links the 



www.manaraa.com

300 John F. Sowa 

Date: May 1996 

Birthday Party : 

Guest: {*}@40 Person: Marvin 

I Candle: {*}@50 ~ Cake I 

Process 

Figure 12: Expanded view of the birthday-party context 

event to a time point, which is a short interval whose starting and ending 
times are not distinguished. 

At the top of Figure 13, two new variables *x and *y appear in the 
concepts of the 40 guests and the 50 candles. Those variables mark the 
defining nodes, which are referenced by the bound variables ?x and ?y in 
graphs nested inside the process context. In the pure display form, variables 
are not needed, since coreference is shown by dotted lines. But when the 
graphs contain a lot of detail, variables eliminate the need for crossing lines. 
An interactive display could provide an option of showing coreference links 
either as variables or as dotted lines. 

In Figure 13, the graphs nested inside the concepts of type State and Event 
are too small to be read. By clicking on the box for the first state, a person 
could zoom in to see the details in Figure 14. The expanded state shows the 
candles ?y burning while the guests ?x sing the song "Happy Birthday". Then 
the event box could be expanded to show Marvin blowing out the candles, 
and the next state would show the candles smoking for 5 seconds. Context 
boxes can encapsulate details at any level. At a lower level, the concept [Sing] 
might be expanded to show one guest singing in the key of G while another 
is singing in G flat. In this way, the encapsulated description of any object 
could be contained in a single context box, which could be expanded to show 
the details or contracted to hide them. 



www.manaraa.com

Conceptual Graphs 301 

Birthday Party : 

Guest: {*}@40 Person: Marvin 

I Candle: {*}@50 ~ Cake I 

Process: 

State:~ Interval: @ 15 sec 

Time: 20:23:19 GMT 

Interval: @ 5 sec 

Figure 13: Expanded view of the birthday party to show details of the process 

7 Stylized Natural Language 

Although conceptual graphs are quite readable, they are a formal language 
that would be used by programmers and systems analysts. Application users 
would normally prefer natural languages. But even programmers use natu
ral language for comments, documentation, and help facilities. Conceptual 
graphs were originally designed as a semantic representation for natural lan
guage, and they can help to form a bridge between computer languages and 
the natural languages that everyone reads, writes, and speaks. Following is a 
stylized English description that could be generated directly from Figure 13: 



www.manaraa.com

302 John F. Sowa 

State: I Candle: {*}?y ~ 

Guest: {*}?x Song: Happy Birthday I 

Figure 14: Expanded view of the first state of the process in Figure 13 

There is a birthday party B. 
In B, 40 guests X are giving presents to the person Marvin. 
50 candles Y are on a cake. 
There is a process P. 

In the process P, there is a state Sl with a duration of 
15 seconds. 

The state Sl is followed by an event E at the time 20:23:15 GMT. 
The event E is followed by a state S2 with a duration of 

5 seconds. 

In the state Sl, the candles Y are burning. 
The guests X are singing the song Happy Birthday. 

In the event E, the person Marvin blows out the candles Y. 

In the state S2, the candles Y are generating smoke. 

The ambiguities in ordinary language make it difficult to translate to a formal 
language. But generating natural language from an unambiguous formal 
language, such as conceptual graphs, is a much simpler task. For stylized 
English, the generation process can be simplified further by using variables 
instead of pronouns and mapping the context structure of the graphs to 
separate paragraphs. Such stylized language may not be elegant, but it is 
useful for comments and explanations. 

8 First-Order Logic 

In conceptual graphs, as in Peirce's existential graphs, there are three logical 
primitives: conjunction, negation, and the existential quantifier. All the 
operators of first-order logic can be defined by combinations of these three 
primitives. As an example of the basic logical notation, Figure 15 shows a 
conceptual graph for the sentence If a farmer owns a donkey, then he beats 
it. 



www.manaraa.com

Conceptual Graphs 303 

I F~R ~OWN~ DO~ I 
\ , 

...., \ , -, 1'0-EHBEAT ' 

Figure 15: A conceptual graph with nested negations and coreference links 

The context boxes, which were used to encapsulate object descriptions in 
previous examples, are also used to show the scope of the logical operators 
and quantifiers in Figure 15. The dotted lines are coreference links; they 
show that the concepts of type T, which represent the pronouns he and 
it , are coreferent with the concepts [Farmer] and [Donkey]. The dyadic 
conceptual relations represent the linguistic case roles experiencer (EXPR), 
theme (THME), agent (AGNT), and patient (PTNT). Literally, Figure 15 
may be read It is false that a farmer owns a donkey and that he does not beat 
it. 

To make conceptual graphs simpler or more readable, definitional mech
anisms can be used to define new concept and relation types. Two nested 
negations in the form -,[p -,[ q]] are logically equivalent to If p, then q. There
fore, the keywords If and Then may be defined as synonyms for a negation 
applied to a context of type proposition: 

type If(*p) is -,[Proposition: ?p]. 
type Then(*q) is -,[Proposition: ?q]. 

By these definitions, If and Then are defined to be type labels for propo
sitions that are enclosed inside a negation. When the context of type Then 
is enclosed inside a context of type If, the combination is logically equivalent 
to the two nested negations of Figure 15, but with the more readable syntax 
of Figure 16. 

Figure 16 may now be read as the more natural sentence If a farmer x 
owns a donkey y, then x beats y. The dotted lines, which showed coreference 
links in Figure 15, have been replaced with pairs of coreference labels in 
Figure 16. The pair *x and ?x represents the farmer, and the pair *y and 
?y represents the donkey. The labels marked with asterisks, *x and *y, are 
called the defining nodes; and the corresponding labels marked with question 
marks, ?x and ?y, are called the bound nodes. Dotted lines are used in the 
pure graph notation, but the equivalent coreference labels map more directly 
to KIF variables. Following is the KIF translation of Figure 16: 



www.manaraa.com

304 John F. Sowa 

If: I FARMER: *x DONKEY: *y I 

Then: 

Figure 16: A conceptual graph with an If-Then combination 

(forall ((?x farmer) (?y donkey) (?z own)) 
(=> (and (EXPR ?z ?x) (THME ?z ?y)) 

(exists ((?w beat)) (and (AGNT ?w ?x) (PTNT ?w ?y))) 
)) 

Other Boolean operators can also be defined by combinations of negations 
and nested contexts. The disjunction or logical or of two graphs p and q is 
represented by the combination 

..,[Proposition: ..,[Proposition: p] ..,[Proposition: q]]. 

For better readability, a dyadic conceptual relation OR may be introduced 
by the following definition: 

relation OR(*p, *q) is symmetric 
..,[Proposition: ..,[Proposition: ?p] ..,[Proposition: ?q]]. 

The definition of the OR relation implies that it is symmetric: the order 
of the formal parameters p and q may be interchanged without affecting the 
meaning. In the heading of the definition, the keyword symmetric affirms 
the symmetry and indicates that the arrows on the arcs of the OR relation 
may be omitted. 

The universal quantifier \:I may be defined in terms of an existential quan
tifier 3 and two negations: (\:Ix) is equivalent to the combination ",(3x)",. 
As an example, the following conceptual graph represents the sentence Every 
cat is on a mat: 

[Cat: 'v']--7(ON)-t[Mat]. 

The concept [Cat: 'v'], which has a universal quantifier, may be replaced by 
two negative contexts and the concept [Cat], which has an implicit existential 
quantifier. The expansion is performed in the following steps: 

1. Draw a double negation around the entire graph: 



www.manaraa.com

Conceptual Graphs 305 

-{..,[ [Cat: 'v']-+(ON)-+[Mat]ll. 

2. Move the concept with the universal quantifier between the inner and 
outer negations, and replace the symbol 'V with a coreference label, such 
as *x, which represents a defining node: 

-,[ [Cat: *x] -,[ -+(ON)-+[Mat] ]]. 

3. Insert the concept [?x], which represents a bound node corresponding 
to *x, in the original place where the concept [Cat: 'v'] had been: 

-,[ [Cat: *x] -,[ [?x]-+(ON)-+[Mat] ll. 

4. With the concept types If and Then, the graph could be written 

[If: [Cat: *x] [Then: [?x]-+(ON)-+[Mat] ll. 

This graph may be read If there exists a cat x, then x is on a mat. 

With the above definitions, the following English sentences can be translated 
to conceptual graphs and then to KIF: 

• Every cat is on a mat. 

[Cat:· 'v']-+(ON)-+[Mat]. 
(forall ((?x cat)) (exists ((?y mat)) (on ?x ?y))) 

• It is false that every dog is on a mat. 

-,[[Dog: V)-+(ON)-+[Mat)). 
(not (forall ((?x dog)) (exists ((?y mat)) (on ?x ?y)))) 

• Some dog is not on a mat. 

[Dog: *x] -,[[?x]-+(ON)-+[Mat]]. 
(exists (?x dog) (not (exists ((?y mat)) (on ?x ?y)))) 

• Either the cat Yojo is on a mat, or the dog Macula is running. 

[Either: 
[Or: [Cat: Yojo] -+ (ON) -+ [Mat]] 
[Or: [Dog: Macula] ~ (AGNT) ~ [Runll]. 

(or (exists ((?x mat)) (and (cat Yojo) (on Yojo ?x))) 
(exists ((?y run)) (and (dog Macula) (AGNT ?y Mac

ula)))) 

• If a cat is on a mat, then it is happy. 



www.manaraa.com

306 John F. Sowa 

[If: [Cat: *x]--t (ON)--t [Mat] 
[Then: [?x]--t(ATTR)--t[Happy]ll. 

(forall ((?x cat) (?y mat)) 
(=> (on ?x ?y) 

(exists ((?z happy)) (attr ?x ?z)))) 

9 Generalization Hierarchies 

The rules of inference of logic define a generalization hierarchy over the terms 
of any logic-based language. Figure 17 shows the hierarchy in conceptual 
graphs, but an equivalent hierarchy could be represented in KIF or other 
logical notation. For each dark arrow in Figure 17, the graph above is a 
generalization, and the graph below is a specialization. The top graph says 
that an animate being is the agent (AGNT) of some act that has an entity as 
the theme (THME) of the act. Below it are two specializations: a graph for a 
robot washing a truck, and a graph for an animal chasing an entity. Both of 
these graphs were derived from the top graph by repeated applications of the 
rule for restricting type labels to subtypes. The graph for an animal chasing 
an entity has three subgraphs: a human chasing a human, a cat chasing a 
mouse, and the dog Macula chasing a Chevrolet. These three graphs were 
also derived by repeated application of the rule of restriction. The derivation 
from [Animal] to [Dog: Macula] required both a restriction by type from 
Animal to Dog and a restriction by referent from the blank to the name 
Macula. 

Besides restriction, a join was used to specialize the graph for a human 
chasing a human to the graph for a senator chasing a secretary around a 
desk. The join was performed by merging the concept [Chase] in the upper 
graph with the concept [Chase] in the following graph: 

[Chase]--t(ARND)--t[Desk]. 

Since the resulting graph has three relations attached to the concept 
[Chase], it is not possible to represent the graph on a straight line in the 
linear notation. Instead, a hyphen may be placed after the concept [Chase] 
to show that the attached relations are continued on subsequent lines: 

[Chase]
(AGNT}--t[Senator] 
(THME}--t[Secretary] 
(ARND}--+[Desk]. 

For the continued relations, it is not necessary to show both arcs, since 
the direction of one arrow implies the direction of the other one. 

The two graphs at the bottom of Figure 17 were derived by both restric
tion and join. The graph on the left says that the cat Yojo is vigorously 



www.manaraa.com

Conceptual Graphs 307 

Figure 17: A generalization hierarchy 

chasing a brown mouse. It was derived by restricting [Cat] to [Cat: Yojo] 
and by joining the following two graphs: 

[Mouse]-t(ATTR)-t[Brown]. 
[Chase]-t (MANR) -t [Vigorous]. 

The relation (MANR) represents manner, and the relation (ATTR) rep
resents attribute. The bottom right graph of Figure 17 says that the cat 
Tigerlily is chasing a gray mouse. It was derived from the graph above it 
by one restriction and one join. All the derivations in Figure 17 can be re
versed by applying the generalization rules from the bottom up instead of 
the specialization rules from the top down: every restriction can be reversed 
by unrestriction, and every join can be reversed by detach. 

10 Multimedia Systems 

The boxes of a conceptual graph can be used as frames to enclose images 
of any kind: pictures, diagrams, text, or full-motion video. Figure 18 shows 
a conceptual graph that describes a picture; it may be read A plumber is 
carrying a pipe in the left hand and is carrying a tool box in the right hand. 
The conceptual relations indicate the linguistic roles: agent (AGNT), theme 



www.manaraa.com

308 John F. Sowa 

(THME), location (LOC) , and attribute (ATTR). The picture itself is en
closed in the referent field of a concept of type Picture. Concepts in the 
graph contain indexical referents, marked by the # symbol, which point to 
the parts of the picture they refer to. 

Figure 18: Referring to parts of a picture with indexical referents 

The pointers in Figure 18 are encoded in some implementation-dependent 
fashion. As an alternate representation, the pointers may be taken out of 
the referent fields of the concepts and put in a separate catalog. In Fig
ure 19, the picture of Figure 18 has a catalog indexed by serial numbers. 
Then the concepts may contain the serial numbers like #14261 instead pf the 
implementation-dependent pointers. 

#33972 

#70503 

#14261 

#77926 

#82835 

Catalog 

Figure 19: Mapping via a catalog of objects 

When a picture is enclosed in a concept box, conceptual relations may be 
attached to it. Figure 20 shows the image relation (IMAG), which links a 
concept of type Situation to two different kinds of images of that situation: 



www.manaraa.com

Conceptual Graphs 309 

a picture and the associated sound. The situation is linked by the descrip
tion relation (DSCR) to a proposition that describes the situation, which is 
linked by the statement relation (STMT) to three different statements of the 
proposition in three different languages: an English sentence, a conceptual 
graph, and a KIF formula. 

Sound: 

~k.,{ 

CLANKETY 
scmpe 

Sentence: 
"A plumber is carrying a pipe" 

Graph: 

Stm! 

Formula: 
(exists«7x plumber) (?y cany) (?z pipe» 

(and (agnt ?y ?x) (them ?y ?z» ) 

Figure 20: A conceptual graph with embedded graphics and sound 

Figure 20 shows how the nested contexts in conceptual graphs can be 
used to encapsulate information either in conceptual graphs themselves or in 
any other medium - including graphics, sound, natural language, or KIF. A 
conceptual graph like Figure 20 resembles a hypertext network where each 
concept box corresponds to a hypertext card that can encode information 
in any arbitrary form. But unlike hypertext, a conceptual graph is a for
mally defined version of logic that can be processed by rules of inference, be 
translated to English or KIF, and be used to pass parameters to and from 
application programs. 

In multimedia systems, conceptual graphs have been used in conjunction 
with the Standard Generalized Markup Language (SGML) and the Hyper
Text Markup Language (HTML). The markup languages specify the syntac
tic organization of a document in chapters, paragraphs, tables, and images; 
but they don't represent the semantics of the text and pictures. Concep
tual graphs provide a bridge between syntax and semantics: they can be 



www.manaraa.com

310 John F. Sowa 

translated to the syntactic tags of SGML or HTML; they are a semantic 
representation, which can be translated to database and knowledge-base lan
guages, such as SQL and KIF; and they can be translated to natural language 
text and speech. 

References 

[Che96] M. Chein, (ed.), Revue d'Intelligence artificielle, Special Issue on Con
ceptual Graphs, vol. 10, no. 1, 1996 

[EEM66] P.-W. Eklund, G. Ellis, G. Mann, (eds.), Conceptual Structures: 
Knowledge Representation as Interlingua, Lecture Notes in AI 1115, 
Springer-Verlag, Berlin, 1966 

[ELRS95] Ellis, G., Levinson, R. A., Rich, W., Sowa, J. F., Conceptual Struc
tures: Applications, Implementation, and Theory, Lecture Notes in AI 
954, Springer-Verlag, Berlin, 1995 

[HMN92] Hansen, H. R., Miihlbacher, R., Neumann, G., Begriffsbasierte Inte
gration von Systemanalysemethoden, Physica-Verlag, Heidelberg, Dis
tributed by Springer-Verlag, 1992 

[KIF95] ANSI ASC X3T2, Knowledge Interchange Format, available via http: 
/ /logic.stanford.edu/kif/kif.html, March 1995 

[LDKSS97] D. Lukose, H. Delugach, M. Keeler, L. Searle, J. F. Sowa, (eds.), Con
ceptual Structures: Fulfilling Peirce's Dream, Lecture Notes in AI 1257, 
Springer-Verlag, Berlin, 1997 

[NNGE92] T. E. Nagle, J. A. Nagle, L. L. Gerholz, P. W. Eklund, (eds.), Concep
tual Structures: Current Research and Practice, Ellis Horwood, New 
York,1992 

[MMS93] G. W. Mineau, B. Moulin, J. F. Sowa, (eds.), Conceptual Graphs for 
Knowledge Representation, Lecture Notes in AI 699, Springer-Verlag, 
Berlin, 1993 

[PN93] H. D. Pfeiffer, T. E. Nagle, (eds.), Conceptual Structures: Theory and 
Implementation, Lecture Notes in AI 754, Springer-Verlag, Berlin, 1993 

[Sow84] Sowa, J. F., Conceptual Structures: Information Processing in Mind 
and Machine, Addison-Wesley, Reading, MA, 1984 

[Sow92] Sowa, J. F., Knowledge-Based Systems, Special Issue on Conceptual 
Graphs, vol. 5, no. 3, 1992 

[Sow99] Sowa, J. F., Knowledge Representation: Logical, Philosophical, and 
Computational Foundations, PWS Publishing Co., Boston, MA, 1999 

[TDS94] W. M. Tepfenhart, J. P. Dick, J. F. Sowa, (eds.), Conceptual Struc-



www.manaraa.com

[Way92] 

Conceptual Graphs 311 

tures: Current Practice, Lecture Notes in AI 835, Springer-Verlag, New 
York, 1994 

E. C. Way, (ed.), Journal of Experimental and Theoretical Artificial 
Intelligence (JETAI), Special Issue on Conceptual Graphs, vol. 4, no. 
2, 1992 



www.manaraa.com

CHAPTER 14 

GRAI Grid 
Decisional Modelling 

Guy Doumeingts, Bruno Vallespir, David Chen 

Among formalisms used to model complex systems and organisations, the GRAI 
Grid has a special status because it focuses on the decisional aspects of the man
agement of systems. The GRAI grid defines the points where decisions are made 
(decision centres) and the information relationships among these. Models built us
ing the grid allow the analysis and design of how decisions are co-ordinated and 
synchronised in the enterprise. 

1 Introd uction 

Among formalisms used to model complex systems and organisations, the 
GRAI Grid has a special status because it focuses on the decisional aspects 
of the management of systems and it enables to build models at a high level 
of globality, higher than most of other formalisms. 

The GRAI Grid is a management-oriented representation of the enter
prise. The GRAI Grid does not aim at the detailed modelling of informa
tion processes, but puts into a prominent position the identification of those 
points where decisions are made in order to manage a system. These points 
are called decision centres. Decision centres are the locations where decisions 
are made about the various objectives and goals that the system must reach 
and about the means available to operate consistently with these objectives 
and goals. 

To manage a system, many decision centres operate concurrently, each 
with its own dynamics reflecting the various time-scales and dynamic re
quirements that management decisions need to address. The links existing 
between decision centres are influenced by several concepts of control (situ
ation in a hierarchy, temporal aspects, information handled, etc.). That is 
why models built up by the way of the GRAI Grid are in fact architectures of 



www.manaraa.com

314 Guy Doumeingts, Bruno Vallespir, David Chen 

decision centres. These architectures remain at a high level of globality be
cause the elementary building block of the GRAI Grid is the decision centre. 
Other formalisms may be used for modelling the internal behaviour of deci
sion centres, i.e. to describe how decisions are made; e.g. GRAI nets were 
specifically designed for that purpose, however, other functional modelling 
languages may also be suitable. 

The GRAI Grid is a modelling tool with several concepts to model a 
decisional system. These concepts are proposed within and are presented 
consistently by the GRAI Model. The GRAI Model is a generic (reference 
model) and the GRAI Grid enables its user to instantiate these concepts on 
real individual cases (Figure 1). 

Figure 1: GRAI Model and GRAI Grid 

Model of 
the real case 

The first part of this contribution will present the GRAI Model and the 
associated concepts. The second part will focus on the GRAI Grid. 

2 The GRAI Model 

The two main domains contributing to the GRAI model are control theory 
and the systems theory. We will show now what these contributions are. 

2.1 From Control and Systems Theories Towards 
Management Systems 

Control theory describes an artificial system as a couple: the physical system 
and the control system. 

The physical system aims at the transformation of inputs into outputs. 
E.g. in manufacturing raw materials are transformed into products. Re
quirements about the physical system are directly linked to what the system 
is expected to do. Thus the physical system is the key part of the whole 
because it is the physical system that supports the implementation of the 



www.manaraa.com

GRAI Grid 315 

systems main aim. IT the system is an enterprise then it is the physical 
system that creates the products and services which are the reason for the 
existence of the enterprise. 

However, the physical system must be controlled to process consistently 
with the objectives of the system. The control system ensures that this aim, 
or objective is achieved by sending "orders" to the physical system. More
over the control system communicates with the environment relating to the 
systems aims, accepting orders, making commitments, and exchanging any 
other information with the environment that is necessary to make decisions 
about how to control the physical system to successfully achieve overall sys
tem aims and objectivesl . The control system acts (makes its decisions) by 
using models of the physical system. However, for these models to reflect 
reality to a sufficient degree the control system must receive information, or 
feed-back, from the physical system (Figure 2). 

Systems theory enables us to enrich this understanding of systems, taking 
concepts into account, particularly relevant for our interest, such as those 
below: 

Information processing. The simplest systems are assumed to process 
only physical flows, i.e. material and energy. However, when a system goes 
higher in complexity, part of its activity is dedicated to the processing of 
information necessary to control its own behaviour. Information processing 
assumes the existence of a model based on which stimuli from the environment 
or signals from the physical part of the system can be interpreted, and thus 
become information. 

Decision-making. Some systems appear to be able to choose their own 
behaviour; in other words, given a situation to be in the position to carry out 
anyone of a set of activities and to choose one of them as the next course 
of action, i.e. to decide on the system's behaviour. Such systems appear 
to follow an internal logic and can be characterised as "goal seeking." The 
system's goal is usually not a simple objective function, but can be described 
as a system of objective;. 

Memory. A system may be able to store and restore information for 
control purposes. The structure and form of information to be stored is 
related to what information will need to be re-used: since information is used 

1 Note that the distinction between decision system and physical system is less evident 
when the system aims at the transformation of information (production of services gen
erally speaking) than when it aims at the transformation of products (manufacturing). 
In fact, when the service of the physical system involves information transformation, this 
dichotomy remains valid: the physical system inputs and produces information (e.g. a de
sign office receiving customer requirements and produces designs) and adds a value to this 
flow of information while decision system processes information only in order to control 
the physical system. 

20perating under a system of objectives instead of a simple objective function nor
mally means that there is no one single optimal behaviour, but there are several possible 
behaviours which can satisfy to some degree the system of objectives. 



www.manaraa.com

316 Guy Doumeingts, Bruno Vallespir, David Chen 

for decision making memory can be defined in relation to decision-making3 . 

Co-ordination. When a system is too complex, it must structure its 
activities. Structuring of the system's overall activity results in an activ
ity decomposition and accordingly the overall system objective may be de
composed into a system of objectives. The system can be considered as a 
multi-objective, or multi-goal system. Individual constituent activities can 
not be independently controlled so as to achieve their respective individual 
objectives without regard to one another; they must be co-ordinated in order 
for the entire system to meet overall system objectives. 

Based on the above discussion the GRAI model describes the control 
system as consisting of two parts: the information system and the decision 
system (Figure 2). Note that the term information system is used here in a 
more restrictive sense than it is generally understood in the IS discipline (see 
also Section 2.4). 

" / 
I 

I 
ONAL INFORMATI 

SYSTEM 

Raw materials, 
components 

\ 
" "-. .. " 

~ DECISIONAL 
SYSTEM\ 

\ 

Information \ 
about ~ 
physical ) system , I 

/ 

" ......... ./'/ PHYSICAL 
-----.--.-. SYSTEM 

Figure 2: The three sub-systems 

.. Finished 
products 

2.2 Hierarchy, Co-ordination and Decomposition 

Any complex system can be assumed to be hierarchycally controlled (see co
ordination above). To support this assumption we must define more precisely 
what is meant by a hierarchy. Two types of hierarchies are relevant for our 
discussion: layers and echelons [MMT70] and are separately defined below. 

2.2.1 Layers 

Layers are related to the decision complexity. In this case, the hierarchy 
supports a sequence of transformations and decisions. A layer is therefore a 

3We consider the information needed for the control of the system; information that 
is transformed by the physical system as part of its production activity is not considered 
here. 



www.manaraa.com

GRAI Grid 317 

step in a sequence of decision-making4 and the position of a layer related to 
the other layers is the result of the logical form of the sequence. Figure 3 
shows an example from the domain of production management. 

In this example, we can see that a layer is characterized by the contents of 
the decision made and the nature of the result. E.g. the task of calculating a 
material requirements plan is different from the task of calculating a schedule. 
The hierarchy is defined by a sequence: material requirements planning is 
higher in the hierarchy than load planning because a material requirements 
plan is needed as an input to load planning. 

In Section 2.4, we shall come back to how the GRAI model takes layers 
into account. 

~TERPROD.SCHEDULB 

MATERIAL REQ. PLANNING 

LOAD PLANNING 

SCHEDULING 

DISPATCHING 

------.. ~~I _______ PR_OC __ ~_S ______ ~---~~~ 

Figure 3: Layers in production management 

A multi-echelon (or multi-tier) hierarchy corresponds to a decomposition 
of the process and its dynamics. A system with any appreciable degree of 
complexity has multiple functions or objectives which need to be controlled. 
To ensure a harmonious process of the whole system, i.e. of the set of indi
vidual controls, upper levels of control are needed. These levels are echelons. 
Thus the multi-echelon hierarchy is the hierarchy of co-ordination (Figure 4). 

A multi-echelon hierarchy is always based on the co-ordination princi
ple of control: if a process P that is to be controlled is decomposed into 
Pl , P2 , ..• , Pn and each such part is separately controlled by decision func
tions Dl , D2 , ... , Dn respectively from echelon l~vel k, then there must be a 
decision function D on level k+l (or higher) which co-ordinates the decisions 
taken by Dl , D2 , ... , Dn . There are several different techniques to implement 

4We are speaking about the "main stream" of decision-making, then the decomposition 
in layers does not exclude possible iterations. 



www.manaraa.com

318 Guy Doumeingts, Bruno Vallespir, David Chen 

/ 
/ 

/ 

/' 
/ 

/// ~ ", Echelon 3 

/ ' 
/ ~.. ' 

~,:(~----~ "'" ,&hdoo2 

Co-ordination ~_ ~ , 
- , " ...... - .... , " .... .. , 

Information follow up " , , ", ' '" 

/ 
/ 

/ 

/ 
/ 

/ 

PROCESS 

Echelon I 

Figure 4: Multi-echelon hierarchy: process decomposition and co-ordination 

such co-ordination and there is an entire discipline, called co-ordination sci
ence [MC94], that investigates the best models of co-ordination. It is possible 
to design more than one multi-echelon control hierarchy for any given system, 
e.g., because there is more than one way of decomposing processes (such as 
decomposing P into PI, P2 , •.• , Pn above). 

2.2.2 Echelons 

A process can be decomposed based on various possible criteria such as 

• resource structure (organizational decomposition), or 

• steps5 of transformation (functional decomposition). 

Figure 5 shows an example of decomposition of a production6 system based 
on resource structure. In this example, the criteria of decomposition is the 
organization of manufacturing resources: a factory is decomposed into shops, 
which are decomposed into sections, which are further decomposed into work
centres. 

5Previously, we have presented layers as steps of transformation of information inside 
the decision system. The steps we are speaking about here are related to the transformation 
of products (physical system). 

6Production systems are systems which have an aim to produce products and, or services 
for the external environment. 



www.manaraa.com

Further 
details 

GRAI Grid 

Figure 5: Organizational decomposition of a production system 

319 

The decomposition by steps of transformation (functional decomposition) 
is based on the process of production (fur instance, procurement, machine
tooling, painting, etc.) without taking the organization into account (who 
does what). 

Within this framework, the time to process a task is a major character
istic from a control point of view. Thus the functional decomposition of the 
process supporting the definition of a multi-echelon hierarchy can be based 
on the criteria of time to process each task. Figure 6 illustrates this. In this 
figure the tasks processed by the physical system are decomposed into three 
levels. The first level (n - 1) corresponds to a set of elementary tasks which 
are assumed to have a time to process of value D n - 1 . Based on the decom
position presented in the figure, the tasks of the intermediary level (n) have 
a time to process Dn = 3 * Dn- 1 . Finally, the upper level of decomposition 
is composed of one task, the time to process of which is Dn+l = 6 * Dn- 1 . 

The right part of the figure presents the multi-echelon hierarchy of control 
related to this decomposition. There are three echelons, each of them being 
characterised by a temporal concept: the horizon (part of the future taken 
into account to make the decision). Then, echelon n - 1 is characterised by 
a horizon equal to Hn - 1 and so on. To ensure the complete controlability of 
the whole system, an important rule says that the horizons must have a value 
equal or more to the time to process of the task controlled by the echelon 
(Hn-l 2: Dn - 1, and so on). 

This concept is of paramount importance in the GRAI model and the 
GRAI grid. We shall come back to this notion of horizon Section 3.1. 



www.manaraa.com

320 Guy Doumeingts, Bruno Vallespir, David Chen 

2.2.3 Recursivity and Cognitive Limitation 

The dichotomy control system / physical system is applicable to any level of 
the decomposition. E.g., a shop (Figure 5) consists of a physical system (de
scribed as a network of sections implicitely controlled) and a control system 
(which can be described as a shop control function). Sections must in turn 
also be understood as a physical system (a network of Workcentres) and a 
control system (section control). 

These considerations lead to a recursive model of the system where each 
element of the decomposition has a control system and a physical system 
which latter is a network of elements. 

Cognitive limitation is another reason for using multi-echelon hierarchies 
in the control of complex systems. Cognitive limitation can be expressed as 
the quantity of information that a decision-maker is able to process in a unit 
of time. Decisions must be taken in a limited amount of time (in accordance 
with the dynamics of the system) therefore the amount of information that 
can be considered to make the decision must also be limited. Above this 
limitation, the decision-maker is overwhelmed by information. 

The quantity of information handled by the decision-maker grows with 
the level of detail and the size of the space, or scope of decision-making which 
is the extent of the system meant to be influenced by the decision. E.g., in 
the manufacturing domain this extent is defined in the space of resources, 
products and time. 

Roughly speaking, this limitation may be illustrated by assuming that it 
is impossible to think in globality and in detail at the same time. 

However, the complexity of manufacturing systems makes it necessary to 
understand them at several levels from details to globality (from machine con
trol to factory management). Thus, a decision-maker in charge of a detailed 
level (e.g., control of a machine) uses information which is very detailed, and 
the space of decision-making is very small (one machine, products operated 

Echelonn+l 

o Hn+l ~Dn+l 

Eehelonn COORDINATION 

o Hn~Dn 

Echelonn-l 

o Hn-l ~Dn-l 

Figure 6: Multi-echelon hierarchy based on time to process (H = horizon) 



www.manaraa.com

GRAI Grid 321 

on by this machine, and with a time span of one day or less). At the opposite 
side, a decision-maker in charge of a global level (of the management of a 
factory) uses global information with a space of decision-making very broad 
(the factory, all products with a time span of one year or more). Intermediate 
levels exist as well. 

2.3 Functional Decomposition and Synchronization 

Any concrete activity7 is defined by a product (or a set of products8) and 
a resource (or a set of resources9) (Figure 7). This is the definition of an 
activity from a static point of view. 

From a dynamic point of view, this definition is expanded in order to 
take time into account; the triplet [Product, Resource, Time] must now be 
considered. The dynamic definition of an activity is necessary to be able to 
synchronise its execution with other activities. 

ResOUICe 

i 
Product --..fL... __ A_C_TlVITY ___ --'~ Product 

Figure 7: Definition of an activity from a static point of view: Activity = Product 
x Resource 

Figure 8 presents all the combinations of the above three dimensions. 
Every area can be interpreted as describing some information about the ac
tivity of the system. Let us consider the seven combinations in Figure 8a. T 
is related only to time [Time]; in itself a list of time points (events) does not 
provide any useful information on the system, therefore this area is concealed 
(see Figure 8b). 

The six remaining combinations are split into two parts as in Figure 8c. 

• combinations where time is involved and 

• combinations where time is not involved. 

The three combinations within the first case are related to the domains of 
production management. We find: 

7 A concrete activity is an occurence of an activity type, thus needs a resource to perform 
it. An activity type of which the concrete activity is an occurence could be defined by 
defining what input is transformed into what output. 

8Input-output definitions. 
9It may be that a set of resources is only able to carry out the activity if the set of 

resources is in a given state, e.g. if it is configured in a certain manner. For this discussion 
resource means a physical machinery or human in a state necessary to be able to perform 
the activity. 



www.manaraa.com

322 Guy Doumeingts, Bruno Vallespir, David Chen 

T 

~ 
{~\ 

Technical data 

Management 

Figure 8: From the triplet Product, Resource, Time to the definition of domains 
of production management 

[Product, Time]: To Manage Products which is related to deci
sions about products (flows management, inventory control, purchas
ing, etc.), 

[Resource, Time]: To Manage Resources which is related to decisions 
about resources (means, manpower, assignment, etc.) and 

[Product, Resource, Time]: To Plan which is related to decisions deal
ing with the transformation of products by resources. Its main purpose 
is to manage the activity by synchronizing To Manage Products and 
To Manage Resources. 

The three combinations within the second case are related to the domains of 
definition of products and resources. Thus they are related to technical data. 
We find: 

[Product]: Definition of products, bill-of-materials, 

[Resource]: Definition of resources and 

[Product, Resource]: Definition of Routes. 

It is obvious that time is also involved in the three last domains because tech
nical data evolve. However, the assumption here is that technical data evolve 
more slowly than physical products do. Thus technical data are considered 
constant related to the operational time base. 

Figure 9 completes Figure 6 by taking these new concepts into account. 



www.manaraa.com

GRA! Grid 323 

To manage To plan To manage 
producb resources 

- a Echelon n+l -
SYNCHRONIZATION 

~-
Echelon n ~ , ~-
Echelon n-l U 

Figure 9: Time hierarchy and domains of decision-making 

2.4 Synthesis: The GRAI Model 

All the notions presented in this paper are taken into account within the 
GRAI model which is shown Figure 10. 

2.4.1 Physical System 

The physical system is presented as a set of organized resources the aim of 
which is the addition of value to the flow of products by the transformation 
of raw materials and information into final products. 

2.4.2 Decision System 

The decision system is composed of a set of decision centres which are the lo
cations of decision-making for the management of the physical system. Map
ping the domains of decision-making (Figure 8) to a hierarchical description 
of the system allows us to define decision centres more precisely as sets of 
decisions made on one hierarchical level and one domain of decision-making 
(see below). 

The hierarchical structure of the decision system is put in prominent 
position. This hierarchy is defined consistently with the organization of the 
physical system. The hierarchy is multi-echelon based and has a main purpose 
of co-ordination. However, because the GRAl model aims at being a frame 
for decisional models, it neither prescribes nor proposes anything about the 
nature of decision made in the frame. Thus the GRAl model is fully open to 
multi-layer approach which is generally relevant in production management 
(as seen for instance Figure 3). 

Production management system is assumed to mainly run periodically. 
However, the lowest part runs in real-time. That it is why the GRAl model 
set it apart by calling it operating system (but the GRAl Grid does not aim 
at the modelling of the operating system). 



www.manaraa.com

324 Guy Doumeingts, Bruno Vallespir, David Chen 

Raw materials, 
Components 

Figure 10: GRAI model 

~ Information filtering and aggregation 

2.4.3 Information System 

Decomposition 
level 

Products 

The information system is in charge of communication within the system and 
between the system and the environment, it also serves as the memory of the 
system and prepares information for the decision system. 

Similarly to the decision system, the GRAI model does not propose any 
particular structure for the information system. However, it puts emphasis 
on the fact that the global structure of the information system is constrained 
by the structure of the decision system. However, invariably two categories of 



www.manaraa.com

GRAI Grid 325 

important functions: filtering and aggregation are emphasised in the GRAI 
model, filtering functions are related to domains of decisions (what infor
mation is to be selectively presented for individual decision centres) and ag
gregation functions are those which summarise information flowing from the 
buttom to the top of the information system. 

More precisely, the information system must enable each level of the hi
erarchy to maintain a relevant model of the physical system. Information 
must be aggregated at every level based on a trade-off between detail and 
size which is exploitable (constrained by the earlier discussed principle of 
cognitive limitation). 

3 The GRAI Grid 

Figure 11 demonstrates the main concepts appearing in a GRAI grid. These 
concepts are now detailed. 

3.1 Levels 

Levels ofthe GRAI grid correspond to the echelons presented in the previous 
section. Each level is defined by a horizon and a period. 

3.1.1 Horizon 

A horizon is the part of the future taken into account by a decision. E.g., 
when a plan is made for three months, the horizon is three months. The 
notion of horizon is closely related to the concept of planning. In this way this 
notion is also very closed to the notion of terms (long term, short term, . " ) 
but is more precise because a horizon is quantified. In industrial production 
systems and because of control considerations already discussed in Section 
2.2 and Figure 6, horizons are directly valuated in relation with the customer 
order lead time, the material requirements cycle times, the manufacturing 
cycle etc. 

3.1.2 Period 

The notion of period is closely related to the concept of control and adjust
ment. When, based on an objective, a decision has been made to carry out 
some activity or activities during a subsequent horizon, the execution of these 
activities needs to be monitored. The intermediary results obtained need to 
be measured with respect to the objective before this activity is completely 
finished and the horizon ran out. If the measurements show that there is 
a deviation with reference to the objective, adjustments must be made. A 
period is the time that passes after a decision when this decision must be 
re-evaluated. E.g., a three months plan may be re-evaluated and decided 
upon every two weeks, i.e., the horizon is three months and the period is two 



www.manaraa.com

326 Guy Doumeingts, Bruno Vallespir, David Chen 

H=-

Bxtemal 
Information 

-=---:P- DBCISION FRAMES 

LBVBLS~:I---p=_ -+---+---+----1.--:11---+--11-----+-----+-1 

H=

p=-
DECISION CBNTRES INFORMATION FLOWS 

Figure 11: Concepts of the GRAI Grid 

weeks. The concept of period allows the manager to take into account the 
changes in the environment of the decision system. This change comes from 
the internal behaviour of the system (disturbances, machine breakdowns, ... ) 
and from outside (new customers orders arrive, problems arise related to 
providers, ... ). 

The value (length) of a period is determined as the result of trade-off 
between stability and reactiveness: if the period is too short, the system will 
not be stable enough; if it is too long, reactiveness is too weak. A period 
is directly linked to the frequency of the occurence of events relevant to the 
level considered. Although it is not optimal to react with changed decisions 
to every single relevant event, the shorter the time between these events the 
more frequently will it be necessary to re-evaluate the decisions which are 
influenced by these events. This rule can be used as guide for designers of 
the decision system. 

An echelon-hierarchy is represented as rows of the grid, using these tem
poral criteria. Further consistency criteria are a) an echelon with a longer 
period must be considered to be higher in the hierarchy, and b) if two levels 
have the same period, the level with the longer horizon is higher. 

3.2 Functions 

Decision-making tasks are classified into functions depending on the basic 
items they handle (Products, Resources and Time). The three domains of 
decision (called functions within the GRAI Grid) were previously described 
(Figure 8c) and are fundamental for the management of any kind of system. 

When describing the management functions of an enterprise these func-



www.manaraa.com

GRAI Grid 327 

tions are broken down into separate functional areas either by functional 
decomposition or by organizational partitioning as described in Section 2.2. 

Here is a sample list of typical functions which would appear as separate 
columns in the grid. Note that each of the functions below mayor may not 
have individual product and resource management components. 

• Decisions about engineering: Function to manage engineering 

To manage the engineering task means to manage the product of the en
gineering department and to manage engineering resources. Depending 
on whether the enterprise engages in repetitive or one of a kind pro
duction the relative importance of the engineering management (both a 
product and resource) is different - with one of a kind production being 
in the need of more sophisticated engineering management functions. 

• Decisions about maintenance: Function to manage maintenance 

Maintenance is carried out, e.g. by a maintenance workshop, which 
is a kind of service enterprise that gets its orders from the factory 
rather than from the outside environment. Clearly, from the point 
of view of the maintenance workshop the machines to be maintained 
are products. Managing maintenance from the maintenance workshop 
point of view is a product management task. The human resource 
that does the maintenance task and the necessary equipment needs 
to be managed as well, which is a resource management task of the 
maintenance workshop. 

From the point of view of the factory the management of machine 
maintenance is a separate resource management task, e.g. it needs to 
be planned when and which machine will be available (or not available 
because it is scheduled for maintenance). 

• Decisions about quality control: Function to manage quality control 

Quality management is a kind of product management, deciding on the 
quality control tasks needed at any stage of the product transforma
tion. It mayor may not need separate resource management for quality 
control. 

• Decisions about delivery: Function to manage delivery 

Delivery is one function out of the many in the product transforma
tion process. Delivery can be separately managed and therefore deliv
ery management can be decomposed into product management (which 
product to deliver and when), resource management (which delivery 
resource, such as trucks, people should be available, and when) as well 
as delivery planning and scheduling (which delivery is to be done by 
which delivery resource at what time). 

Delivery management may also be considered as part of the overall man
agement of a factory, whereupon the product and resource management 



www.manaraa.com

328 Guy Doumeingts, Bruno Vallespir, David Chen 

and planning and scheduling tasks of management include delivery as 
well as all other transformation functions. The only difference between 
manufacturing and delivering a part is that manufacturing changes the 
shape while delivery changes the physical co-ordinates (space) of the 
part. 

3.3 Decision Centres 

A decision centre is defined as the set of decisions made in one level and 
belonging to one decision function. 

3.4 Information 

The decision system (often called the production management system) re
ceives information internally, mainly from the physical system and from out
side the system. 

3.4.1 Internal Information 

The column on the right side of the grid is used to describe the information10 

generally coming from the physical system. This column identifies the feed
back information needed for control (see upward pointing arrows in Figure 
3). Based on this information the recipient decision centres can keep up to 
date their respective models of the physical system. 

3.4.2 External Information 

The column on the left is related to information coming from outside the 
system. This information corresponds to the fact that a production system 
is open to its environment. Most of the time, the main part of external 
information are of commercial nature (orders, forecasts, etc.). 

On the level of the GRAI grid the identification of internal and external 
information is qualitative in nature; commonly used data modelling languages 
are readily available to develop the corresponding data descriptions in form 
of database schemata 11 . 

3.4.3 Information Flows 

Decision centres receive information through information flows. These flows 
may be emitted by another decision centre, by an entity outside the pro
duction system (external information) or by the physical system (internal 
information). Because the GRAI Grid does not aim at a detailed model of 

lOOr the source of information. 
11 In case the information is not received through a database system, the precise descrip

tion may be in any other form that pragmatically specifies the meaning of the information 
identified. 



www.manaraa.com

GRAI Grid 329 

the production management system, only major information flows are pre
sented (those needed to understand the overall operation of the system). 
Information flows are represented in the GRAI Grid by single arrows. 

3.5 Decision Frames 

The concept of decision frame is of paramount importance in a management
oriented representation of the enterprises control. The global structure of 
management is represented by decision centres and the decision frames linking 
them. 

A decision frame is a complex information entity which can be one of two 
types: structural decision frame and operational decision frame. Structural 
decision frames are qualitative in nature, while operational decision frames 
are quantitative. 

3.5.1 Structural Decision Frame 

A structural decision frame describes for a decision centre the frame within 
which it can make decision. This frame is structural because it cannot be 
modified by a decision made within the model. To avoid conflicts, a decision 
centre is under the influence of only one structural decision frame. Structural 
decision frames are represented in the GRAI Grid by double arrows. 

A structural decision frame is composed of: 

• one or more objectives, 

• one or more decision variables, 

• zero or more criteria and 

• zero or more structural constraints. 

Objectives indicate which types of performances are targeted. These per
formances may be the production costs, the delivery lead time, the level of 
quality, etc. Objectives are needed everywhere a decision is made. Global 
objectives refer to the entire production system and, according to the prin
ciple of co-ordination are consistently detailed to give local objectives to all 
decision centres12 . 

Decision variables are the items which the decision centre can act on to 
make its decisions in order to allow the decision centre to reach its objectives. 
E.g., for scheduling of workers working hours a decision variable can be the 
number of extra work hours, i.e. the decision frame of scheduling declares 
that scheduling decisions may decide upon the value of extra working hours 

12Whether the local objectives were actually derived from global objectives or the global 
objective was derived from local objectives by way of some form of aggregation or gen
eralisation is immaterial; as long as the global objective is valid, the local objectives are 
feasible, and the two sets are consistent. 



www.manaraa.com

330 Guy Doumeingts, Bruno Vallespir, David Chen 

in order to reach the objective of scheduling. A decision centre may act upon 
one or more decision variables through determining their respective values. 
In other words decisions are made in a decision space the dimension of which 
is the number of decision variables. 

If several solutions can be found to reach the objectives in the space of 
decision-making then criteria must be used to discriminate these solutions. 

Constraints are the limitations on possible values of decision variables. 
Structural constraints describe limitations which are not decided by the pro
duction management system itself: they come as given and can not be trans
gressed unless the production system itself or its environment is changed, e.g. 
resource limits in terms of capabilities and capacities, regulations, etc. 

3.5.2 Operational Decision Frame 

The use of a structural decision frame is not sufficient from an operational 
point of view. A decision centre receives an operational decision frame 
through its structural decision frame. The operational decision frame is quan
titative and changes each time the decision centre that determines this frame 
makes a decision. A decision centre receives only one operational decision 
frame at a time. 

An operational decision frame consists of: 

• the valuation of the objectives and 

• one or several operational constraints. 

In a structural decision frame objectives were only qualitative, not valuated. 
An operational decision frame provides actual values for the qualitatively 
defined parts of a structural decision frame. 

Operational constraints aim at a limitation of the space of decision-making 
for the decision centre receiving the frame. This limitation applies to the 
decision variables in the structural decision frame of the same decision centre. 
Operational constraints are defined in the same form as structural constraints. 

3.5.3 Decision Variables and Constraints 

Decision constraints limit the freedom of a decision centre to select any ar
bitrary value for its decision variables (Figure 12). 

Because structural constraints represent limitations that must not be 
transgressed by decisions, the space of freedom defined by operational con
straints must be contained in the space of freedom defined by structural 
constraints13 . 

13To avoid Figure 12 to be too complex, structural constraints are not represented. 
However, as noted above, the space defined by structural constraints must contain at least 
the space defined by operational constraints. 



www.manaraa.com

MaxW2l 

Min<VD2> 

Decision 
variable 2 

GRAI Grid 331 

Italic: structural decision frame, 
Underlined: operational 
constraints received, 
Bold: resulting decision. 

Val (VD2) 

Decision ...... --r--------+--~ variable 1 

Val(VD1) 

Figure 12: Space with two decision variables and two operational constraints 

3.6 A Complete Environment of a Decision Centre 

Two more concepts are needed to define a complete environment of decision
making for a decision centre. 

3.6.1 Commands 

The decision frame contains all the elements indicating to a decision centre 
in which frame (partially how) it can decide. Commands represent what must 
be processed. A decision centre interprets commands in the context given by 
the decision frames. 

A decision centre may receive one or more commands and may emit one 
or several ones as well. In the GRAI Grid, a command is represented as a 
information flow or is implicit within a decision frame. 

A command may come from another decision centre or from outside the 
system, e.g. an order (sent by a customer) is a command. 

In the same way, a command may be sent to a resource. Sending a 
command to a resource is the way for the management system to control its 
physical system. 

3.6.2 Performance Indicators, Observability and Controllability 

A performance indicator is an aggregated piece of information allowing the 
comparison of the performance of the system to the systems objectives. A 
performance indicator may be defined by its name, a value domain or dimen
sion, and a procedure that describes how its value can be calculated. 



www.manaraa.com

332 Guy Doumeingts, Bruno Vallespir, David Chen 

Performance indicators have a special status among aggregate feedback 
information because they are defined for a specific decision centre consistent 
with the objectives and decision variables of that decision centre. 

Performance indicators must be consistent with objectives because it is 
necessary to compare the performances targeted (objectives) with'the per
formances reached (indicator). This is the criterion of observability. 

Performance indicators must also be consistent with decision variables 
meaning that the manipulation of the values of decision variables must have 
an effect on the performance monitored. This is the criterion of controllabil
ity. 

3.6.3 Environment of a Decision Centre 

Using the above concepts it is possible to define a complete decision-making 
environment (Le. the set of all inputs) for each decision centre of the decision 
system. Table 1 summarizes these concepts. Note that on the output side 
the centres decision variables are valuated and are received as parts of the 
operational frames (valuated objectives and constraints) and commands of 
lower level decision centres. 

STRUCTURAL 
Objective (type) 
Decision variable (type) 
Structural constraint (value) 
Criteria (type) 
Command (type) 
Performance indicator (type) 

OPERATIONAL 
Objective (value) 

/ 
Operational constraint (value) 
/ 
Command (value) 
Performance indicator (value) 

Table 1: Environment (or input) of a decision centre (Legend: type means qual
itatively defined, value means quantitatively defined, / means not appli
cable) 

Figure 13 shows a simple example of a GRAI grid14 . The grid is the result 
of an as-is analysis and could be used to uncover various problems with the 
present production management system. 

3.7 Example 

This section presents the use of the GRAI Grid in an industrial case study. 
The company studied manufactures industrial butterfly floodgates. The sub
ject of the study was an assembly shop and warehouse (for more detail con
cerning this study, see [DVM95a]). The study aimed at re-engineering the 
shop in order to meet the following objectives: 

14Note that the function which was called to deliver by the analysis team is in fact a 
delivery planning function (of the To plan type). 



www.manaraa.com

GRAI Grid 333 

~Fcrs EXTERNAL TO MANAGE PRODUcrS TO PLAN TO MANAGE "'" '''''' INTERNAL 
I HIP ~ lNFORMATIm TOPURCHASE TO SUPPLY MANUFACfURIN RESOURCES TOD~.~ lNFORMATIOl 

I -to look for equipment 
year Sal .. forecast suppli.... to fix t!'"<!::= budget = F:>' II: 

I year per family -to negotia.. supplymg n- employees 

4mooths 
Sal .. forecaat 

/product 

matIcets _ par8!!1...... J l PIOIf"'" 
~ ~~ ... ----::jZ,t;:=::I:===+==;--1 

, To lIAljust Muter--"-" To dO load 

2mooths 
To lIAljust lyiDg ... _~oo IcvcliDg 

Backlog 
oforders 

matIcets pS:: IdeO fje ~/ shop 

~~ ...==~~l~~======~-=Stu«~-I 
Load p1amtiDg To share the _ &P, 

'- - employees _ Manufactured 
Quantity to per team and pe componeIIII 

I,Smooth 

I week 
manufiurture sectioo 

To supply I week 

I week 
raw material Assembly 

I week 

I clay 
Urgent 

deliveries 

and 
componeDls 

v 

=~I= /clay per 
/ team machine 

Figure 13: Example of a GRAI Grid (as-is analysis) 

Regarding the customers: 

0nleriDg 
plllllling 

stu« 
-R.M. 

-Bought 
componeIIII 

• meet the strategic requirements in terms of manufacturing volume, 

• respect delivery due dates, 

• increase reliability of delivery lead times, 

• improve load and product flexibility, and 

• monitor and improve quality. 

Regarding the factory organization: 

• decrease inventories, 

• decrease production costs, and 

• enrich operating and management tasks, for employee motivation. 

The objective of the use of the GRAI Grid was to identify the elements and 
organization of the production system, and to present a model understand
able by various users. This task had to allow existing inconsistencies to be 
brought to the fore and their origin to be identified. Finally, the aim was to 
allow the participants in the study to understand the system and to know its 
specific features. 



www.manaraa.com

334 Guy Doumeingts, Bruno Vallespir, David Chen 

~ "'-' To""''''''' T. -.....--. -- T ..... To ...... a.- c:-oo ..-.......... """"" 
H-\ yew -" e. ..... t .. ....... ~~ _of - ......... ... , .... _1)oFF) -- ""'"' t--" "" , 

~-H·' ...... 1'1 ...... ., , -.. 
.....-.. "- (Iorr) ----- ......,-.. ,-- .....,. ..... --- L .... -J, - "- .. - I' 

II-~~ ........ - ~. 
s~ _ .. ..- -.......... .. ,- .... - _Of_ 

I -::::.. .... .. -
I ~"l bcd"oNm~ 

""' .... 
H·'.....,q, ...... - ..- ' ...... r .. ,..,. ~ - _ ....... 

-) ewen -..appIiIn -4- ....... .t ...-- .......... I)offj 

..-

- - -- - ......... 
H·J~ "'-"" - iaJkdl.c..,eicr ano.._ - ./ "'-
'-ll1boy 0."",,*,_) ........ - I 

...., ... ..-........ 
lr J H- I _d .......... .. ... 

1'-1 d.J 
-~ 

n 

H" 1 l1li)111 ...... I~ T ... "'->' - =:.: .-p .. O(l:T) p'" 

Figure 14: The assembly management system (GRAI grid) - as-is situation 

A grid representing the current assembly management system was built 
(Figure 14) . From this grid, the most important inconsistencies were identi
fied, as well as the consequences of these for the production. What follows 
is a sample analysis of the inconsistencies which were discovered in the three 
main types of management functions "To plan," "To manage products" and 
"To manage resources." 15 Such analysis can be carried out by a production 
management expert who can compare known production management with 
the explicit model of present production management as brought to light by 
the model. 

Long-term / To plan. Planning is only expressed in terms of money 
(French Francs [FF]) and is based on orders. There is therefore no Master 
Production Schedule taking manufacturing and procurement lead times into 
account. Thus, it is not possible to define manufacturing parameters and 
procurement rules over the long term. There is no criterion for processing 
exceptional orders or project-like orders which may run over several months. 

15Note that for the reader of this handbook it is harder to interpret this grid than for 
those involved in the study, since the grid utilises the terminology commonly shared in the 
studied shop and is interpreted in that context. 



www.manaraa.com

GRAI Grid 335 

Long-term / To manage products. Incoming goods or products 
should normally be procured on the basis of requirements planning, com
ponent consumption review, or inventory control rules. Planning expressed 
in terms of money is not suitable for the calculation of a procurement plan 
(see Long-term / Plan). Thus, production objectives and procurement man
agement are not consistent, leading to both stockouts and inventory inflation. 

Long-term / To manage resources. Because of the long-term plan 
being expressed in terms of money there is no real long-term resource man
agement. Especially, the relationship between load and capacity cannot be 
taken into account by resource management. 

Middle-term / To plan. There is no load planning. The acceptance 
of an order with a lead time less than the standard lead time is based only 
on the availability of components. Thus the main aspect of dispatching is 
based on a rigid sequencing rule, and resources shared by several routes do 
not know their future loads. 

Middle-term / To manage products. Because of the lack of load 
planning it is impossible to adjust the procurement plan. Thus the inventory 
is sizeable but inappropriate for the needs of the assembly unit. 

Middle-term / To manage resources. Because of the lack of load 
planning it is impossible to adjust capacities, mainly the allocation of oper
ators. 

Short-term / To plan. Scheduling is not really planned because it is 
based only on a so-called infinite capacity calculation. The only real planning 
is carried out by dispatching. Thus there is no synchronization. This leads 
to stockouts and inventory inflation. The scheduling decision centre receives 
an objective expressed in terms of money and as a monthly forecast. This is 
inappropriate for the short-term level and the objective cannot be achieved. 

Short-term / To manage products. Because of the inappropriateness 
of the long- and middle-term product management, routing is triggered two 
weeks before real requirements. This leads to increased Work-In-Process, 
information flows and processing. 

Short-term / To manage resources. Because of the status of the 
middle-term resource management the optimization of the use of resources is 
not possible. 

4 Conclusion 

The GRAI Grid was used in many studies, in SMEs and large companies 
as well, in several business domains. Generally, the GRAI Grid is not used 
alone but as one of the modelling formalisms brought into play within GIM 
(GRAI Integrated Methodology) [DVZC92]. 

The success of the GRAI Grid may be explained through two main points. 
First, the GRAI Grid is operationaly very practical because it gives a com
prehensive, one-page model generally sufficient to explain the structure of 



www.manaraa.com

336 Guy Doumeingts, Bruno Vallespir, David Chen 

the management system to the executives of a company. Second, the GRAI 
Grid is management-oriented and enables the understanding of the produc
tion system in terms of performances (related to the notion· of objectives) and 
integration (related to the notion of co-ordination and synchronisation). 

It is considered particularly that the decomposition and transmitting of 
objectives is a key point for integration. Integration is not only related to the 
physical connection of machines and computers, but also to the coherence of 
objectives of the various decision-making activities. Without coherence of 
objectives, the physical connection of machines and communication network 
cannot improve the performance of a manufacturing system. 

The main items that make up the frames of decision making (objec
tives, decision variables, constraints) are primarily determined by the hi
erarchy of the decision system. These items are decomposed in a consis
tent way by descending the hierarchy of the system. E.g., suppose that the 
global objectives of a manufacturing system can be described by a triplet 
< Costs, Quality, Leadtimes >, i.e. cost objectives, quality objectives and 
lead time objectives. These objectives are the objectives of the highest level 
of the hierarchy. The objectives of lower levels are different but must be con
sistent with these three objectives. Conversely the performance of a lower 
level decision centre contributes to the global performance of the system. 

The GRAI Grid enables its user to analyse the consistency of the decision 
system and helps in designing improved systems of management. Note that a 
number of analysis rules exist which can be applied to GRAI grids to uncover 
common problems of co-ordination and synchronisation thus improving the 
level of integration in the enterprise. 

References 

[CVD96] Chen, D., Vallespir, B., Doumeingts, G., GIM: GRAI Integrated 
Methodology, a methodology to design and specify integrated man
ufacturing systems, in: Proceedings of AS1'96, Annual Conference of 
ICIMS-NOE, Life Cycle Approaches to Production Systems, Toulouse, 
France, 1996, 265-272 

[Dou84] Doumeingts, G., Methode GRAI: methode de conception des systemes 
en productique, Automatic Control, Universite de Bordeaux I, 1984 

[DVZC92] Doumeingts, G., Vallespir, B., Zanettin, M., Chen, D., GIM: GRAI 
Integrated Methododology, a methodology for designing CIM systems, 
A technical report of the IFACjIFIP Task Force on Architectures For 
Integrating Manufacturing Activities And Enterprises, GRAIjLAP, 
Version 1.0, 1992 

[DVM95a] Doumeingts, G., Vallespir, B., Marcotte, F., A Proposal for an In
tegrated Model of Manufacturing System: Application to the re-



www.manaraa.com

GRAI Grid 337 

engineering of an Assembly Shop, Control Engineering Practice, Spe
cial Section on Models for Management and Control 3(1), 1995, 59-67 

[DVC95b] Doumeingts, Go, Vallespir, Bo, Chen, Do, Methologies for Designing 
CIM systems - A survey, Computers in Industry, Special Issue on 
CIM in the Extended Enterprise, Amsterdam, 25 (3) 1995, 263-280 

[DV95c] Doumeingts, Go, Vallespir, Bo, A Methodology Supporting Design and 
Implementation of CIM Systems including Economic Evaluation, in: 
Po Brandimarte, Ao Villa (edso), Optimization Models and Concepts 
in Production Management, 1995, 307-331 

[MC94] Malone, To Wo, Crowston, K., The interdisciplinary study of coordi
nation, ACM Computing Surveys 26 (1), 1994, 87-119 

[Mar95] Marcotte, Fo, Contribution it la modelisation des systemes de pro
duction: extension du modele GRAI, PhD Thesis, CIM, Universite 
Bordeaux I, 1995 

[MMT70] Mesarovic, Mo Do, Macko, Do, Takahara, Y., Theory of hierarchical, 
multilevel, systems, Academic Press, New York and London, 1970 

[Moi84] Le Moigne, Jo-Lo, La tMorie du systeme general, Presses Universitaires 
de France, collection Systemes-Decisions, Paris, 1984 

[ValI90] Vallespir, Bo, Hierarchical aspect of production management systems, 
associated modelling tools and architecture, in: Proceedings of the 1st 
International Conference on Automation Technology, Taipei, Taiwan, 
1990 

[VMD93] Vallespir, B., Merle, Co, Doumeingts, Go, GIM: a technico-economic 
methodology to design manufacturing systems, Control Engineering 
Practice, Oxford 1 (6), 1993, 1031-1038 



www.manaraa.com

CHAPTER 15 

SOM 
Modeling of Business Systems 

Otto K. Ferstl, Elmar J. Sinz 

SOM is an object-oriented methodology for comprehensive and integrated modeling 
of business systems. It is based on a framework consisting of the layers business 
plan, business process model, and business application system as well as views on 
these layers focusing on specific aspects. This contribution presents the SOM lan
guage for business process modeling and shows how business application systenis 
can be linked to business process models. The language uses concepts of systems 
theory and is based on the notions of business object, business transaction, task, 
event, and service. Business objects are coordinated by feedback control or by ne
gotiation. Decomposition rules allow a stepwise refinement of a business process 
model. The contribution includes a detailed example to illustrate the methodology. 

1 Introd uction 

SOM is a methodology for modeling business systems [FS90, FS91, FS95]. 
The abbreviation means 'Semantic Object Model', expressing that the SOM 
methodology is fully object-oriented and designed to capture business se
mantics explicitly. General basis of the SOM methodology are concepts of 
systems theory. 

SOM supports the core phases of business engineering, such as analysis, 
design, and redesign of a business system. A business system is an open, 
goaloriented, sociotechnical system. Thus the analysis of a business system 
focuses on the interaction with its environment, goal pursuing business pro
cesses, and resources. Moreover, the dynamic behavior of a business system 
requires investigation of properties such as stability, flexibility, and complex
ity [Bah92]. 

The backbone of the SOM methodology is an enterprise architecture 
which uses different perspectives on a business system via a set of mod
els. These models are grouped into three model layers referring to a business 



www.manaraa.com

340 Otto K. Ferstl, Elmar J. Sinz 

plan, business process models and resource models. Each layer describes the 
business system as a whole, but with respect to the specific perspective on 
the model. In order to reduce complexity, each model layer is subdivided 
into several views, each focusing on specific aspects of a model layer. On 
the meta level, the modeling language of each layer is defined by' a meta 
model and derivated view definitions. Thus the enterprise architecture pro
vides a modeling framework which helps to define specific semantics and to 
manage complexity of the model [Sin97]. In this contribution we outline the 
methodological framework of SOM as well as its modeling language. 

2 Characteristics of Business Systems 

In terms of systems theory a business system is an open, goaloriented, so
ciotechnical system [FS98]. It is open because it interacts with customers, 
suppliers, and other business partners transferring goods and services. The 
business system and its goods/services are part of a value chain which in gen
eral comprises several consecutive business systems. A corresponding flow of 
finance runs opposite the flow of goods and services. 

The behavior of a business system is aimed at business goals and objec
tives. Goals specify the goods and services to be provided by the system. 
Objectives (e.g. profit and turnover) are defined measurable levels against 
which business performance can be measured. 

Actors of a business system are humans and machines. Human actors are 
persons in different roles. Machine actors in general are plants, production 
machines, vehicles, computer systems etc. SOM pays specific attention to ap
plication systems which are the machine actors of the information processing 
subsystem of a business system (information system). An application system 
consists of computer and communication systems running application soft
ware. The degree of automation of an information system is the ratio of tasks 
carried out by application systems to all tasks of the information system. 

The notion of a business system as open and goal-oriented reflects a per
spective from outside the system. An inside perspective shows a distributed 
system of autonomous, loosely coupled components which cooperate in pur
suing the systems goals and objectives. The autonomous components are 
business processes [FS93, FS95] which produce goods and services and de
liver them to other business processes. 

The cooperation of business processes is coordinated primarily through 
process specific objectives which are derived from the overall objectives of a 
business system. This is done by the business systems management. Within 
the degrees of freedom defined by the process specific objectives a secondary 
coordination is done by negotiation between the business processes. 

Inside a business process there are components which also cooperate and 
have to be coordinated. This coordination is done by an intra-process man
agement which controls the activities of the process components by sending 



www.manaraa.com

SOM 341 

instructions to them and supervising their behavior. In contrast to the coordi
nation between business processes, the components inside a business process 
are guided closely by the process management. 

The components of a business process as well as the business processes 
as a whole take care of functions which are essential to every business sys
tem. The following classification of these functions helps to identify business 
processes and their components: (1) input-output-function to implement the 
characteristic of openness, e.g. a production system, (2) supply function to 
provide material resources and energy, (3) maintenance function to keep the 
system running, (4) sensory function to register disturbances or defects inside 
or outside the system, (5) managing function to coordinate the subsystems 
[Bee81]. 

3 Architecture of Business Systems 

The SOM methodology utilizes an enterprise architecture which consists of 
three layers (Figure 1) [FS95]: 

Model Layer Perspective View Specification 

1st layer from outside 
a business system 

from inside a interaction schema 
2nd layer 

business system 
process task-event schema 
model 

specification of 
schema of task 

3rd layer from the classes 
c 

1/1.21/1 en en schema of concep-
XI i§ E 

Q)"E 
ness .5=.21 ~! tual classes 
system 1/1 e.. 1/1 0" :le..>- III c: 

oClIIl/I E III 

Figure 1: Enterprise architecture [FS95] 

• Enterprise plan: The enterprise plan constitutes a perspective from 
outside a business system. It focuses on the global task and the re
sources of the business system. The specification of the global task 
includes the universe of discourse, the goals and objectives to be pur
sued, as well as the goods and services to be delivered. Requirements 
on resources are derived from the global task and have to be cross
checked to the capabilities of available resources. So both global task 
and resources determine themselves mutually. 



www.manaraa.com

342 Otto K. Ferstl, Elmar J. Sinz 

A first evaluation of an enterprise plan is done by an analysis of chances 
and risks from a perspective outside the business system, and an ad
ditional analysis of the strengths and weaknesses of the business sys
tem from an inside perspective. Strategies on products and markets, 
strategic actions, constraints, and rules serve as guidelines to realize an 
enterprise plan . 

• Business process model: The business process model constitutes a 
perspective from inside a business system. It specifies main processes 
and service processes. Main processes contribute directly to the goals 
of the business system, service processes provide their outcome to main 
processes or other service processes. The relationships between busi
ness processes follow the client/server concept. A client process engages 
other processes for delivering the required service. Business processes 
establish a distributed system of autonomous components. They co
operate in pursuing joint objectives which are derived from the overall 
objectives of a business system. 

• Specification of resources: In general, personnel, application sys
tems as well as machines and plants are resources for carrying out the 
tasks of business processes. In the following we focus on information 
processing tasks and therefore omit machines and plants. Tasks of the 
information system are assigned to persons or to application systems 
classifying a task as non-automated or fully-automated. A task partly
automated has to be split into sub-tasks which are non-automated or 
fully-automated. The assignment of persons or application systems is 
aimed at optimal synergy of person-computer cooperation. 

The different layers of the enterprise architecture help to build business sys
tems in a flexible and manageable way. They cover specific aspects of an 
overall model which are outside perspective (enterprise plan), inside per
spective (business process model), and resources. The relationships between 
the layers are specified explicitly. Each layer establishes a distributed sys
tem of autonomous, loosely coupled components. In contrast to a single
layered monolithic model, the multi-layered system of three models allows 
local changes without affecting the overall architecture. For example, it is 
possible to improve a business process model (inside perspective) yet retain
ing goals and objectives (outside perspective), or to replace actors of one type 
by other ones. 

Following an outside-in approach it is advisable to build the three model 
layers top down the enterprise architecture. But the architecture does not 
force this direction. There may be good reasons to depart from this guideline 
e.g. when analyzing existing business systems. Here it is sometimes difficult 
to find an elaborated enterprise plan, so modeling starts at the business 
process layer focusing on the inside perspective. The enterprise plan may be 



www.manaraa.com

SOM 343 

completed when the other layers are fully understood. In each case effects 
on other layers have to be balanced and approved. 

The enterprise architecture implies that functionality and architecture of 
the business application systems are derived from the business process model. 
The relationships between both layers are formalized to a high degree. Design 
decisions and results at the business process layer are translated automati
cally into the layer of application systems. The architecture of the layer of 
application systems uses the concept of object-integration to combine con
ceptual and task classes [Fer92J. Alternatively it is possible to link a business 
process model to an existing, traditional application system which follows 
the traditional concepts of function integration or data integration. In this 
case tasks to be automated are linked to functional units of the application 
system. 

4 Language for Business Process Modeling 

In this section we define the language for business process models. The 
language is specified by a meta model (Section 4.1) and a set of decomposition 
rules (Section 4.2). The section is completed by an example, introducing the 
business process distribution of a trading company (Section 4.3). 

4.1 Meta Model for Business Process Models 

The meta model for business process modeling shows notions and relation
ships between notions (Figure 2). It is specified as a binary entity-relationship 
schema. Relationships between notions are associated with a role name as 
well as two cardinalities to denote how many instances of the one notion 
can be connected to one instance of the other notion at least and at most. 
Within the meta model the notions are represented by entities. Each entity 
also contains the symbols used for representation within a business process 
model. 

As introduced in Section 3, a business process model specifies a set of busi
ness processes with client/server relationships among each other. A business 
process pursues its own goals and objectives which are prescribed and tuned 
by the management of a business system. Cooperation between processes is 
a matter of negotiation. The term 'business process' denotes a compound 
building block within a business process model and therefore it is not a basic 
notion of the language. A business process consists of at least one business 
object and one or more business transactions. 

At the initial level of a business process model, a business object (object 
in short) produces goods and services and delivers them to customer busi
ness processes. Each business object belongs exclusively to a business process 
of the universe of discourse or to the environment of a business system. A 
business transaction (transaction in short) transmits a good or service to a 



www.manaraa.com

344 Otto K. Ferstl, Elmar J. Sinz 

task-event schema 

0: 
!riggers 

Figure 2: Meta Model for Business Process Models [FS95j 

customer business process or receives a good or service from a supplier busi
ness process. A transaction connecting different business processes belongs 
to both processes. 

A business process may be refined using the decomposition rules given 
below. At a more detailed level of a business process model, each business 
object appears in one of two different roles: an operational object contributes 
directly to producing and delivering of a good/service while a management 
object contributes to managing one or more operational objects using mes
sages. A business transaction transmits a good/service or a message between 
two operational objects or a message between two management objects or 
between a management object and an operational object. 

A business transaction connects two business objects. Conversely, a busi
ness object is connected with one to many (*) in-going or out-going business 
transactions. From a structural viewpoint a transaction denotes an inter
action channel forwarding goods, services, or messages. From a behavioral 
viewpoint a transaction means an event which is associated with the trans
mission of a specific good, a service package, or a message. 

A business object comprises one to many tasks, each of them driving one 
to many transactions. A transaction is driven by exactly two tasks belonging 
to different business objects. The tasks of an object share common states and 
are encapsulated by the object. These tasks pursue joint goals and objectives 
which are attributes of the tasks. 

The SOM methodology uses two different concepts of coupling tasks (Fig
ure 3, top): Loosely coupled tasks belong to different objects and therefore 
operate on different states. The tasks are connected by a transaction which 



www.manaraa.com

SOM 

Object 1 

event 

tightly coupled tasks 
(associated to one object) 

View on Structure: 
Interaction Schema 

View on Behavior: 
Task-Event Schema 

Object 2 

Object 1 

345 

Figure 3: Representation of structure and behavior in a business process model 

serves as an interaction channel for passing states from one task to the other. 
A task triggers the execution of another task by an event (good, service pack
age, or message) riding on the interaction channel. Tightly coupled tasks 
belong to the same object and operate on the same states. The tasks are 
connected by an internal event which is sent from one task to trigger the exe
cution of the other. The concept of encapsulating tightly coupled tasks by an 
object and loosely coupling the tasks of different objects via transactions is 
a key feature of the object-oriented characteristic of the SOM methodology. 

A third type of event is the external event. An external event denotes the 
occurrence of an event like 'the first day of a month' which is not bound to 
a transaction. 

Due to its complexity, a business process model is represented in two 
different diagrams (Figure 3 bottom and Figure 2): The Interaction Schema 
is the view on structure. It shows business objects which are connected by 
business transactions. The Task-Event Schema is the view on behavior. It 
shows tasks which are connected by events (transactions, internal events, or 
external events) . 

4.2 Decomposition Rules 

The SOM methodology allows a business process model to be decomposed 
by stepwise refinement. Decomposition takes place with the components of 
the interaction schema specifying the structure of a business process model, 
i.e. business objects, business transactions, and goods/services (see the rei a-



www.manaraa.com

346 Otto K. Ferstl, Elmar J. Sinz 

tionship consists of in Figure 2). The components of the task-event schema 
which specify the behavior of a business process model (tasks, events riding on 
transactions, internal events, and external events) are not decomposed but 
redefined on subsequent decomposition levels of a business process model. 
The decomposition rules for business objects and business transactions are 
shown in Figure 4. Specific rules for decomposition of goods/services are not 
required because of simply decomposing them into sub-goods/sub-services. 

Decomposition rules for business objects: 

0 :: = {O',O",Tr{O',O"),[Tt(O",O')]} (1) 

0 :: = {O',O",[T(O',O")]} (2) 

0 :: = {spec O'V (3) 

0'10" ::=0 (4) 

Decompostition rules for business transactions: 

T(O,O' ::=[[Ti(O,O') seq] Tc~O',O)] seq Tc(O,O') (5) 

T. :: =T'.{seq T"x}+ I T'x{par T"xV (x=i,c,e,r,t) (6) 

T. :: = {spec T'x}+ (x=i,c,e,r,t) (7) 

TilTclTo ::=T (8) 

TriTe ::=T (9) 

Figure 4: Decomposition rules for business objects and business transactions 
(::=replacement,n set, n+ list of repeated elements, 0 option, I al
terantiv, seq sequential order, par parallel order, spec specialization) 

The decomposition of a business process model helps to manage its com
plexity, allows to separate the management system of a business process from 
its operational system, and uncovers the coordination of a business process. 

The SOM methodology uses two basic coordination principles within de
composition [FS95]: 

• Applying the feedback control principle (rule 1) a business object is 
decomposed into two sub-objects and two transactions: a management 
object 0' and an operational object 0" as well as a control transaction 
Tr from 0' to 0" and a feedback transaction Tf in opposite direction. 
These components establish a feedback control loop. The management 
object prescribes objectives or sends control messages to the operational 
object via the control transaction. Conversely the operational object 



www.manaraa.com

SOM 347 

object in role 
of operatio
nal object ~~:':::'====:::J/ 

Figure 5: Decomposition of business process models 

reports to the management object via the feedback transaction . 

• Applying the negotiation principle (rule 5) a transaction is decom
posed into three successive transactions: (1) an initiating transaction 
Ti where a server object and its client learn to know each other and 
exchange information on deliverable goods/services, (2) a contracting 
transaction Te , where both objects agree to a contract on the delivery of 
goods/services, and (3) an enforcing transaction Te , where the objects 
transfer the goods/services. 

The types of transactions resulting from the decomposition are shown in the 
meta model (Figure 2) as specialized transactions. 

Figure 5 illustrates the application of the coordination principles for the 
decomposition of business process models. The decomposition of the first 
level into the second level is done by applying the negotiation principle. Ap
plying the feedback control principle leads to the third level. 

In addition to the coordination principles given above, a transaction may 
be decomposed into sub-transactions of the same type which are executed 
in sequence or in parallel (rule 6). Correspondingly, a business object may 
be decomposed into sub-objects of the same type (management object or 
operational object) which may be connected by transactions (rule 2). Objects 
as well as transactions may be specialized within the same type (rules 3 and 
7). The other rules (4, 8, and 9) are used for replacement within successive 
decompositions. 



www.manaraa.com

348 Otto K. Ferstl, Elmar J. Sinz 

It is important to state that successive decomposition levels of a business 
process model do not establish new, different models. They belong to exactly 
one model and are subject to the consistency rules defined in the meta model. 

4.3 Example: Business Process Distribution 

To give an example, Figure 6 (left) introduces the business process distribu
tion of a trading company. At the initial level, the interaction schema consists 
of three components, (1) the business object distributor which provides a ser
vice, (2) the transaction service which delivers the service to the customer, 
and (3) the business object customer itself. Distributor is an internal object 
belonging to the universe of discourse while customer is an external object 
belonging to the environment. At this level the entire cooperation and co
ordination between the two business objects is specified by the transaction 
service. Figure 6 (right) shows the corresponding sequence of tasks which 
is very simple. The task names in the task-event schema are derived from 
the name of the transaction. Here, the task service> (say send service) of 
distributor produces and delivers the service, the task >service (say receive 
service) of customer receives it. The arrow service here defines the sequence 
of the two tasks belonging to the transaction service which is represented in 
the interaction schema by an arrow, too. 

> service 

customer 
J\ 

911111<f----=s;.:::e:..;:rv..:.;:ic:.::e:....--~istributor I Q) 
0 
.~ 

Q) 
III 

service> 

distributor 

Figure 6: Interaction schema (left) and task-event schema (right) of business pro
cess distribution (1st level) 

'Iransactions like service connect business objects inside the universe of 
discourse and link business objects to the environment. When modeling a 
value chain the business process model of a trading company includes a second 
business process procurement, which receives services from a business object 
supplier, belonging to the environment, and delivers services to distributor. 

The example (Figure 6) will be continued now. As customer and dis
tributor negotiate about the delivery of a service, the service transaction is 



www.manaraa.com

i: pri e list 

SOM 

> price 
list 

price 
list> 

distributo 

349 

order> > service 

customer customer 

> order 

distributo distributo 

Figure 7: Interaction schema (left) and task-event schema (right) of business pro
cess distribution (2nd level) 

decomposed according to the negotiation principle into the sub-transactions 
i: price list (initiating), c: order (contracting), and e: service (enforcing 
transaction). The corresponding task-event schema is determined implicitly 
because the sub-transactions are executed in sequence (Figure 7). The tasks 
of each business object are connected by object-internal events. In the next 
step, the feedback control principle is applied to distributor to uncover the 
internal management of the business object. This leads to the sub-objects 
sales (management object) and servicing system (operational object) as well 
as the transactions r: service order (controlling transaction) and f: service 
report (feedback transaction). At the same time the transactions assigned 
to the parent object distributor are re-assigned to the new sub-objects. The 
sales sub-object deals with price list and order, the servicing system operates 
the service transaction (Figure 8). 

Continuing the example, the final decomposition of the business process 
distribution uses the additional rules given above (Figure 9 and 10). Here, the 
servicing system and the service transaction are decomposed to find business 
objects and transactions which operate homogeneous goods or services. First, 
the e: service transaction is decomposed into the sequence e: delivery and 
e: cash up. The cash up transaction is decomposed again according to the 
negotiation principle into the sequence c: invoice and e: payment. The 
initiating transaction is omitted because the business objects already know 
each other. The contract of the invoice transaction refers to amount and 
date of payment, not to the obligation to pay in principle which is part. of 
the transaction c: order. 

As a result of this refinement, some other decomposition are necessary. 
The business object servicing system is decomposed into store and finances, 
responsible for goods and payments respectively. The transaction r: service 
order is decomposed into the parallel transactions r: delivery order and r: 
debit. And likewise the transaction f: service report is decomposed into f: 



www.manaraa.com

350 

i: ri 

Otto K. Ferstl, Elmar J. Sinz 

f: service 
report 

Figure 8: Interaction schema (left) and task-event schema (right) of business pro
cess distribution (3rd level) 

c: invoice 

e: a ment 

Figure 9: Interaction schema of business process distribution (4th level) 

delivery report and f: payment report. 

5 Linking Business Application Systems to 
Business Process Models 

As outlined in Section 3, personnel and business application systems are 
resources to carry out business processes. In addition to the language for 
business process modeling, the SOM methodology provides a concept for 
explicitly linking business application systems to business process models. To 
introduce this concept, we investigate the automation of business processes 



www.manaraa.com

SOM 351 

Figure 10: Task-event schema of business process distribution (4th level) 

using business application systems, define a meta· model for the domain
specific specification of business application systems and discuss the impact 
of this concept on the architecture of business application systems. 

5.1 Automation of Business Processes 

The automation of a business process is determined by the automation of 
tasks and transactions. An information processing task is fully-automated, 
if it is carried out completely by an application system, it is non-automated 
if it is carried out by a person, and it is partly-automated if it is carried out 
by both a person and an application system cooperating [FS98]. 

Similar considerations hold for the automation of transactions within in
formation systems. A transaction is automated if it is performed by an 
electronic communication system and it is non-automated if it is performed 
e.g. paper-based or orally. 

Prior to defining the degree of automation, a task or a transaction have 
to be investigated if they are suitable for automation. A task is suitable 
for automation if its states and operations can be handled by a computer 
system. A transaction is suitable for automation if message passing and 
protocol handling can be done by an electronic communication system. 

The relationship between business process model and business application 
systems is based exactly on the concept of automation of tasks and transac
tions. The interaction schema of a business process model is convenient to 
record the extent of both the achievable and the achieved degree of automa
tion. Figure 11 (left) shows degrees of automation of tasks and transactions 
(see also [Kru97]) and applies them to the business object sales of the business 



www.manaraa.com

352 

"0 ..... 
0> 0 

..... C 
l1l 

E >-0_ 
-1:: 
:J l1l 
(1l 0-

'0 
~ >-
0>= 
£~ 

Otto K. Ferstl, Elmar J. Sinz 

share of a task 
suitable for automation 

• 
transaction suitable 
for automation 

not full 

> 

sales 

Figure 11: Automation of tasks and transactions of the sales business object 

process distribution (Figure 11 right). 

5.2 Meta Model for Specifications of Business 
Application Systems 

The SOM methodology uses an object-oriented approach for the domain
specific specification of business application systems. The corresponding 
meta model is shown in Figure 12. The notion of class follows the general 
understanding of object-orientation. Classes have attributes and operators 
and they are connected by binary relationships. Relationships are either iSA 
interacts_with, or is_part-of relationships. Interacts_with relationships denote 
channels for message passing between two classes, is_a relationships are used 
to model the specialization of a class using inheritance, and is_part-of rela
tionships allow the specification of the component classes of a complex class. 

To specify the linkage of business application systems to business process 
models the meta model in Figure 12 is related to the meta model in Figure 2. 
The relationships represented as dashed lines connect notions of a business 
process model to notions of a specification of an application system. A busi
ness object is connected to an object-specific class. A good/service, business 
transaction, or task is connected to a service-specific, transaction-specific, or 
task- specific class respectively as well as some interacts_with relationships. 
Object-specific, service-specific, and transaction-specific classes together with 



www.manaraa.com

SOM 353 

Figure 12: Meta Model of Business Application Systems 

their relationships are arranged to the schema of conceptual classes. Task
specific (task class in short) together with their relationships belong to the 
schema of task classes. Is_a relationships and is_parl_oj relationships cannot 
be linked directly to a business process model. They have to be included 
during the further specification of the schema of conceptual classes or the 
schema of task classes. 

5.3 Architecture of Business Application Systems 

The way of linking a business application system to a business process model 
following the SOM methodology has impact on the architecture of business 
application systems. Again we concentrate on domain-specific aspects and 
omit details of design and implementation. 

The SOM methodology leads to (1) strictly object-oriented, (2) distribu
ted, (3) object-integrated, and (4) evolutionary adaptable specifications of 
business application systems [FS96]: 

1. The domain-specific specifications of the schema of conceptual classes 
and of the schema of task classes are strictly object-oriented. Concep
tual classes encapsulate (a) the states of the (automated) tasks of a 
business object as well as the states of the corresponding transactions 
and goods/services, and (b) the operations defined directly and exclu
sively on these states. Using the linkage of business process models and 
specifications of business application systems in Figure 12, the initial 
structure of the schema of conceptual classes can be derived from the 
most detailed level of the interaction schema in conjunction with the 



www.manaraa.com

354 Otto K. Ferstl, Elmar J. Sinz 

Figure 13: Initial schema of conceptual classes of the business application system 
sales 

task-event schema of the corresponding business process model. 

Figure 13 shows the initial schema of conceptual classes derived from 
the business process model in Figures 9 and 10. The classes at the left 
side correspond to the business objects and the product. The class price 
list is derived from the corresponding transaction, connecting sales and 
customer with reference to product. The same way the other classes are 
derived from transactions. Figure 13 refers to the complete distribution 
process. The shaded classes belong to the sales application system. 
Dark shaded classes belong exclusively to the sales application system, 
light shaded classes are shared with other application systems. 

Task classes coordinate the cooperation of conceptual classes and/or 
other task classes when executing a task automated fully or partly. 
In other words, task classes specify the work-flow within a business 
application system. The initial structure of the schema of task classes 
is almost identical to the most detailed level of the task-event schema of 
the corresponding business process model. Tasks lead to task classes, 
internal events and transactions lead to interacts_with relationships. 
Therefore Figure 10 illustrates the schema of task classes too. The 
shaded areas delimit the schema of task classes for the sales business 
application system as well as for store and finances. 

2. A distributed system is an integrated system which pursues a set of 
joint goals. It consists of multiple autonomous components which co
operate in pursuing the goals. There is no need for a component which 
has global control of the system [Ens78] . Starting with a business pro
cess model with business objects loosely coupled by business trans
actions, the SOM methodology leads to a specification of distributed 
business application systems in a very natural way. Initially, each con
ceptual class and each task class derived from a business process model 
is an autonomous component. During the further specification process 



www.manaraa.com

SOM 355 

classes may be merged due to domain-specific reasons. For instance 
in Figure 13 debit and invoice are merged to reduce redundancy of at
tributes, in Figure 12 invoice> and debit> are merged to avoid sources 
of functional inconsistency. 

3. The most common way to integrate application systems is data inte
gration. Several application systems share a common database, the 
functions of the application systems operate on this database via exter
nal views. Although this kind of integration preserves consistency and 
avoids redundancy of data, it is not sufficient to support flexibility and 
evolution of application systems. The SOM methodology completes 
the concept of data integration by the concept of object integration 
[Fer92, FS98]. This concept supports distributed application systems 
consisting of autonomous and loosely coupled sub-systems which them
selves may be internally data integrated. To achieve consistency of the 
application system as a whole, the sub-systems exchange messages ac
cording to detailed communication protocols. These protocols are de
rived from the transaction-oriented coordination of business objects as 
specified in the business process models. 

4. The SOM methodology uses similar structures of distributed systems at 
the business process model layer and the business application systems 
layer [FS96]. A balanced and synchronized development of business 
process models and business application systems allows a simultaneous 
evolution of both layers during their life cycle [FS97]. There is a strong 
need that local changes in the business process model should only ef
fect local changes in the business application systems. Both features, 
distributed systems at the two layers and the synchronized evolution, 
show that the business process model of a business system proves to 
be the backbone of a widespread architecture of business application 
systems. 

6 Related Work 

In literature and practice, there are several approaches to business process 
modeling. The approaches take different perspectives on a business system 
and specify models based on different views. The differences will be illus
trated exemplary at the modeling languages IDEF and CIMOSA. 

IDEF (Integration Definition) is a family of languages which evolved since 
the 1970's adapting to different modeling methods [MM98]. Applied to busi
ness systems, it basically covers the universe of discourse which is supported 
by an application system. Personal actors of a business system are not sub
ject of these languages. With respect to the SOM enterprise architecture 
the ID EF languages refer to the model layers of business process model and 
specification of business application systems. They use traditional views on 



www.manaraa.com

356 Otto K. Ferstl, Blrnar J. Sinz 

functions, data, and processes to specify structure and behavior of a system. 
The first language IDEFO is based on the method Structured Analysis and 
Design Technique (SADT). It helps to specify the functions of the universe of 
discourse hierarchically. IDEFIX is suitable for modeling database schemes 
and IDEF3 is aimed at processes. IDEF4 refers to software design. IDEF5 
as the end of the chain supports the construction of enterprise ontologies. It 
comes closest to the requests taken up for business process modeling within 
the SOM methodology. The IDEF languages viewing functions, data, and 
processes fail to integrate the three views within a single object-oriented con
cept. 

Another approach for modeling of business processes and business ap
plication systems corresponding to the model layers 2 and 3 of the SOM 
enterprise architecture are the CIMOSA languages [Ver98]. CIMOSA is an 
open system architecture for enterprise integration in manufacturing. Like 
the IDEF family the CIMOSA modeling languages also use views on func
tions, data, and processes to specify structure and behavior of a system. 
They supplement views on resources and organizational aspects. There are 
different types of flows within a system of business processes i.e. control flows 
defined as workflows, material flows and information flows. This approach 
also fails to integrate the views within an object oriented concept. 

IDEF and CIMOSA views a business process as a sequence of activities 
(also called steps, process elements, functions), which are tied together by 
joint marks and which have to be equipped with resources [FS93, VB96]. 
From the viewpoint of the SOM methodology, IDEF and CIMOSA describe 
the behavior of a business system. In contrast, the SOM methodology spec
ifies structure arid behavior of a business system. The specification of struc
ture consists of business objects and transactions and refers to the handling 
of goods and services. The coordination of the business objects involved in 
the handling of goods and services is specified explicitly. 

7 Summary and Outlook 

The previous sections give a brief introduction to the SOM methodology 
for business systems modeling. A comprehensive enterprise model consists 
of sub-models for each layer of the enterprise architecture (Figure 1). The 
sub-models are balanced carefully within the architectural framework. It 
is not necessary to start top down with the enterprise plan, followed by 
the business process model and ending with the specification of business 
application systems. The starting point depends on the goals pursued in the 
specific project. 

More and more, enterprise models prove to be indispensable for business 
engineering, information management, and organization. Enterprise models 
following the SOM methodology show several characteristics which support 
the management of large enterprise models: (a) several model layers, each 



www.manaraa.com

SOM 357 

focusing on specific characteristics of a business system, (b) definition of views 
on each model layer, outside and inside perspectives, (c) different levels of 
abstraction and decomposition within a single model, and (d) notions with 
precise semantics which are arranged to meta models. Compared to other 
approaches of enterprise-wide modeling, e.g. enterprise-wide data modeling, 
a comprehensive model of a business system offers advantages and is more 
likely to be handled successfully. 

There is a lot of research around the kernel of the SOM methodology 
which cannot be shown in this contribution due to limitation of space. These 
features include management of complexity (i.e. decomposition of large busi
ness process models into models of main and service processes), reuse of 
model components (using patterns, reference models, application objects), 
tool support (for modeling, reporting, business process management, infor
mation management, work-flow management) [FS+94]' an in depth consid
eration of distributed business processes and distributed business application 
systems [FS96] as well as first findings on virtual business processes [FS97]. 

References 

[Bah92] 

[Bee81] 

[Ens78] 

[Fer92] 

[FS90] 

[FS91] 

[FS93] 

[FS98] 

[FS95] 

[FS+94] 

Bahrami, H., The Emerging Flexible Organization: Perspectives from 
Silicon Valley, in: California Management Review, Summer 1992, 33-52 

Beer, S., The Brain of the Firm, 2nd Edition, Wiley, Chichester, 1981 

Enslow, P. H., What is a 'Distributed' Data Processing System? in: 
IEEE Computer, Vol. 11, No.1, January 1978, 13-21 

Ferstl, O. K, Integrationskonzepte betrieblicher Anwendungssysteme, 
Fachbericht Informatik 1/92, Universitiit Koblenz-Landau, 1992 

Ferstl, O. K, Sinz, E. J., Objektmodellierung betrieblicher 
Informationssysteme im Semantischen Objektmodell (SOM), in: 
Wirtschaftsinformatik 32 (6), 1990, 566-581 

Ferstl, O. K, Sinz, E. J., Ein Vorgehensmodell zur Objektmodel
lierung betrieblicher Informationssysteme im Semantischen Objekt
modell (SOM), in: Wirtschaftsinformatik 33 (6), 1991, 477-491 

Ferstl, O. K, Sinz, E. J., Geschiiftsproze13modellierung, in: 
Wirtschaftsinformatik 35 (6), 1993, 589-592 

Ferstl, O. K, Sinz, E. J., Grundlagen der Wirtschaftsinformatik, Band 
I, 3. Auflage, Oldenbourg, Miinchen 1998 

Ferstl, O. K, Sinz, E. J., Der Ansatz des Semantischen Objektmodells 
(SOM) zur Modellierung von Geschiiftsprozessen, in: Wirtschaftsinfor
matik 37 (3), 1995, 209-220 

Ferstl, O. K., Sinz, E. J., Amberg, M., Hagemann, V., Malischewski, 



www.manaraa.com

358 

[FS96] 

[FS97] 

[Kru97] 

[MM98] 

[Sin97] 

[Ver98] 

[VB96] 

Otto K. Ferstl, Elmar J. Sinz 

C., Tool-Based Business Process Modeling Using the SOM Approach, 
in: B. Wolfinger (ed.), Innovationen bei Rechen- und Kommunikations
systemen, 24. GI-Jahrestagung im Rahmen des 13th World Computer 
Congress, IFIP Congress '94, Hamburg, Springer, Berlin, 1994 

Ferstl, O. K., Sinz, E. J., Multi-Layered Development of -Business 
Process Models and Distributed Business Application Systems - An 
Object-Oriented Approach, in: W. Konig, K. Kurbel, P. Mertens, D. 
Premar (eds.), Distributed Information Systems in Business, Springer, 
Berlin 1996, 159-179 

Ferstl, O. K., Sinz, E. J., Flexible Organizations Through 
Object-Oriented and Transaction-oriented Information Systems, 
in: H. Krallmann ( ed.), Wirtschaftsinformatik '97, Internationale 
Geschii.ftstatigkeit auf der Basis flexibler Organisationsstrukturen 
und leistungsfahiger Informationssysteme, Physica-Verlag, Heidelberg 
1997, 393-411 

Krumbiegel, J., Integrale Gestaltung von Geschii.ftsprozessen und 
Anwendungssystemen in Dienstleistungsbetrieben, Deutscher Univer
sitatsverlag, Wiesbaden 1997 

Menzel, Ch., Mayer, R. J., The IDEF Family of Languages, in: P. 
Bernus, K. Mertins, G. Schmidt (eds.), Handbook on Architectures of 
Information Systems, this volume, 1998 

Sinz, E. J., Architektur betrieblicher Informationssysteme, in: P. 
Rechenberg, G. Pomberger (eds.), Informatik-Handbuch, Hanser
Verlag, Munchen, 1997, 875-887 

Vernadat, F. B., The CIMOSA Languages, in: P. Bemus, K. Mertins, 
G. Schmidt (eds.), Handbook on Architectures ofInformation Systems, 
this volume, 1998 

G. Vossen, J. Becker (eds.), Geschii.ftsprozeBmodellierung und 
Workflow-Management, International Thomson Publishing, Bonn, 
1996 



www.manaraa.com

CHAPTER 16 

VVorkflow Languages 

Mathias Weske, Gottfried Vossen 

We survey the requirements, concepts, and usage patterns of workflow languages 
which are used in today's commercial or prototypical workflow management sys
tems. After briefly reviewing workflow application development processes, basic 
notions of workflow modeling and execution and their relevant properties are in
troduced. A coarse classification of workflow languages is presented, and the main 
features of common workflow languages are described in the context of a sample 
application process. 

1 Introd uction 

Workflow management aims at modeling and controlling the execution of pro
cesses in business, scientific, or even engineering applications. It has gained 
increasing attention in recent years, since it allows to combine a data-oriented 
view on applications, which is the traditional one for an information system, 
with a process-oriented one in which activities and their occurrence over time 
are modeled and supported properly [VB96, GHS95]. Workflow management 
combines influences from a variety of disciplines, including cooperative infor
mation systems, computer-supported cooperative work, groupware systems, 
or active databases. Its major application area has so far been in the busi
ness field; as the modeling of business processes has become a strategic goal in 
many enterprises, a further step is to optimize or to reengineer them, with the 
goal of automation in mind. Once the modeling and specification of business 
processes has been completed, they can be verified, optimized, and finally 
brought onto a workflow management system. It is here where languages for 
describing or specifying workflows, or workflow languages for short, enter the 
picture. These languages will be discussed in what follows. 

Generally, workflow languages aim at capturing workflow-relevant infor
mation of application processes with the aim of their controlled execution 
by a workflow management system [RS95, GHS95, She96]. The information 



www.manaraa.com

360 Mathias Weske, Gottfried Vossen 

involved in workflow management is heterogeneous and covers multiple as
pects, ranging from the specification of process structures to organizational 
modeling and the specification of application programs and their respective 
execution environments. We here survey the requirements, concepts, and us
age patterns of workflow languages which are used in today's commercial or 
prototypical workflow management systems. To embed workflow languages 
in the context of their purpose and usage, workflow application development 
processes are reviewed, and a simple application process is described which 
serves as our running example. 

Workflow languages are yet another species of languages for human-com
puter interaction. In contrast to general-purpose programming languages, 
workflow languages are highly domain specific, i.e., they are tailored towards 
the specific needs of workflow applications. Moreover, computational com
pleteness is not an issue in a workflow language, since they are not used to 
describe computations. While control structures play an important role in 
both programming languages and in workflow languages, low-level constructs 
are missing in workflow languages. On the other hand, workflow languages 
support constructs to integrate external applications, and to describe and or
ganize their interaction, cooperation, and communication relationships. They 
are hence similar in nature to software specification languages, which also 
have to be able to describe control flow as well as data flow between modules 
or components. Since workflow models are used as an information basis for 
the modeling and optimization of application processes, it should be obvious 
that graphical languages play an important role. 

There are numerous approaches to model related and potentially concur
rent activities, which stem from different domains. A set of rigorous mathe
matically founded approaches have been developed in the area of distributed 
computing, among which process algebras playa key role, namely to formally 
define concurrently executing processes and their communication behavior. 
Important approaches are Milner's ees [MilSO] and Hoare's esp [HoaS5]. 
These approaches focus mainly on formal properties of distributed compu
tations; since technical and organizational aspects, which are important for 
workflow languages, cannot be represented in these calculi, they are not dis
cussed in further detail here. 

The organization of the remainder is as follows: In Section 2 basic con
cepts and notions of workflow modeling are presented, and an eXaIIlple is 
provided which will serve as our running example. Since process modeling 
languages have been discussed elsewhere in this book, we focus on the specific 
aspects workflow languages have to cover. Section 3 focuses on categories of 
workflow languages. For each category we choose a typical language, and 
we show how it can be used to model the sample application process as a 
workflow. A summary and concluding remarks complete our survey. 



www.manaraa.com

W orkfiow Languages 361 

Information Gathering 
.!-

Business Process Modeling 
.!-

Workflow Modeling 
.!-

Implementation, Verification, Execution 

Figure 1: Workflow Application Development Process 

2 Workflow Modeling 

Workflow management aims at modeling and controlling the execution of 
complex application processes in a variety of domains, including the tradi
tional business domain [LA94, GHS95, JB96] and the natural sciences [Ioa93, 
VW97]. Workflow models are representations of application processes to 
be used by workflow management systems for controlling the execution of 
workflows. Workflow languages are used to specify workflow models. Since 
workflow modeling aims at mapping relevant information about application 
processes into workflow models, workflow languages need to have constructs 
for a variety of aspects, as explained below in Section 2.3. 

2.1 Workflow Development Process 

In general, workflow models capture the information of application processes 
which is relevant for the purpose of workflow management. Before workflow 
languages will be discussed, the general development process of workflow 
applications is described. While the workflow application development pro
cess differs from one project to the next, the following phases typically are 
involved. 

The first phase of the workflow application development process, which 
generally shares a number of aspects and steps with a database design process 
or an information system development process, deals with gathering informa
tion, relevant for the application process under investigation (Figure 1). In 
this phase, empirical studies like interview techniques and available docu
mentation is used. The techniques used in this phase are mostly informal. 
The activities of this phase are centered around the application, and technical 
issues are not considered. 

The next phase involves business process modeling, in which the informa
tion previously gathered is used to specify business process models. In this 
phase semi-formal techniques are used, typically some simple form of Petri 
net formalism, often without exploiting their formal semantics. The main 
purpose of business process modeling is to provide a general and easy-to-read 
notation, which enables information system experts and domain experts to 



www.manaraa.com

362 Mathias Weske, Gottfried Vossen 

validate and optimize business process models, an activity called business 
process reengineering. The result of this phase is a business process model, 
which is used as a basis for the next phase. 

The purpose of the subsequent workflow modeling phase is to enhance 
the business process model with information needed for the controlled execu
tion of workflows by a workflow management system. In this phase workflow 
languages are used. Typically, different languages are used for business mod
eling and workflow modeling. Hence, business process models have to be 
translated into the constructs of a workflow language. Notice that there are 
languages that cover both phases, as discussed below. Besides the transla
tion, information which is relevant for the controlled execution of workflows 
by a workflow management system is added to the model. On the other hand, 
information which is irrelevant for workflow executions is omitted from the 
business process model. Hence, workflow modeling abstracts from irrelevant 
information and adds relevant information, mainly of technical nature. For 
instance, in workflow models application programs used to perform workflow 
activities are specified, including their execution environment. The result 
of the workflow modeling phase is a workflow model, which is used by a 
workflow management system for controlling the execution of the workflow. 
We point out that the workflow development process can be iterated so that 
workflow execution data is used to improve business process models; it may 
also depend on the methods and tools used. 

2.2 Sample Application Process 

In order to keep the presentation of workflow languages concise and to pro
vide a common basis to study and to compare different workflow languages, 
we now present an example of a business process from the area of credit 
processing in a banking environment. This example originates from the doc
umentation of FlowMark, IBM's workflow management system [FM96]; when 
using the example with other workflow languages, it is modified according to 
the needs of the workflow language used. 

Informally, the application process starts when a customer requests a 
credit from the bank. The customer does so by filing a credit request form and 
by sending it to the appropriate department in the bank. The information in 
the credit request form is transferred into the bank's computer system. After 
the validity of the data is checked, the next step involves an assessment of 
the risks involved in granting the credit request. Depending on the amount 
requested, checking activities of different complexity may be involved. We 
assume that the checking activity is performed by a financial expert, subject 
to the credit amount requested and the financial situation of the applicant. 
If the expert grants the credit, administrational activities to allocate the 
requested amount to the customer's account are launched. If it is not granted 
in this activity then a second, more advanced expert re-evaluates the case, 
possibly after getting hold of new information on the financial situation of 



www.manaraa.com

VVorkfiow Languages 363 

the customer. Depending on his or her judgment, the credit is rejected or 
granted. In any case, the customer is informed of the decision. 

While this description of a credit processing application simplifies real
world applications considerably, it provides a basis for a presentation of work
flow aspects and of typical workflow languages. Notice a typical aspect of 
such informal descriptions, namely that errors and failures which may be 
encountered while the process is executed are not included. Indeed, a vastly 
open problem today is to specify exceptions as well as repair or compensat
ing actions for possible errors and failures, or to build corresponding features 
into languages that allow the specification of normal activities in workflows. 

2.3 Workflow Aspects 

As discussed above and as indicated in the example, workflow modeling aims 
at specifying different aspects of the application process and of the technical 
and organizational environment in which the workflow will be executed. To 
provide modularity in workflow modeling and to refer to the different dimen
sions of workflow modeling explicitly, workflow aspects are described [JB96]. 
The description of the workflow aspects includes basic notions of workflow 
modeling and execution. 

2.3.1 Functional Aspect 

The functional aspect covers the functional decomposition of activities as 
present in application processes, i.e., it specifies which activities have to be 
executed within a workflow. To deal with the high complexity of application 
processes, the concept of nesting is used to describe the functional aspect of 
workflows. In particular, workflows are partitioned into complex and atomic 
workflows, where complex workflows are composed of a number of (complex 
or atomic) workflows. Due to their relative position, the components of a 
complex workflow are known as subworkflows. Hence, workflows typically 
have a tree structure, such that the root node of the tree represents the top
level (complex) workflow, the inner nodes represent other complex workflows, 
and the leaf nodes represent atomic activities. While different approaches to 
workflow modeling denote the entities of the functional aspect differently, we 
adopt the approach that activities generally are represented by workflows, 
which can be complex or atomic. Synonyms for complex workflow include 
process, complex activity, block; atomic workflows are also called (atomic) 
activities or steps. 

In the sample application process, the functional aspect covers the func
tions performed during the process. When the credit is requested, a credit 
form is received by the bank. One function is entering the data from the credit 
request form into the system followed by searching for invalid or missing data. 
The functional aspect describes what has to be done during a workflow ex
ecution. It does not specify how it is done. In the sample workflow, the 



www.manaraa.com

364 Mathias Weske, Gottfried Vossen 

functional aspect does not define how the data entering and checking is done 
- this is covered by the operational aspect, discussed below. Constraints on 
the functions performed in a workflow are also not described in this aspect -
these properties are defined in the behavioral aspect, discussed now. 

2.3.2 Behavioral Aspect 

In general, workflows consist of a set of interrelated activities. Hence, the 
controlled execution of a complex workflow by a workflow management sys
tem has to take into account interrelationships of the complex workflow's 
subworkflows .. While the functional aspect does not cover the relative order
ing of subworkflows, these issues are covered in the behavioral aspect. This 
aspect specifies under which conditions the subworkflows of a given complex 
workflow are executed during workflow executions. Important components 
of this aspect are control flow constraints, which represent the control struc
ture of activities of the application process. When in the application process 
subworkflow j can only be started after subworkflow i has terminated then 
a control flow constraint can be used to model this relationship. When the 
workflow is started, the workflow management system makes sure that ac
tivity j is started only after i has terminated. There are other forms of 
interrelationships between subworkflows, covered by other concepts in the 
behavioral aspect, for instance start conditions and termination conditions. 
For each subworkflow, a start condition specifies the precondition of its ex
ecution. Hence, an activity is started during a particular workflow instance 
only if the start condition of that activity is evaluated to 'true'. The infor
mation specified in the behavioral aspect of workflow models is important for 
a workflow management system to control the execution of workflows. This 
aspect is covered by all workflow languages, and workflow management sys
tems support mechanisms to guarantee that the interrelationships between 
workflows as defined in the behavioral aspect of workflow models are satisfied 
by all workflow instances. 

In the sample workflow, the behavioral aspect specifies relationships be
tween workflow activities. For instance, it specifies that entering credit form 
data is done before the checking for incorrect values, which in turn is per
formed before the risk is assessed and the decision on granting or rejecting 
the credit is taken. Another example of this aspect in our example is the 
branching of control flow depending on the amount requested. If the amount 
is smaller than a predefined value x then a quite simple checking procedure 
is applied. If the requested amount exceeds x then a more complex proce
dure is performed to either grant or reject the credit request. In general, 
the semantics of branches can be parallel, alternative, or it can be controlled 
by predicates which are evaluated at execution time of the workflow. An 
example of the latter form is discussed above, which can be specified by 
amount <= x and amount> x, respectively. 



www.manaraa.com

Workflow Languages 365 

2.3.3 Informational Aspect 

An important aspect of workflow languages is the modeling of workflow rele
vant application data. Modeling data is required to permit workflow manage
ment systems to control the transfer of workflow relevant data as generated or 
processed by workflow activities during workflow executions. In graph-based 
approaches, the informational aspect includes data flow between workflow 
activities. In particular, each activity is assigned a set of input and a set 
of output parameters. On its start, an activity reads its input parameters, 
and on its termination it writes values it generated into its output param
eters. These values can be used by follow-up activities in the workflow as 
input data. This transfer of data between workflow activities is known as 
data flow. By providing graphic language constructs to represent data flow 
between activities, the informational aspect can be visualized and used to 
validate and optimize application processes. While the basic principle of the 
informational aspect is straightforward, there are many technical issues to 
solve, for instance different data formats of a given data flow, which may 
require the use of filters to allow seamless integration of different tools using 
different data formats. To this end, it is desirable that data as specified in a 
data flow is strongly typed. Clearly, this would require a typing scheme for 
data which occurs as parameters of workflow activities. In doing so, potential 
typing incompatibilities can be detected in the workflow modeling phase. 

The informational aspect in the sample workflow describes the data types 
involved, for instance data types for customer data, credit forms and risk as
sessments. Besides the specification of the data types, data flow constraints 
between activities of a workflow are also described in the informational as
pect. Data flow constraints in the sample workflow occur between the activity 
in which the credit form is entered into the system and follow-up activities, 
which use this information to decide on granting or rejecting the credit re
quest. In addition, there is a data flow from the decision taking activity to 
the activity in which the customer is informed of the result of his or her credit 
request. 

2.3.4 Organizational Aspect 

Workflows are executed in complex organizational and technical environ
ments, and a major goal of workflow management is enhancing the efficiency 
of application processes by assigning work to persons or software systems as 
specified by workflow models. To reach this goal, a workflow management 
system has to be provided with information on the organization and on the 
technical environment in which the workflows will be executed. In general, 
atomic workflows can be either automatic or manual. Manual atomic work
flows are executed by persons who may use application programs to do 430; 

automatic atomic workflows are executed by software systems without hu
man involvement. Since a strict assignment of workflow activities to persons 



www.manaraa.com

366 Mathias Weske, Gottfried Vossen 

is not feasible in most cases, the role concept is used. A role is a predicate 
on the structure of an organization in which the workflow is executed. When 
an activity is about to start, the system uses predefined role information to 
select one or more persons which are permitted, competent and available to 
perform the requested activity. The process of selecting one or moreipersons 
to perform a workflow activity is known as role resolution. Depending on the 
scope of workflow management systems, the role concept has different com
plexity. While some systems support a simple role concept others provide 
additional features for substitution of persons or they take into account the 
overall structure of the organization to select persons to perform activities 
during workflow executions. 

People involved in the execution of the sample workflow are part of the 
bank's credit department. Activities of the sample workflow are scheduled to 
persons in the department according to their positions, which are specified 
by roles. Clerk, financial expert, and credit expert are sample roles. While 
the data entering is done by clerks, the decision on granting requested credits 
is done by financial experts, capable of assessing the risks and of deciding on 
the credit, provided the requested amount is below a predefined margin. The 
assignment of workflow activities to persons is done by role resolution, for 
example the data entering is done by a clerk while the assess credit activity is 
performed by a financial expert. The role concept can be enhanced to allow 
context sensitive features, e.g., a person is selected to perform an activity of 
a credit workflow which the person previously has decided on. In this case, 
workflow execution data is used to allow more complex role resolution. 

2.3.5 Operational Aspect 

The integration of existing tools and application programs into workflow ap
plications is an important feature of workflow management systems. The 
information required is specified in the operational aspect. The operational 
aspect covers mainly technical issues, like the invocation environment of 
application programs (including host and directory information of the ex
ecutable program), the definition of the input and output parameters of the 
application program and their mapping to input and output parameters of 
workflow activities. As described above, persons are selected by role resolu
tion to perform workflow activities. When a person chooses to perform an 
activity then the defined application program is started, and the input data 
as specified in the workflow model is transferred to that application program. 
When the person completes that activity, the output data generated by that 
activity is collected in the output parameters of the activity to be transferred 
by the workflow management system to the next workflow activity, as speci
fied in the respective workflow model. Notice that during business modeling, 
no information on the operational part is (and needs to be) present. Business 
process modeling aims at mapping high level and domain specific features of 
the application process; the technical details - the main components of the 



www.manaraa.com

W orkftow Languages 367 

operational aspect - are taken into account in the workflow modeling phase. 
In the banking example, different information systems are used to per

form different tasks. Entering customer and credit request data by clerks 
is typically done by forms-based software systems as front-ends of an inte
grated data repository. The activities of assessing the risk of a credit may 
involve other information systems, some of which may reside remotely. In 
this case, the execution environment includes detailed information which al
lows the workflow management system to invoke the desired applications in 
the respective sites, using different kinds of middleware technology. 

2.3.6 Flexibility Aspect 

Recently, the need to enhance the flexibility of workflow applications arose 
in different application areas [EKR95, VW97, RD98]. Starting from appli
cations in non-traditional domains like the natural sciences or hospital envi
ronments, flexibility also became an issue in business applications. Providing 
flexibility to workflow applications is based on the understanding that during 
workflow modeling not all aspects of the application process can be specified 
completely. There may be unforeseen situations during workflow executions, 
which require flexible reactions by the user or administrator of the system. 
Hence, additional features to model workflows and additional functionality 
to support the functionality is required by workflow management systems to 
deal with flexibility issues. We believe that the future success of workflow 
management systems to a large extent depends on the way workflow model 
changes or changes to the organizational or technical environment are sup
ported in a user-friendly way. There are different forms of flexibility, ranging 
from the change of role information and application program information to 
the change in the functional and behavioral aspects of workflows. Adding 
an activity to a complex workflow while the workflow executes corresponds 
to a dynamic change in the functional aspect; changing the control struc
ture of subworkflows of a given workflow (e.g., parallel execution of workflow 
activities, originally defined to be executed sequentially) corresponds to the 
change in the behavioral aspect. Providing user intervention operations to 
allow uses to skip, stop or repeat subworkflows is another form of flexibility 
in the behavioral aspect. A change of role information and of application 
program information changes the organizational and operational aspects, re
spectively. We remark that supporting flexibility has to be supported by the 
workflow language and also by the workflow management system, supporting 
the respective functionality. For instance, workflow languages should allow 
to specify which activities can be skipped or repeated, and how data issues 
due to deleting workflow activities which would generate required data are 
solved. 

Although the general structure of the sample credit request workflow is 
static, numerous unforeseen events may occur during workflow executions, 
which require flexible reactions. For instance, assume while a credit request is 



www.manaraa.com

368 Mathias Weske, Gottfried Vossen 

processed, the applicant comes into an inheritance. This changes the financial 
situation of the applicant considerably, which may require a re-evaluation of 
the credit request. On the side of the customer, the inheritance may lead to 
canceling the credit request. In this case, the workflow has to be canceled, 
and steps already executed on its behalf have to be undone, for instance the 
allocation of funds to the customer. Simpler forms of flexibility occur when 
it comes to changes in role information or in application programs used to 
process workflow activities. 

3 VVorkfiowLanguages 

In general, workflow languages can be classified according to their under
lying methodologies and underlying meta models. A meta model describes 
the constructs and their relationships of workflow models of particular work
flow languages. An important class of workflow languages are graph-based 
languages, which allow the specification of workflows using different forms of 
directed graphs. While the functional and behavioral aspects can be specified 
using graph notation, the informational and operational aspects require addi
tional specifications, like data types of transferred data objects or information 
on the execution environment of application programs. This information can 
be provided textually, often supported by workflow management systems us
ing forms interfaces. Hence, the categories discussed below do not indicate 
that all workflow aspects are specified using the respective notation. The 
second category of workflow languages use the Petri nets approach to specify 
workflow models. Petri nets have widely been used to specify the behavior 
of a dynamic system with a fixed structure. 

Besides these classes of workflow languages, script languages are widely 
used. Often, these languages are closely related to workflow management 
system development. Workflow languages can also have multiple representa
tions. For instance, there may be a graphical language for the specification of 
workflow models, which is translated into a script language, to be processed 
by a workflow management system. An example of this strategy is provided 
in the remainder of this section. State and activity charts, originally devel
oped to model reactive systems, are used to model workflows. We discuss 
this approach briefly. 

Due to space limitations, we restrict ourselves to workflow languages 
which are currently used in workflow management systems, commercially 
available or prototypical. In particular, graph-based languages, net-based 
languages and script language approaches are considered in some depth; the 
state and activity chart approach is discussed briefly. Further approaches to 
workflow languages, like speech act theory are not widely used in workflow 
management systems and are therefore not discussed here. 



www.manaraa.com

Workflow Languages 369 

3.1 Graph-Based Languages 

Graph-based languages allow to specify workflow activities, their hierarchical 
relationships and their data flow and control flow constraints using directed 
graphs. These graphs are enhanced to cover the workflow aspects presented 
above. Workflow graphs are nested, such that each node can be refined into 
a subgraph, known as a subworkflow. In addition, there are two forms of di
rected edges, i.e., control flow edges and data flow edges. Control flow edges 
belong to the behavioral aspect, while data flow edges belong to the informa
tional aspect. In particular, a control flow edge i -+ j specifies that activity 
j can start only after activity i has terminated. Data flow edges specify data 
dependencies between workflow activities; if activity i generates data which is 
required as input to activity j then there is a data flow edge connecting these 
activities. Explicit modeling of data flow between workflow activities is an 
important means to describe interrelationships between workflow activities 
due to the generation and use of data. 

3.1.1 Workflow Process Definition Language 

The Workflow Management Coalition (WfMC) is a consortium of workflow 
vendors, users and researchers, aiming at promoting the use of workflow tech
nology in business organizations [WMC96aj. By specifying a set of interfaces 
of workflow management systems, the WfMC builds a framework to enhance 
the interoperability of workflow systems of different vendors. In their effort, 
the WfMC loosely specifies a workflow language which is based on graphs. 
Since the language has to be supported by the systems the WfMC members 
develop and use, the language is described in an abstract way using graph 
notation. Activities are represented by nodes; control flow is defined by ex
plicit control flow constructs, for instance (AND, OR, XOR) split and the 
respective join nodes [WMC96bj. However, the WfMC is focused primarily 
on technical issues of workflow system interoperability. Instead of defining a 
complete workflow language which is mandatory for all workflow system ven
dors which are members in the coalition, it adopts the strategy that different 
workflow products are free to use different workflow languages. 

3.1.2 FlowMark Workflow Language 

One of the first workflow management systems that reached the market is 
IBM's FlowMark. This paragraph discusses the graphical workflow language 
used in FlowMark, while its textual representation (FlowMark Definition 
Language, FDL) is sketched below. To describe its workflow language, the 
main components of the FlowMark workflow meta model have to be de
scribed [LA94, FM96j. The main entity of the FlowMark workflow meta 
model is the activity, which can either be complex or atomic. Complex activ
ities are called processes, while atomic activities are called program activities, 
typically implemented by application programs. Processes are composed of 



www.manaraa.com

370 Mathias Weske, Gottfried Vossen 

a number of activities with accompanying control flow and data flow con
straints. A set of activities can be grouped using the block construct. The 
activities in a block are executed repeatedly until an end condition of the 
block signals its termination. With regard to the informational aspect, each 
activity has an input container and an output container, consisting of a set 
of input parameters and output parameters, respectively. In FlowMark, data 
flow is specified by connecting an output parameter of an activity i to an 
input parameter of an activity j. This data flow is permitted only if there is 
a path of control flow edges from i to j. Control flow is defined by control 
flow edges. Each control flow edge is assigned a transition condition, which 
is a predicate to be evaluated at runtime. When an activity terminates, the 
transition conditions of all outgoing control flow edges of that activity are 
evaluated. Depending on the value, the control flow edge is fired with either 
'true' or 'false'. The start of activities is governed by start conditions. In 
general, start conditions of an activity can be evaluated if and only if all in
coming control flow edges have been fired. When a start condition evaluates 
to 'true', the respective activity can be launched. To guarantee that control 
flow edges fired with 'false' do not hamper the start of workflow activities, a 
technique called dead-path-elimination is performed [LA94]. Workflow mod
els in FlowMark are generally acyclic; loops can be modeled using the block 
construct, as discussed above. 

The sample workflow can be specified graphically in the FlowMark sys
tem as shown in Figure 2. Activities are represented by nodes; data flow 
is represented by dotted lines, and solid lines are control flow edges. Con
trol flow edges are labeled with transition conditions, which are evaluated 
on termination of the source node of the respective control flow edge. For 
instance, to model that a credit request can be granted if less than 100 K$ 
is requested and if the risk factor determined by the AssessRisk activity is 
low, the transition condition from the AssessRisk to the AcceptCredit activ
ity in Figure 2 is labeled "CreditAmount < 100000 AND RiskFactor= "L"" . 
Notice that the AssessRisk activity has CreditAmount and RiskFactor as 
output parameters. In an alternative form of data flow, a complex workflow 
can transfer data to its subworkflows. Analogously, data can be transferred 
from subworkflows to their respective superworkflows. In these cases, the 
data flow is vertical rather than horizontal (data flow between subworkflows 
of a common superworkflow is called horizontal data flow). A fragment of a 
textual representation of the sample workflow using FDL is discussed shortly. 

3.1.3 WASA 

The workflow language in the WASA project [VW97j on flexible workflow 
management is based on the FlowMark workflow language. Since the WASA 
project aims at enhancing the flexibility of workflow management systems, 
the language supports the flexibility aspect, discussed above [VW97, Wes98]. 
For instance, for each workflow model the user may specify if it can be 



www.manaraa.com

W orkfiow Languages 371 

skipped, stopped or repeated during particular workflow executions. Skip
ping workflow activities may lead to missing data. Hence, the workflow lan
guage specifies how these data issues are solved by providing the appropriate 
language constructs. In addition to enhancing the workflow language w.r. t . 
flexibility, the workflow management system has to support flexibility oper
ations, e.g., dynamic modeling operations and user intervention operations. 
With dynamic modeling operations, workflow models of running workflow 
instances can be changed to reflect changes in the environment of the pro
cess. Changes can apply to the changing workflow instance only, or changes 
may apply to all workflow instances of the changed workflow model. User 
intervention operations allow the user to perform changes to the control flow 
structure of the workflow for a particular workflow instance. 

3.1.4 ADEPT 

In the ADEPT framework, workflow models are specified as symmetric graphs 
with special workflow relevant nodes [RD97, RD98) . Branching nodes are ex
plicitly marked as AND split, OR split, XOR split; these nodes are followed by 
the respective join nodes. Based on this framework, a complete and minimal 
set of change operations are specified to define the ADEPT flex framework. 
In this framework, change operations to the structure of running workflows 
can be performed by users in a controlled manner. For instance, enhancing a 
workflow model with an activity involves the embedding of the added activ
ity into the workflow model. This is specified by defining a set of activities 
which have to be completed before the added activity can start and a set of 

~ 
I 

j .... " ,. -' \ 

a~ ~ ------
• AddApprovalAO?eptCredit 

CollectCreditinformation '" ~ .--1 
AssessRisk " __ .--" .--~ .--'--

" . • :b\ddAPProval;"wQ ... . . '- , 
" -' 

RequestApproval.... RejectCred~ 

Figure 2: FlowMark: Sample Workflow Model 



www.manaraa.com

372 Mathias Weske, Gottfried Vossen 

activities which can only be started after the added activity as terminated. 
The monitoring of data flow constraints between activities is also supported 
by the ADEPT flex framework. 

3.2 Net-Based Languages 

We now elaborate on Petri nets, which are specifically tailored towards the 
requirements of workflow modeling and execution. 

3.2.1 FUNSOFT Nets 

FUNSOFT nets are based on higher Petri nets and enhances them to incor
porate different workflow aspects [Gru91]; FUNSOFT nets are structured as 
follows: The node set is partitioned into places and transitions. Each place 
may include one or more typed data objects. Workflow activities are rep
resented by transitions. Controlling workflow instances is done by passing 
documents and information between activities. The traditional Petri net for
malism is enhanced with special constructs, e.g., there is a special form of 
transitions to represent alternative execution paths, represented by a 'switch' 
transition. 

The basic idea of this approach is the integration of different workflow 
aspects into a single formalism, namely FUNSOFT nets. This concept has 
implications on its usability. In particular, it allows to use a single formal
ism in different phases of the workflow application development process, i.e., 
FUNS OFT nets can be used in business process modeling, in workflow mod
eling and in workflow execution. These nets provide a graphical notation to 
model the control structure of application processes; organizational model
ing is also supported by mapping role information to the net formalism. By 
providing appropriate means to specify external application programs to be 
used in the workflow executions, the operational aspect is also covered by this 
formalism. Besides modeling aspects, FUNSOFT nets can also be used as 
input for a workflow engine, i.e., they can also be used to control the execu
tion of workflow instances. While the different workflow aspects are mapped 
into a single formalism, tools exist to provide views on certain aspects, for 
instance behavioral and operational. Nevertheless, the internal representa
tion can become quite complex, which may lead to scalability problems in 
large workflow applications. However, the FUNSOFT net workflow language 
covers many interesting issues and is therefore chosen here for presentation. 

Figure 3 shows a simplified FUNS OFT net for the sample workflow. 
Places are represented by circles, and transitions are represented by rectan
gles. Each place may hold a set of typed data objects, for instance data object 
Credit Form. 'Switch' transitions allow to model alternative executions. As
sess Risk and Request Approval transitions have alternative outgoing edges 
to allow the explicit modeling of alternative branches, which are evaluated 
at runtime. The workflow starts with collecting the Collect Credit Info ac-



www.manaraa.com

VVorkfiow Languages 

Request 
Approval 

Approved 
Reque.\'t 

Reject 
Credit 

Rejected 
Request 

Credit Request 

Collect 
Credit Info 

Assess 
Risk 

Accept 
Credit 

Accepted 
Request 

Figure 3: FUNSOFT Nets: Sample Workflow Model 

373 

tivity, which takes a Credit Request as an input document and generates a 
Credit Form as an output document. The Assess Risk activity can either 
grant the credit request, in which case the Granted Request is transferred 
to the Accept Credit activity or it can postpone the decision, in which case 
a Postponed Credit Request is transferred to the Request Approval activity. 
The workflow continues as specified in Figure 3. 

3.2.2 Flovv ~ets 

Ellis et at present the Flow Net formalism [EKR95]. Based on higher level 
Petri nets, their focus is on providing flexibility, namely by allowing the 
change of Flow Nets at runtime. Flow Nets do not provide formalisms for 
the operational aspect or organizational aspects like tool integration or role 
management, respectively. The focus of this approach is on the specification 
of the control flow structure of workflows as Flow Nets and their use to 
control the execution of workflows in the presence of dynamic modification 
operations. In particular, dynamic modification in Flow Nets is done by 
substituting subnets with other subnets, governed by rules for the correct 
substitution and embedding of subnets into the Flow Net, representing a 
workflow model. 



www.manaraa.com

374 Mathias Weske, Gottfried Vossen 

3.3 Workflow Programming Languages 

Workflow programming (or script) languages are often used in projects where 
system development issues playa major role. Workflow programming lan
guages are either used directly to specify workflow models or they are used 
as an internal representation with the aim of the controlled execution by a 
workflow management system or to allow the import and export of workflow 
models. One approach of the first form is the Mobile approach - the sec
ond form of workflow script language is present in the FlowMark workflow 
management system, whose graphical workflow language was sketched above. 

3.3.1 Mobile 

In the Mobile workflow management system [JB96], workflow models are 
specified using the Mobile script language. The Mobile project aims at sup
porting different workflow aspects in a modular way. This goal is reflected in 
the Mobile workflow language by supporting constructs for the definition of 
different workflow aspects. Besides the focus on workflow aspects, the Mobile 
workflow language provides extensibility. In particular, based on a set of pre
defined control flow operators, the user can define new control flow constructs 
to support the specific requirements of particular workflow applications. For 
instance, constructs to execute a set of activities in any sequential order can 
be specified. From a system development point of view, each workflow aspect 
is covered by a server devoted to keeping track of workflows w.r.t. its partic
ular aspect. The aim of this conceptual design and system architecture is to 
provide the system administrator with facilities and tools to use the aspects 
which are important for the particular workflow applications and to be able 
to extend the system with additional aspects as they are required. 

An incomplete specification of the sample workflow using the Mobile work
flow language is given in Table 1. Each workflow aspect is represented by 
language keywords and accompanying language constructs. Workflow models 
are specified in sections, delimited by WORKFLOW_TYPE and END_WORKFLOW_TYPE 
keywords. Analogously, the behavioral aspect is described in a section de
limited by CONTROL...FLOW and END_CONTROL...FLOW. The set of constructs in 
this section includes sequential execution and branching, represented by the 
sequence and if then constructs, respectively. A complete workflow specifi
cation of the sample workflow can be found in [JBS97]. 

3.3.2 FlowMark Definition Language (FDL) 

While the FlowMark system presents a graphical interface to the user, there 
is an internal workflow language which is used as an interface to import or 
export workflow models. Fragments of the FDL specification of the sample 
workflow are shown in Table 2. 



www.manaraa.com

Workflow Languages 375 

WORKFLOW_TYPE CreditRequest (IN PersonInfo: CreditRequestor) 
1* definition of subworkflows *1 
WORKFLOW_DATA CreditInfo: c 
END_WORKFLOW_DATA 

CONTROL_FLOW 
sequence (CollectCreditInfo, 

sequence (AssessRisk, 
ifthen(c. CreditAmount<100000 AND c . RiskFactor == "L", 

AcceptCredit, 
sequence (RequestApproval, if then (c. AddApproval == "Y", 

AcceptCredit, RejectCredit))))) 
END_CONTROL_FLOW 

DATA_FLOW 
CreditRequest.CreditRequestor -> ci.CreditRequestor; 
AssessRisk.out_ci -> AcceptCredit.in_ci; 

END_DATA]LOW 
1* definition of organizational aspect *1 

END_WORKFLOW_TYPE 

Table 1: Mobile workflow language 

3.3.3 State and Activity Charts 

The statechart formalism is an extension of finite state machines; it was de
veloped by Harel [Har88] to specify the behavior of reactive technical systems. 
To describe such systems, statecharts specify potentially nested states and 
state transitions, while accompanying activity charts describe events that 
may trigger state transitions. Provided with a formal semantics and with a 
commercially available tool (Statemate [HP96]), statecharts are widely used 
in designing technical systems, like remote control systems or car radio sys
tems; they are also popular in software engineering environments for system 
specification. One of the first workflow management systems to exploit the 
formalism is the Mentor project, where state and activity charts have been 
used to model workflows [WWWK96]. In terms of workflow aspects, state
charts describe the informational aspects while activity charts describe when 
state transitions are performed and which activities are launched when a par
ticular state transition occurs. Hence, activity charts define the behavioral 
aspect. The separation of control flow and data flow in state and activity 
charts can lead to control structures which are not easily understandable 
by application domain experts. On the other hand, the statechart formal
ism provides techniques and tools to formally prove properties of statecharts. 
These properties are used in the Mentor project to formally prove that the 
execution of workflows in centralized and distributed environments are equiv
alent [Wod96]. 



www.manaraa.com

376 Mathias Weske, Gottfried Vossen 

STRUCTURE 'CreditInfo' 
'CreditRequestor': 
'Address' : 
'RiskFactor' : 

'PersonInfo' ; 
STRING; 
STRING; 
STRING; , AddApproval ' : 

'CreditAmount' : 
END 'CreditInfo' 

LONG; 

PROCESS 'CreditRequest' ('PersonInfo') 
PROGRAM_ACTIVITY 'AcceptCredit' ('CreditInfo') 

PROGRAM 'NAcceptCredit' 
DONE_BY STARTER_OF_ACTIVITY 'CollectCreditInformation' 

END 'AcceptCredit' 

PROGRAM_ACTIVITY 'AssessRisk' ('CreditInfo', 'CreditInfo') 
PROGRAM 'NAssessCreditRisk' 
DONE_BY STARTER_OF_ACTIVITY 'CollectCreditInformation' 

END 'AssessRisk' 
PROGRAM_ACTIVITY 'CollectCreditInformation' 

('PersonInfo', 'CreditInfo') 
PROGRAM_ACTIVITY 'RejectCredit' ('CreditInfo') 
PROGRAM_ACTIVITY 'RequestApproval' 

('CreditInfo', 'CreditInfo') 

CONTROL FROM 'CollectCreditInformation' TO 'AssessRisk' 
CONTROL FROM 'AssessRisk' TO 'AcceptCredit' 

WHEN 'CreditAmount<100000' 
CONTROL FROM 'RequestApproval' TO 'RejectCredit' 

WHEN 'AddApproval="N'" 
CONTROL FROM 'RequestApproval' TO 'AcceptCredit' 

WHEN 'AddApproval="Y'" 
CONTROL FROM 'AssessRisk' TO 'RequestApproval' 

OTHERWISE 
END 'CreditRequest' 

Table 2: FDL specification 

4 Conclusions and Summary 

We have discussed general design principles of workflow languages. Starting 
from general workflow notions, we have described a variety of aspects relevant 
to workflow management. A sample application process has been provided, 
and a set of workflow languages was described by presenting their underlying 
methodology; they have been used to model the sample application process 
as a workflow. 

Due to space limitations, our selection of workflow languages is by no 
means exhaustive. We have tried to present the major categories of workflow 



www.manaraa.com

Workflow Languages 377 

management which are used in today's workflow management systems. For 
each category, a specific language has been presented in some detail using 
the sample workflow. 

Current research issues in workflow languages focus on usability stud
ies, on flexibility issues, and on correctness properties of workflow models. 
The latter may require workflow languages to represent additional properties 
which are not yet found in current languages. Today's workflow languages 
require a high degree of specialization on the user's side; in other words, 
workflow modeling has be done by experts who are well familiar with the re
spective workflow language used. This situation is similar as it was with early 
database design tools 20 years ago; with database systems becoming a mass 
product, their design tools have been simplified such that nowadays even 
non-experts can get a grasp on them. We expect a corresponding develop
ment for workflow languages, in particular since the details of an operational 
workflow are often in the heads of the end-users, so that it is crucial to have 
them participate more heavily in the description and specification phase of a 
workflow they are about to become involved in. 

Regarding executions of workflows, current workflow languages are still 
rudimentary with respect to a distinction between transactional and non
transactional tasks, and with respect to recovery issues. One reason for this 
may be seen in the fact that the proper exploitation of transactional concepts 
in the context of workflows and their executions is still under heavy discus
sion [WS97]. On the other hand, there has been positive experience with 
using a transaction specification framework for describing execution aspects 
of workflow instances [SK97, Dog97]; it may therefore be expected that future 
workflow languages will also provide transactional capabilities. In addition, 
enhancing the flexibility in workflow management systems is a current re
search topic. It is expected that this topic will lead to new developments in 
workflow languages and in methods and tools to prove correctness properties 
of workflow models and workflow executions. 

References 

[Dog97] 

[EKR95] 

[GHS95] 

Dogac, A. et ai, Design and Implementation of a Distributed Work
flow Management Systems, METUFlow, in: Springer ASI NATO 
Series, NATO ASI Workshop, Istanbul, August 12-21, 1997 

Ellis, C., Keddara, K., Rozenberg, G., Dynamic Change Within 
Workflow Systems, in: Proc. Conference on Organizational Com
puting Systems (COOCS), Milpitas, CA 1995, 10-22 

Georgakopoulos, D., Hornick, M., Sheth, A., An Overview of Work
flow Mangement: From Process Modeling to Workflow Automation 
Infrastructure, Distributed and Parallel Databases 3, 1995, 119-153 



www.manaraa.com

378 

[Gru91] 

[Har88] 

[HP96] 

[Hoa85] 

[FM96] 

[Ioa93] 

[JBS97] 

[JB96] 

[LA94] 

[Mil80] 

[RD97] 

[RD98] 

[RS95] 

[She96] 

Mathias Weske, Gottfried Vossen 

Gruhn, V., Validation and Verification of Software Process Models, 
Ph. D. Thesis, University of Dortmund, 1991, Available as Technical 
Report No. 394/1991, University of Dortmund, Germany 

Harel, D., On Visual Formalisms, Communications of the ACM 31, 
1988, 514-530 

Harel, D., Politi, M., Modeling Reactive Systems with Statecharts, 
The Statemate Approach, Part No. D-llOO-43, i-Logix Inc., Andover, 
MA 01810, 1996 

Hoare, C.A.R., Communicating Sequential Processes, Prentice-Hall, 
1985 

IBM, IBM FlowMark: Modeling Workflow, Version 2 Release 2, 
Publ. No SH-19-8241-01, 1996 

Ioannidis, Y., (ed.), Special Issue on Scientific Databases, Data En
gineering Bulletin 16 (1) 1993 

Jablonski, S., Bohm, M., Schulze, W., (eds) , Workflow Management: 
Development of Applications and Systems (in German), dpunkt
Verlag, 1997 

Jablonski, S., BuBIer, C., Workflow-Management: Modeling Con
cepts, Architecture and Implementation, International Thomson 
Computer Press, 1996 

Leymann, F., Altenhuber, W., Managing Business Processes as an 
Information Resource, IBM Systems Journal 33, 1994, 326-347 

Milner, R., A Calculus of Communicating Systems, Springer LNCS 
92, 1980 

Reichert, M., Dadam, P., A Framework for Dynamic Changes in 
Workflow Management Systems, Proc. 8th International Workshop 
on Database and Expert Systems Applications 1997, Toulouse, IEEE 
Computer Society Press, 1997, 42-48 

Reichert, M., Dadam, P., ADEPTjlex - Supporting Dynamic 
Changes of Workflows Without Loosing Control, in: Journal of Intel
ligent Information Systems, Special Issue on Workflow and Process 
Management, Vol. 10, No.2, 1998 

Rusinkiewicz, M., Sheth, A., Specification and Execution of Trans
actional Workflows, in: K. Won (ed.), Modern Database Systems: 
The Object Model, Interoperability, and Beyond, ACM Press, 1995, 
592-620 

Sheth, A., Georgakopoulos, D., Joosten, S.M.M., Rusinkiewicz, M., 
Scacchi, W., Wileden, J., Wolf, A., Report from the NSF Work
shop on Workflow and Process Automation, in: Information Sys
tems, Technical Report UGA-CS-TR-96-003, University of Georgia, 
Athens, GA, 1996 



www.manaraa.com

W orkfiow Languages 379 

[SK97] Sheth, A., Kochut, K. J., Workflow Applications to Research 
Agenda: Scalable and Dynamic Work Coordination and Collabora
tion Systems, in: Springer ASI NATO Series, NATO ASI Workshop, 
Istanbul, August 12-21, 1997 

[VB96] Vossen, G., Becker, J., (eds.), Business Process Modeling and Work
flow Management: Models, Methods, Tools, (in German), Interna
tional Thomson Publishing, Bonn, Germany, 1996 

[VW97] Vossen, G., Weske, M., The WASA Approach to Workflow Man
agement for Scientific Applications, in: Springer ASI NATO Series, 
NATO ASI Workshop, Istanbul, August 12-21, 1997 

[Wes98] Weske, M., Modeling and Execution of Flexible Workflow Activi
ties, in: Proc. 31st Hawaii International Conference on System Sci
ences, Software Technology Track (Vol. VII), IEEE Computer Soci
ety Press, 1998, 713-722 

[WWWK96] Wodtke, D., Weissenfels, J., Weikum, G., Kotz Dittrich, A., The 
Mentor Project: Steps Towards Enterprise-Wide Workflow Manage
ment, in: Proc. 12th IEEE International Conference on Data Engi
neering, 1996, 556-565 

[Wod96] Wodtke, D., Modeling and Architecture of Distributed Workflow 
Management Systems (in German), Ph.D. Thesis, University of 
Saarbrucken, 1996 

[WS97] Worah, D., Sheth, A., Transactions in Transactional Workflows, in: 
S. Jajodia, L. Kerschberg (eds.), Advanced Transaction Models and 
Architectures, Kluwer Academic Publishers, 1997, 3-33 

[WMC96a] Workflow Management Coalition, Workflow Handbook 1997, John 
Wiley in association with Workflow Management Coalition (WfMC), 
1996 

[WMC96b] Workflow Management Coalition, Terminology & Glossary, 
Document Number WFMC-TC-1011, 1996 (Available from 
http://www.aiai.ed.ac.uk:80/project/wfmc) 



www.manaraa.com

PART Two 

Software Engineering Methods 
for Information System 
Construction 

As described in Chapter 1, methodologies for Information Systems devel
opment are not independent from Enterprise Engineering Methodologies but 
form a hard to separate part of enterprise engineering. This is especially true 
for the identification and concept phases of the system life-cycle, and to a 
lesser extent is true for the requirements definition phase. Consequently the 
reader should expect that the presented methodologies would to some extent 
address the issues of business strategy making and business planning. This 
is indeed true, especially for the second contribution on Information Engi
neering. However, the focus in this part of the handbook is on the eventual 
construction of an Information System, and the methodologies presented here 
are more detailed on questions related to this particular aim. 

Wojtek Kozaczynski gives an overview of software engineering methods 
for the construction of Information Systems, especially its software compo
nent. Two simple Information Systems Reference Models are presented and 
through that the author identifies the domains for which methodologies are 
needed. The important concept to watch for is the design and building of 
large-scale systems on the basis of components. In terms of Information Sys
tems Architecture, these components are characterised as partial models, i.e. 
reusable models of the whole or part of the system. The components them
selves are modules, which are implementations of these models. The result of 
the component based approach to software design and construction is, that 
requirements level models are a) constrained by available modules thus en
suring feasibility and b) component based design ensures rapid development 
and high quality. 

Clive Finkelstein's contribution presents a version of Information Engi
neering, a methodology based on the recognition that data in the enterprise 



www.manaraa.com

382 Peter Bemus 

are more stable than processes, and therefore data / information modelling 
can be used to create a longer lasting model for the business than models 
which are solely based on process models. To correctly interpret the message 
of Information Engineering needs of course the realisation that eventually 
there will be process models constructed, but the volatility and changability 
of the two are different. This allows the methodology to be employed in 
various situations, including deployment of green field information systems, 
re-design or integration of legacy systems, re-engineering of the processes and 
supporting applications, or a combination of these. 

Brian Henderson-Sellers presents a detailed overview and comparison of 
object-oriented methods for the design and construction of Information Sys
tems. Each of these methods aims at a complete life-cycle support, and 
promote the construction of object-oriented models corresponding to the sup
ported phases. At any moment in time during the life history of a system 
potentially multiple life-cycle activities are carried out - either simultane
ously or quasi simultaneously, therefore the transition between models must 
be almost seamless. 

Alfred Helmerich presents Euromethod, which is a method developed in 
the European Union for contract management. This is a useful addition to the 
methods presented in the preceding contributions, describing how software 
development and acquisition is managed between suppliers and customers 
through a tendering process. 

The reader who wishes to adopt an in-house methodology will notice that 
the above contributions are not in competition; using Chapter 18 one could 
identify the system in question and its development direction, using Chapter 
17 one could determine the necessary direction for implementation (in-house 
development, component based development or off-the-shelf system); Chapter 
20 offers methods for the customer to procure a system through a tendering 
process, and Chapter 19 describes processes to use object-oriented models 
(and their supporting tools) to actually carry out the development. 

The reader may also ask whether and how the languages presented in 
Part 1 of the handbook relate to this part on methodology. Clearly, some 
methodologies favour one given modelling language or another; however, by 
separating the system development methodology from the modelling method
ology often embedded in it, the reader has a wide choice of languages and 
associated tools. Although it is beyond the scope of this handbook, we must 
mention the trend which aims at the establishment of interoperability of mod
els by semantic translation between various modelling languages. In this way 
one could use e.g. an underlying object-oriented design database, which may 
provide a number of useful abstractions, or views to the designer, including 
Entity Relationship views, IDEFO and IDEF3 views, the CIMOSA views etc. 
(see for a more complete list in Part 1). This of course hinges on the ability 
of developers to formally define the semantics of their languages. 

Finally, the reader is reminded that the design and implementation of 



www.manaraa.com

Software Engineering Methods for Information System Construction 383 

the Information System includes the design of those components which are 
implemented by humans (individuals and groups of individuals). For this 
reason the methodology utilised for Information System design must also in
clude organisational analysis and design methods. These questions will be 
dealt with in detail in the forthcoming Handbook on Enterprise Integration. 

Peter Bemus 



www.manaraa.com

CHAPTER 17 

Software Engineering Methods 

Wojtek Kozaczynski 

This contribution attempts to take a systematic look at the methods and tools for 
the design and construction of Software/Information System (ISs) of today and the 
future. Development of an ISs is a set of many complex and inter-related activities. 
These activities are shaped not only by the information technology, but also by the 
business need and trends. The paper provides a (conceptual) framework that the 
author found very useful while thinking about different aspects and activities of 
IS development, methods prescribing these activities and tools that support them. 
The paper also tries to "predict the future" of the methods and tools by taking 
into account the new developments in the areas of distributed computing and the 
Internet. 

1 Introd uction 

Webster's Third New International Dictionary defines methodologies and 
methods as follows: 

a methodology: 

1. a body of methods, procedures, working concepts, rules, and postulates 
employed by a science, art, or discipline 

2. the process, techniques, or approaches employed in the solution of a 
problem or in doing something 

a method: 

1. a procedure or process of attaining an object 

2. a way, technique, or process of or for doing something 

3. a body of skills or techniques 



www.manaraa.com

386 W ojtek K ozaczynski 

Software Engineering Methods and Methodologies capture best practices for 
designing, constructing (or developing), deploying, and maintaining Soft
ware/Information Systems (ISs). The key words are "best practices", that 
is, proven techniques, processes, concepts and models, and rules for assuring 
quality of produced systems and productivity of S /W Engineering Processes. 

Information Systems are complex software artifacts that have only one 
purpose; enable and support business processes of the companies and organ
isations that use them. Although this definition may suggest a subservient 
role of ISs and Information Technology (IT), this is not exactly the case. The 
information technology has had increasingly more impact on the way com
panies conduct their business - it shapes how businesses are organised and 
ran. 

To best answer what is the state-of-the-art of the S/W Engineering Meth
ods and more importantly what is their future, we have to take a look at the 
forces shaping the IT/IS domain. 

2 Major Forces Shaping the IS lIT Domain 

There are two types offorces (or drivers) that shape the IS/IT domain: the 
business drivers, and the technology drivers. 

2.1 Business Drivers 

Globalization and Streamlining of Business Processes. On one hand, 
Information Systems of a global company must support operations at mul
tiple locations, different countries, different time zones, etc. On the other 
hand, business processes of and between companies are intricately interre
lated. Streamlining them becomes a competitive necessity and potential for 
savings. The impact of these two trends on ISs is rather obvious: 

• complexity - support for multiple locations, distributed processes, dif
ferent cultures, languages, legal systems, etc. 

• size and distribution - support for remote locations, support for global 
organisations, etc. 

• openness and interoperability - ability to support processes spanning 
multiple systems. 

Concentration on Core Business Competencies. Companies recognize, 
that in majority of cases building and maintaining complex ISs in-house is 
expensive, not strategically necessary, and should not be one of their core 
competencies. There are two important consequences of this: 

• Definitive move towards using vertical software products (or packages). 
In late 1996 The Gartner Group forecast, that by the year 2000 com
panies will invest most in Packaged Business Applications, and 



www.manaraa.com

Software Engineering Methods 387 

• Outsourcing of IT operations or IS development (many companies will 
also retain process improvement and customization groups to provide 
customer responsive systems and service differentiators). 

2.2 Technology Drivers 

Probably the most important technology driver is Maturation of Dis
tributed Computing. On one hand, the tele-communication technology 
has already delivered both local and global networks with virtually unlim
ited connectivity and access from anywhere. 

On the other hand, Client/Server has matured and is a well understood 
and broadly used architecture for corporate computing. This architecture is 
now evolving into Object Oriented distributed computing architecture. The 
leading force in 00 computing has been the Object Management Group 
(OMG)l with its de-facto CORBA Object Management Architecture stan
dard2 • OMG brought to its fold almost everybody but Microsoft, which is 
offering an alternative direction with its DCOM3. Despite differences at the 
detailed level, both OMG's and Microsoft's solutions are conceptually equiv
alent and are based on principles first introduced by DEC's DCE4 . 

The other dominant driver has been the Internet. From a purely tech
nological point of view, the Internet technology has brought a universal G UI 
standard (the Web Browser) and "wire shippable" software (Java applets and 
ActiveX components). But it also has had a tremendous impact on millions 
of IS users. It reformulated their expectations on how new ISs should look 
and feel, how simple to use they should be, and how available they should 
be. 

3 Impact on S/W Engineering Methods 

What impact do the above forces have on Software Engineering Methods for 
IS Construction? Interestingly, the most profound impact is usually not well 
recognized. Exploding complexity and globalization of ISs, growing use of 
packages, and multiplicity and complexity of distributed systems technolo
gies created ideal market climate for growth of large vertical software product 
companies (also referred to as Independent Software Vendors or ISV s) and 
IT consultants and integrators. Best examples are Andersen Consulting with 
its 45K-plus employees world-wide, and the short list of Enterprise Resource 
Planing (ERP) systems providers including SAP, Baan, SSA, and J.D Ed
wards. 

What does it have to do with methods? Surprisingly, a lot. Leading ISV s 
(SAP, PeopleSoft, Oracle, SSA, Baan, ... ) and Large Consultants and IT 

Ihttp://www.omg.org/ 
2http://www.omg.org/library /omaa.htm 
3http://www.microsoft.com/work\-shop/prog/com/dcom-f.htm 
4http://www.opengroup.(.·i/(~ .. h/dce/ 



www.manaraa.com

388 Wojtek Kozaczynski 

Integrators invest significant sums of money in development and adoption of 
IS construction methods, because they have become strategically important 
to them. This is a significant change from what was happening until recently 
where most of the methods work was sponsored by governments. In the US 
it has been DARPA (Software Engineering Institute5 , the STARS or DSSA 
programs, and the ill-conceived I-CASE initiative) and NIST (the Advanced 
Technology Program)6. In Europe it is still EC's Esprit funding, and the 
UK's government sponsored SSADM (System Software Analysis and Design 
Method)7. 

Today, true market forces make large Consultancies and ISVs put sig
nificant resources into developing new IS design and construction methods. 
Methods, that will support building large business software solutions (both 
customized and packages) providing new levels of services: 

• effective support for current business processes 

• ability to evolve these processes without being constrained by the ISs 
supporting them 

• configurability 

• interoperability, and 

• scalablility. 

Majority of these new methods are based on three general principles: 

1. Component-based S/W Engineering - an approach to system construc
tion in which a system is assembled from well-defined parts, and 

2. S/W Reuse - an approach to developing components in such a way, that 
they can be used in many different situations, and 

3. Process driven - to optimise development time scales and response to 
changing business needs. 

4 Framework for IS Construction Methods 
and Tools 

A methodology for constructing a distributed, component-based system com
prises of a large body of guidelines for team organisation, development pro
cesses, concepts and tools, and reusable designs and components. In order to 
address its (the methodology'S) most important aspects in an organised fash
ion, we need a reference model. A layered architecture of component-based 
IS provides a convenient model. 

5http://www.sei.cmu.edu/ 
6http://www.atp.nist.gov/atp/atphome.htm 
7http://www.ipsys.com/ssadmeth.htm 



www.manaraa.com

Software Engineering Methods 

4.1 Layered Architecture of a Component-Based 
System 

389 

A high-level layered architecture of component-based systems is shown in 
Figure 1. The layers are described from the bottom up. 

Vertical Applications 

DDD ... 
CDO/CDC 

Common Architecture Frameworks 

DCI Services 

DCI Framework 

InteroperabiJity 
Infrastructure 

Figure 1: IS Layered Architecture Reference Model 

Interoperability Infrastructure. This is a commodity layer such as a 
CORBA ORB, DCOM, or IBM's MQ Series Queue Manager [OHE96a] that 
provides communication between distributed system components 
Distributed Computing Infrastructure (DCI) Framework. A plain 
interoperability infrastructure is not a convenient level at which one builds 
large distributed systems - it provides a relatively low level of building-block 
abstractions. Therefore, there is an emergence of higher level abstraction 
frameworks like those submitted to the OMG in response to the Business 
Object Framework Request for Proposal (BOF RFP)8. 
DCI Services. This layer provides a set of services such as Component 
Persistency, Component Life-cycle, Event Handling, etc., that are commonly 
used by all ISs. 
Common Architecture Frameworks. This is the next-up level of com
monly used funcitonality that is more than just individual services. These 
are frameworks such a Error Handling Framework, Transaction Management 
Framework, User-Unit-Of-Work Framework, GUI Framework, Failure Recov
ery Framework, Mega-data Management Framework, etc. 
Common Business Objects/Components (CBO/CBC). This is the 
first layer of business software and it can be multi-tier itself. ISs share ob
jects and components that are common to them in general or are common to 

8http://www .omg.org/members/ doclist-97 .html 



www.manaraa.com

390 Wojtek Kozaczynski 

a particular business domain. Address, Currency, Employee, and Time are 
examples of very generic objects and components, while Invoice or Vendor 
exemplify more domain specific components. 
Vertical Business Applications. This is finally the application-specific 
part of the system that uses and/or embeds all lower layers. In particular, 
it includes run-time representation of business processes and unifies business 
process patterns and workflow that is rule oriented and structured. 

Note, that this model does not explicitly address legacy migration, wrap
ping, interoperability, etc. 

4.2 Key Development Activities and Computational 
Domains 

In most current (and very likely future) methodologies, major system design 
and construction activities align with the layers of system decomposition 
presented above. This is shown in Table 1. 

Activity IS Architecture Layer 
Infrastructure Development Interoperability Infrastructure 

DCI Framework 
DCI Services 

Architecture Development Common Application Frameworks 
A pplication Development 
modelling and design 
application construction CBO/CBC 

Vertical Applications 

Table 1: Activities and IS Architecture Layers 

A brief discussion of these activities, from the perspective of methods 
supporting them, is presented in the subsequent paragraphs. Before we con
tinue, however, we introduce another very useful reference model that will 
help the discussion of IS construction methods. It is a model of so-called 
computational domains [Sim94] and it is depicted in Figure 2. 

The model indicates, that IS system design and construction takes place 
in three "spaces" that satisfy different purposes and have different character
istics. 

1. Shared Resources Domain (SRD) - is responsible for providing a 
set of services to one or more clients, in most cases executing concur
rently, and for ensuring the integrity of shared resources required to 
implement those services. The principal shared resource is one or more 
data bases. Resources in this domain generally tend to be static in 
nature. That is, they are used by clients or agents, in the course of 



www.manaraa.com

Software Engineering Methods 391 

SRD 

Figure 2: Computational Domains Reference Model 

performing some function, activity, or process. The SRD is an imple
mentation of what is often called the "corporate object model" or the 
"entity" model [Bo094]. The scope of an SRD is coterminous with the 
scope of ACID transactions against resources. Often a resource man
ager, such as a Database Management System (DBMS) or a Transaction 
(Processing) Monitor (TPM) [OHE96b], is the provider of ACIDity. In 
a more general case, the SRD stretches across two or more resource 
managers which may not know anything about one another. 

2. Presentation Logic Domain (PLD) - is a domain responsible for 
ensuring maximum productivity and ease-of-use for system users, who 
accesses the system through some form of an human-compute interface 
(HCI). The scope of a PLD is that function required to support a single 
person. Often the PLD functionality can be provided in identical form 
to all users. In this case, the developer sees a single PLD, but at run
time there will be as many PLDs as there are users. 

3. Business Process Domain (BPD) - is responsible for the execu
tion of configurable business processes of various kinds - workflows, 
activities, and business transactions. The BPD acts on components 
in all other domains including itself. An example is a "Place Order" 
business process which may act on Inventory, Customer, Order and 
Credit Checker components. Different techniques and methods are used 
for designing and constructing components in the three domains. These 
are briefly described in the next three paragraphs. 

5 Infrastructure Development 

In the future, Distributed Computing Infrastructures (DCIs) will become 
commodities, but this is not going to happen for a while. Therefore, infras-



www.manaraa.com

392 Wojtek Kozaczynski 

tructure development, or more correctly infrastructure assembly, has been 
and will remain an important part of the overall system construction pro
cesses. A complete DCI contains three layers introduced above: 

• Interoperability Infrastructure 

• DCI Framework, and 

• DCI Services. 

A DCI cuts across all three computational domains. 

• In the PDL, the infrastructure may integrate a GUI technology frame
work such as Java-based Bong09 or MFC1o. 

• In the SRD the infrastructure may include: 

- a transaction monitor (TPM) such as Tuxedo or CICS 

- one or more DBMSs 

- real time input/output devices, like card readers an ORB or a 
Message Oriented Midlewarell , etc. 

• Finally in the BPD, the infrastructure may integrate a document man
agement system, a group-ware environment like Lotus Notes12 , elec
tronic mail, a Web-like13 enviroment, a work-flow engine, etc. 

The methods for developing, or more correctly assembling, DCls are charac
terized by highly technical work packages and large-grain component reuse 
and integration. The emphasis of these methods will be on: 

• providing a convenient set of abstractions to framework and application 
developers 

• providing most general-purpose functionality (not business-domain spe
cific), and 

• performance and reliability of the services. 

Standard Object-oriented (00) S/W methods will dominate this area from 
the software construction viewpoint. Also important will be different compo
nent Application Programming Interface (API) standards such as the Work
flow Coalition's APls14 to Workflow engines. For good examples of a complete 
DCls the reader is referred to SSA's submission15 to the OMG's BOF RFP. 

9http://www.marimba.org/ 
lOhttp://www.microsoft.com/msdn/ 
11 http://www.hursley.ibm.com/mqseries/ 
12http://www2.lotus.com/domino.nsf 
13http://developer.netscape.com/library / one/index.html 
14http://www.aiai.ed.ac.uk/project/wfmc/ 
15http://www .omg.org/members/ doclist-97.html 



www.manaraa.com

Software Engineering Methods 393 

6 Architecture Development 

The architecture development activities provide solution patterns and frame
works in all three computational domains. These frameworks and patterns, 
in turn, provide proven approaches to structuring applications. Examples 
include: 

• Transaction Management Framework 

• Mega-Data Framework 

• User-Unit-Of-Work (or Activity) Pattern 

• Security Framework 

• System-Level Error Management Framework, and 

• Batch Transaction Processing Framework . 

• 
BPD III == 

D~ 

PLD 

SRD 

Figure 3: A common pattern of User-Unit-Of-Work Coordination 

Figure 3 illustrates a common pattern for handling U ser-U nits-Of-Work -
a group of activities that the user considers to be a complete business activity. 
Central to this pattern is an Activity Coordination Component (ACC), that 
orchestrated the work of other components: 



www.manaraa.com

394 Wojtek Kozaczynski 

• LCos (Local Components), which are local representations (or copies) 
of persistent business objects 

• PCos (Presentation Components), which are responsible for handling 
user interfaces (the GUI) 

• TXMs (Transaction Managers), that coordinate ACID DB transac
tions, and 

• SCos (Shared resource Components), that provide access to persistent 
object storage. 

This pattern uses lower-level patterns and frameworks. LCos and PCos com
municate using a Model-View-Controller pattern [GHJV94j and PCos inter
nally use a GUI framework such as Bongo. SCos use a Persistency Framework 
to store and retrieve object state in/from a data store. 

Architecture Development Methodologies focus on: 

• component models 

• capturing and describing patterns 

• using some form of a (semi)formal notation 

• exemplification of pattern usage 

• framework development, and 

• code pattern (skeletal code) development. 

As part of the architecture development activities many organisations also 
produce or customise their own S/W development tools and environments 
of varying sophistication. This trend will become even more common. S/W 
development toolsets such as Rational Rose16 or SELECT Enterprise17 are 
becoming more open, provide interfaces to their meta-modelling capabilities, 
and migrate on top of a common, open repositories such as UREp18. 

7 Application Development 

Application development is the focal set of IS construction activities. Emerg
ing component oriented methodologies further divide these activities into: 

• development of Common Business Objects (CBO) and Components 
(CBC), and 

• development of vertical applications. 

16http://www.rational.com/products/rose/ 
17http://www.selectst.com/Component/SCF/SCFFrames.htm 
18http://www.unisys.com/marketplace/products/\-urep/ 



www.manaraa.com

Software Engineering Methods 395 

7.1 CBOjCBC Development 

A Common Business Object is at the level of an OO-language object. A 
Common Business Component is larger than an object, that is, it may con
tain multiple objects. A business component is usually a unit of system 
distribution, while a business object it not. Specifically, a business compo
nent instance is a network-addressable system unit. A business object may 
be sent between components by value (in a message) and internalised within 
the receiving component, but it does not have a system-wide identity. 

Both Common Business Objects and Components are the building blocks 
used in many vertical applications. Example may include: Address and Ad
dress Book, Currency, Voucher, Order, Customer, etc. 

From the methodology view point, development of common business ob
jects and components starts from Enterprise Business Entity Modelling. A 
good Enterprise Business Entity Model should identify many of business ob
jects in a system (both common and specific) and the aggregation and use 
relationships between them. Further process-driven analysis should reveal 
business objets that are collection managers, such as Address Book. 

Common business objects and components form layered structures. At 
the bottom are simple objects (sometimes simple abstract data types) such 
as Postal Code. Progressing up the layers, objects become more complex and 
semantically rich. An example is shown in Figure 4. 

Currency 

Account 

Address 
Book 

Voucher 

Callen dar 

Figure 4: An example Common Business Component/Object Hierarchy 

It is not always obvious what should be a CBO and what should be 
a CBC. The rule-of-thumb criteria include network visibility, independent 
context, and user access. Most of CBC span across PLD and SRD, that is, 
they have both the persistent side as well as a GUI side. For example, a 
Vendor Component should support all maintenance operations of a vendor 
including requests like changing its address. This particular operation would 



www.manaraa.com

396 W ojtek K ozaczynski 

be, of course, delegated to the Address component or object. 
The methodology of building CBOs and CBCs is that of building com

mon purpose reusable 00 software [JGJ97]. It focuses on detailed interfaces 
specification, implementation hiding, and testing. A well defined compo
nent/object interface specification should include: 

• Provided Interfaces - the operations the component provides to its 
clients 

• Required Interfaces - the operations the components will request from 
other components/servers 

• Operation Semantics 

• Pre- and Post-Conditions 

• Invariants 

• One-Sided Protocols - temporal dependencies between Provided Inter
faces. 

Probably still the best example of a good support for interface specification 
is the Eiffellanguage [Mey88]. Also, there are extensions of the CORBA IDL 
to provide for better component interface specifications [BBKLN077]. 

Another focus of CBO and CBC development is testing. This means 
both reliability and performance testing as well as usability testing. Usability 
testing is particularly difficult and can be done only empirically, that is, by 
repeated use of a component. The reliability and performance testing can 
be simplified by generation of test harnesses - sets of dummy components 
delivering dummy Required Interfaces to the tested components. 

7.2 Application Development 

There are differences between application development activities in the three 
computational domains. 

Development in the PLD is concerned with how to make a system most 
usable to its users, that is, what should be the System's User Model: 

• Visualization - the look 

• Interaction - the feel, and 

• User's Conceptual Model - concepts that the user operates on when 
using the system via the user interfaces. 

Only a small part of developing a good system presentation layer is related 
to building a GUI itself, that is, the screens (the visualization). Most of the 
work is related to developing user interactions, navigation, interactions with 
SRD and BPD, and choosing proper system metaphors. However, except for 



www.manaraa.com

Software Engineering Methods 397 

GUI frameworks, there are no good methods for overall system-user interface 
design and development for ISs. Most of the existing implementations borrow 
metaphors from desktop computing. This is an area where methods have am
ple room for improvement and will be definitely driven by the developments 
in the area of Internet computing. 

Development in the SRD is dominated by the system's storage design 
and implementation. It starts from traditional Enterprise Business Object 
(or Entity) Modelling and follows with: 

• Mapping of Business Objects into physical DBs - currently, most of the 
large, enterprise-wide ISs utilise Relational DBMSs. This trend will 
continue due to the maturity and scaleability of the technology. There
fore, most of current and future systems will have to use a mapping 
between Business Objects and Components and DB tables. The map
ping process is well understood, but often error prone, and there are 
approaches and tools to support it19 . 

• Determining clustering of objects into components - objects are not 
used individually, but in clusters determined by the static and dynamic 
relationships between them. Determining how to group objects into 
stable, usable components is one of the most difficult and poorly un
derstood tasks in SRD development. In most cases, developers rely on 
their domain experience, static object dependencies, and less on anal
ysis of how objects are used together in business and system processes 
and use cases [JCJ093]. Object clustering into components is always 
a trade-off between 

- component size, that is, number of objects brought into a compo
nent at execution time, and 

- number of relationships that have to be managed between compo
nents. In an ideal situation, a component has a few relationships 
with other components and high cohesion between the objects im
plementing its internal behavior. 

• Coordinating transactions and data consistency management - since 
components are interrelated, changes in one component may cause 
changes in other components. This usually requires designing support 
for nested transactions and/or transactions on multiple DBs. That in 
turn leads to development of TXMs (transaction management compo
nents) that are capable of coordinating ACID DB transactions. 

BPD development starts form a different place, which is, business process 
modelling. The objective is to produce a collection of business ACC (Activity 
Coordinator Components) that best represent business activities supported 
by the system. 

19http://www.persistence.com/ 



www.manaraa.com

398 Wojtek Kozaczynski 

An ACC may be best described as a work-flow-like entity. It represents a 
well-defined User Unit of Work (cf. CIMOSA functional operation [Ver96]) 
(sometimes referred to as a Logical Unit of Work) which is a part of a business 
process. ACC is invoked from the top-most layer of the system interface and 
coordinates a multi-step business transaction such that each step: 

• will request one or more business components to be brought to the PLD 

• may involve interactions with the user via one or more presentation 
components 

• may request to commit, in an ACIDized way, changes to the business 
components that were brought to the PLD; invoke an ACID transaction 
in the SRD. 

A user unit of work is a long lasting business transaction, that may take an 
unspecified time and in a degenerate case can be interrupted for an unpre
dictable time or fail entirely. At the end of each step, however, changes must 
be committed to the system's SRD (DB in particular). For these reasons, 
construction of ACC is complex (see Figure 3 again): 

• they must log their state change history 

• they must log the requested and committed SRD changes 

• they must be able to recover their state after they were suspended or 
interrupted, and 

• they must be able to undo the SRD changes by issuing compensating 
transactions (since the changes have been already committed). 

In even more complicated cases, an ACC may have to involve different users 
in different steps, but this is not common unless the ACC is implemented as 
a true work flow activity. 

There are no well-defined methods for developing business process com
ponents (the ACCs). Methodologists seem to agree, that the design starts at 
Process Modelling, Scenarios and Use Case Analysis, and Enterprise Business 
Object Modelling [JCJ093, JEJ94]. However, there are no good methods for 
mapping these analysis models into distributed component models. 

8 Component-Based IS Development Process 

Figure 5 below puts all of the described IS development activities together. 
The "squares" in the Vertical System Components Development block 

represent design, construction, assembly and testing of System Components. 
A System Component is a basic system fabrication unit and a unit of pack
aging. A system component should have strong business semantics, but may 



www.manaraa.com

Software Engineering Methods 399 

I Deployment 

Vertical Sys. Compo I Sys. Testing 
r- Development ~ r-- Assembly r- r- -

r-- r- Fr-'-- r- r-
OO ¢:> --- '-- := r--

- r A &D [ r--
'--

'--

~ 
-

CBOIC peve[opment A 
- ,!, 
IV ArcJliJecblre FrlJ eworkDev. 

I ArcJliJecblre Patter I Specificatioll 

I DCI Services I 
I DCI Framework I DCI I Interoperability InfrastruCl. I Deve[qpment 

Figure 5: IS Development Activities 

not be exactly equal to a business component. For example, a system may 
contain an Inventory Management System Component that manages Inven
tory Items that are first-order business components. The structure of the 
"squares" is shown in Figure 6. 

Assembly & Testing 

Construction 

Detailed Design 

Figure 6: System Component Development Activity areas 

The figure suggests that a system component is a so-called wall-to-wall 
unit. Such a unit contains a services/persistency layer, business logic, and 



www.manaraa.com

400 Wojtek Kozaczynski 

user interfaces. It is designed and built like an independent, large software 
element. It is assigned a development team, has its own delivery schedule, 
and may itself be composed of other components. By many accounts, it is a 
most self-contained and independently marketable unit of a system. 

It follows from the above discussion, that to build a large, distributed IS a 
number of different techniques, methods, tools and skills are required - there 
isn't a single method. Some of these methods and tools are already mature 
and some must still be developed. 

1. Object Analysis and Design - UML is an emerging de-facto stan
dard in this domain with a set of maturing tools to support it (like 
Rational Rose or SELECT Enterprise). However, there are no good 
methods to guide the mapping from a UML20 system specification to 
its component model (execution model). This is partly due to the fact, 
that there isn't a singe Distributed Computing Infrastructure Model 
yet. 

2. Vertical System Components Development - as discussed (see 
Figure 6), this is an area that requires a set of methods, skills, and 
tools that cover all three computational domains. Some of them are 
better understood than others, but they are not really integrated into 
one comprehensive component development approach: 

• PLD - there exist good GUI development tools (like Hog Views21 

or Bongo) at the so-called windows-&-controls level. However, 
there still exists little support for the development of complex, 
usable user dialogs. In most cases designers are free to do what 
they feel right. 

• SRD - this has been a relatively well understood domain until the 
00 impedance mismatch occurred. A standard approach to man
aging the SRD was to use a TPM. However, TPMs usually play 
two roles: (1) transaction management, and (2) resource manage
ment. Components, unfortunately, tend to be very independent in 
terms of where they execute (how they use computing resources) 
and how they join transactions. As a result, there still is no clean 
integration of TPMs into DCIs and the development of SRD for 
distributed component systems still lacks a mature methodology. 
What is expected to change the situation is a new generation of 
TPMs (e.g. MS Transaction Server and associated tools), or a 
general purpose set of SRD frameworks (and a set of supporting 
tools). 

• BLD - this domain is conceptually simple, yet there are many 
details that must be taken into account. In particular, coordina
tion of multiple alternative steps and activity roll-back. Today 

20http://www.rational.com/uml/index.html 
21 http://www.ilog.com/html/product_visualization.J!uite.html 



www.manaraa.com

Software Engineering Methods 401 

almost every big project develops its own User Unit of Work Man
agement Pattern or/and Framework. In the future, we should 
see emergence of scripting languages designed to write component 
coordination logic. Some of these languages and tools will be prob
ably derived form rule languages of inference engines. 

3. System Assembly, Testing, and Deployment - these activities are 
well understood and the component-based system development should 
make them only easier. This is because components naturally follow 
the rules of loose coupling and strong cohesion and provide very well 
articulated demarcation lines between system parts. These properties 
have always been the key to efficient system assembly and configuration 
management, testing, and deployment. 

4. Distributed Computing Infrastructure Development - from the 
software construction methodology and tools point of view, this is a 
well understood area. 

5. Common Business Component Development - depending on gran
ularity, this activity can be either similar to developing an object class 
or developing a system component. Development of individual object 
classes is well supported by design tools such as Rational Rose and code 
development tools such as MS Developer Studio. The development of 
system components has been discussed above. 

6. Architecture Pattern and Framework Specification and De
velopment - this is an important, yet one of the least understood and 
appreciated development areas, and a corner stone of large-grain reuse. 
There is an extensive literature on software patterns22 and a lively 
Internet23 discussion on the subject. However attempts to formalise 
pattern specification have been refuted by the fathers of the pattern 
movement who belive that the "software patterns are not supposed to 
be formalised". This hinders development of tools. There is also lit
tle in the way of support for development of frameworks, which are 
the next level up of encoding commonly used approaches to handling 
a specific computing requirement. We hope to see some improvements 
in this area. 

7. Finally, the DCI Development - from the methods and tools point 
of view, this is a well understood domain. The questions are usually 
about what distributed computing and programming model to use and 
what services to expose, but not how to develop them. Usually standard 
00 methods and techniques are used. 

22http://st-www.cs.uiuc.edu/users/patterns/books/ 
23http://st-www.cs.uiuc.edu/users/patterns/ 



www.manaraa.com

402 W ojtek K ozaczynski 

9 Summary 

Sometimes it is not that important to predict the future, as much as to 
understand where it is coming from and what shapes it. In this paper, we 
described a framework that we found quite convenient when thinking about 
IS construction methods, tools, and skills. 

It is clear, that the next paradigm shift, after Client/Server (C/S) Com
puting, will be Distributed, Component-Based Computing that to some de
gree is a natural evolution of the C /S computing. The indications are very 
clear and can be found in many places24 • There is much that we can reuse 
or leverage from the existing methods and tools. There are also areas, like 
development of wall-to-wall system components, that we still have to master. 
So who will master them and when? When will an average S/W shop be able 
to buy a new toolset in an Internet store? 

Unfortunately, the answer to the second question is that some of these 
new tools may remain proprietary (at least partially) for a while. The reason 
is in the answer to the first question. The new tools and methods will come 
from different coalitions of S/W tool companies, big S/W product companies, 
and information integrators and consultants. This is all due to the business 
drivers described at the beginning of the paper. A few current examples 
include: 

• IBM teaming up with Rational to provide a toolset for its Java set 
of general-purpose business objects developed by the San Francisco 
project25 , 

• Prise Waterhouse teaming up with IntelliCorp to provide a set of tools 
for business modelling to support customization of the SAP family of 
packages, and 

• PeopleSoft teaming up with SELECT and Rational to provide a cus-
tomized set of tools to their software packages. 

Another alternative, although less likely, is integration of Open Repositories 
like UREP with MetaCASE Tools like ToolBuilder26 or open or extensible 
tools like Rational Rose. Meta-CASE tools are almost extinct species, victims 
to their original immaturity and unfulfilled promises. However, with emer
gence of open repositories that provide support for meta-modelling, their 
premise becomes attractive again. Many of their proprietary functions such 
as their own scripting languages can be now provided in a much more open 
fashion. For example, Visual Basic can be used as a scripting language to 
access and manipulate the content of the repository. 

Both areas will be very interesting to watch, but we do not expect a very 
fast progress. Developing a complex Distributed Computing Architecture 

24http://splash.javasoft.com/beans/WhitePaper.html 
25http//www.ibm.com/Java/Sanfrancisco/ 
26http//www.ipsys.com/tb.htm 



www.manaraa.com

Software Engineering Methods 403 

and Frameworks is a task for several years. Adding to that the development 
of common components, vertical components, and then proving that all this 
works and scales will take time. Despite all enthusiastic claims, large scale 
distributed, component-based computing is not with us yet and will be slow 
in delivery. Andersen Consulting, the most progressive of all technology 
integrators have learned this first hand on its publicly touted Eagle project27 • 

The project has lasted for over four years, consumed undisclosed millions 
of dollars and yet failed to deliver a commonly accepted set of tools and 
methods. 

References 

[Boo94] Booch, G., Object-Oriented Analysis and Design with Applica
tions, Benjamin/Cummins Publishing Company, 1994 

[BBKLN077] Bronsard, F., Bryan, D., Kozaczynski, W., Liongosari, E., Ning, J., 
lafsson, A., Proceedings of the Symposium on Software Reusability, 
Boston, May 1997 

[GHJV94] Gamma, E., Helm, R, Johnson, R., Vlissides, J., Design Patterns
Elements of Reusable Object-Oriented Software, Addison-Wesley, 
1994 

[JGJ97] Jacobson, I., Griss, M., Jonsson, P., Software Reuse: Architecture, 
Process and Organization for Business Success, Addison-Wesley, 
1997 

[JEJ94] Jacobson, I., Ericsson, M., Jacobson, A., The Object Adventage -
Business Process Reengineering with Object Technology, Addison
Wesley, 1994 

[JCJ093] Jacobson, I., Christerson, M., Jonsson, P., Overgaard G., Object
Oriented Software Engineering: A Use CaseDriven Approach, 
Addison-Weslay, 1993 

[Mey88j Meyer, B., Object-Oriented Software Construction, Prentice-Hall, 
1988 

[OHE96aj Orfali, R., Harkey, D., Edwards, J., The Essential Client/Server 
Survival Guide, John Wiley & Sons, 1996 

[OHE96b] Orfali, R., Harkey, D., Edwards, J., The Essential Distributed Ob
jects Survivor Guide, John Wiley & Sons, 1996 

[Sim94] Sims, 0., Business Objects: Delivering Cooperative Objects For 
Client-Server, McGRAW-HILL Book Company, 1994 

[Ver96] Vernadat, F. B., Enterprise Modeling and Integration: Principles 
and Application, Chapman & Hall, London, 1996 

27http//www.ac.com/eagle/spec/ 



www.manaraa.com

CHAPTER 18 

Information Engineering 
Methodology 

Clive Finkelstein 

This chapter discusses the history and evolution of Information Engineering, with 
emphasis on the business-driven IE variant. It describes the methods used at each 
phase in the systems development life cycle: strategic business planning; strate
gic, tactical and operational data modelling; process modelling; systems design; 
and systems implementation. It describes the application and use of IE for For
ward Engineering, Reverse Engineering and Business Re-Engineering, and illus
trates business-driven IE principles with a Business Re-Engineering example. The 
chapter concludes with a summary of Internet and Intranet technologies; discussing 
development of Client/Server systems and Data Warehouses, and their deployment 
via the Internet and corporate Intranets. 

1 Introduction 

The need to design and build systems that fully support the information 
requirements of users of those systems has long been recognised since the 
first computers were introduced. But the complexity of systems development 
has demanded a detailed knowledge of analysis and design techniques and 
an understanding of computer technology. Methodologies such as Software 
Engineering helped. First introduced in the early 1970s, Software Engineering 
focused first on Structured Programming, then on Structured Design with 
Structure Charts, and on Structured Analysis with Data Flow Diagrams 
(DFDs) [Jac75, Orr77, YC78, DeM82]. 

But business processes change, often more frequently than the data they 
use. And business changes invariably require that the programs used to 
automate those processes must also be changed. In contrast, data has been 
found to change less often than processes and so is more stable. Systems 
designed first from the perspective of the data needed by the business, and 
then from the processes that operated on that data, were found to be more 



www.manaraa.com

406 Clive Finkelstein 

flexible - able to accommodate change more readily. These are fundamental 
principles that are used by the object-oriented analysis and design methods 
of today, but these principles had already been recognised in the mid-1970s 
as important concepts for analysis and design generally. 

Relational theory, developed by Edgar Codd at IBM, provided some 
important insights into the analysis and design of systems based on data 
[Cod70, Cod79, Dat82]. Three independent developments emerged in the 
mid 1970s; in Europe, in the UK, and in Australia. It was the Australian 
initiative that lead to the development of Information Engineering (IE). 

2 History of Information Engineering 

From 1976 in Australia, at Information Engineering Services Pty Ltd (IES) we 
felt that by focusing on data we could identify the information that business 
users needed to carry out their job responsibilities. The business processes 
that operated on that data we felt could then be identified and analysed. But 
how could we determine data and information that was required? And how 
could we identify the relevant business processes? 

Normalisation theory, developed by Edgar Codd as part of relational the
ory, provided some insight. We found that systems analysts and Data Base 
Administrators (DBAs) could use the rules of normalisation to interview busi
ness users at operational levels, and they could then identify the data and 
information that was needed. DBAs used this knowledge to design databases 
that were stable and able to accommodate business change more readily. We 
called these first two analysis and design methods, developed from 1976-1977: 
Data Analysis and Data Base Design. 

From 1978-1980 we developed three additional methods. Information 
Analysis was based on Drucker's principles of management [Dru74] and was 
used to identify information needed by managers. Procedure Formation was 
used to derive processes from data. This was an early representation of 
today's object-oriented methods that operate against classes ie. data. Dis
tributed Analysis was used to analyse and design for remote distribution of 
data and processing. 

Together with the first two methods above, we found that we had devel
oped a rigorous, repeatable discipline like Engineering for the identification of 
Information and the development of information systems. At IES we coined 
the word Information Engineering (IE) to describe the overall methodology. 
A more detailed history of Information Engineering is provided in [Fin81] 
and [Fin89]. 

Information Engineering was first published as six InDepth articles in 
May-June, 1981 by Computerworld USA [Fin81]. But it was the publication 
in November 1981 of the Savant Institute Technical Report on Information 
Engineering [FM81J, co-authored by Clive Finkelstein and James Martin, 
that lead to its wide-spread adoption - as IE was popularized world-wide by 



www.manaraa.com

Information Engineering Methodology 407 

James Martin. From 1982-1986 IE began to evolve into two distinct variants. 

2.1 DP-driven IE Variant 

The first variant was developed in the USA by Database Design Inc (later to 
be renamed KnowledgeWare, Inc) and Texas Instruments (TI). They changed 
the data-driven emphasis of IE from 1976-1980 instead to a process-driven 
focus for use by DBAs, systems analysts and Data Administrators (DAs). 
These are Data Processing (DP) staff roles; people in these roles generally 
take a DP-driven focus. Four systems development phases were defined: 

1. Information Systems Planning, 

2. Analysis, 

3. Design, 

4. Construction. 

This was very effective for analysis and design of information systems using 
third generation and fourth generation languages in the early 1980s. IE 
evolved during this period into what is now called the DP-driven variant 
of IE [Mar87]. Many Computer-Aided Software Engineering (CASE) tools 
today still only support this DP-driven IE variant. 

2.2 Business-driven IE Variant 

The second variant was developed by IES in Australia. We found that the use 
of third and fourth generation languages to develop systems and databases 
with the DP-driven variant of IE resulted in long development times. But in 
many cases, the business changed before those systems could be completed. 
We found that by designing systems based on the processes and information 
needs of operational users, the resulting systems were too volatile. Busi
ness changes could not easily be anticipated, as these changes often occur 
without warning at the operational levels of organisations. As there was no 
knowledge of possible changes, systems could not be designed proactively to 
accommodate them. 

We realized that there had to be greater awareness of the directions that 
were set by management for the future. These directions were not unknown; 
they are defined in the Strategic Business Plans for the organization. We 
recognised then that IE had to draw more effectively on business expertise: 
not by interview in the DP-driven variant, but by the active participation of 
business experts in the analysis and design process. Business-driven meth
ods that draw upon business expertise, rather than computer expertise, were 
needed to encourage a design partnership between business experts and com
puter experts. Business experts know the business; while computer experts 



www.manaraa.com

408 Clive Finkelstein 

know computers. We realized that this required business-driven Joint Appli
cation Development (JAD) methods. This recognition resulted in our devel
opment of the Business-driven variant of IE by 1986. 

Business-driven Information Engineering uses methods that are under
standable and applied by business managers and their staff (the business 
experts) as well as by IT staff. It uses a number of phases to capture the 
business knowledge and understanding vital for success, summarized below 
and illustrated in Figure 1: 

• Strategic Planning uses the strategic directions set by management to 
identify their information needs. 

• Data Modelling documents in data models the information and data 
needed to achieve those directions. 

• Process Modelling defines the business processes based on information 
usage, to implement the plans. 

These three phases focus on the business and so are technology-independent; 
they use the knowledge of the business experts. The end-result is the de
velopment of a Business Model based on strategic, tactical and operational 
business plans, and on information, data and business processes that are 
needed to implement those plans. 

The next two phases utilize the Business Model as input. From a com
puter perspective they determine the systems requirements and decide the 
available technology to achieve the performance requirements. They depend 
on computer knowledge and are technology-dependent. 

• Systems Design defines the application design and database design 
needed to build the required information systems and databases. 

• Systems Implementation deploys the systems and databases using the 
available technologies. 

Systems and databases developed using business-driven IE were found to 
be capable of being built rapidly with priority systems delivered early and 
changed easily to respond readily to rapid business change in the 1990s. 
Business-driven IE resulted in the development of object-oriented systems 
that were directly aligned with corporate goals and strategic plans. Business 
changes could be easily accommodated without the massive redevelopment of
ten required with systems that had been built with the process-oriented, DP
driven variant. Furthermore, these systems were often able to take advan
tage of new technologies without causing massive business disruption. Some 
modern CASE tools support the business-driven IE variant for modelling; a 
few support both IE variants 1. 

We shall now examine the phases of business-driven Information Engi
neering in more detail. 

1 Visible Advantage (previously called IE: Advantage) fully supports and automates 



www.manaraa.com

Information Engineering Methodology 409 

STRATEGIC BUSINESS PLANNING 

Figure 1: The Phases of Business-driven Information Engineering 

3 The Phases of Information Engineering 

3.1 Strategic Business Planning 

The business directions that senior managers set for the future are defined 
in strategic business plans, with their greater definition in tactical business 
plans and implementation in operational business plans. Most organizations 
acknowledge today a vital need to develop such business plans. But it has 
often been difficult for these plans, expressed in terms that are relevant to 
senior management, to provide clear direction also at the tactical and opera
tionallevels of organizations. Feedback is needed, so that any problems that 
occur due to miscommunication and misinterpretation of business plans can 
be corrected early. This is illustrated in Figure 2. 

Business plans indicate the business information that is needed to mea
sure achievement of goals and objectives within defined policy boundaries. 
These plans also indicate the business processes that implement the strate
gies and tactics to implement those plans, operate on data and deliver the 

all phases of Business driven IE. It supports Forward Engineering, Reverse Engineering 
and Business Re-Engineering. Visible Analyst and EasyER/EasyOBJECT support the 
DP-driven variant of IE, as well as many Structured and Object-Oriented development 
methods. These Modelling tools are all developed and supported by Visible Systems Cor
poration. See Web Sites http://www.visible.com/andhttp:/ /www.ies.aust.com/~ieinfo/ 
for further details. 



www.manaraa.com

410 Clive Finkelstein 

required information. Rapid feedback can be achieved by using data mod
els to represent data and the business information that is derived from that 
data. Feedback is provided also by using process models. These indicate 
the business processes based on business plans that operate on the data and 
deliver required business information. 

Business plans define the directions set by management for each business 
area or organization unit, shown as the top apex of the triangle in Figure 2. 
They define the mission of the area and relevant policies, key performance 
indicators, goals, objectives, strategies and tactics. These are all catalysts for 
the definition of business processes, business events and business information. 
Business plans that define future directions for an organization represent the 
most effective starting point for developing information systems. But in 
many organizations today the plans are obsolete, incomplete, or worse, non
existent. In these cases, another apex of the triangle in Figure 2 can be used 
as the starting point: either business information, through data modelling; 
or business processes, through process modelling. 

Policies, Goals 
Objectives 

Business 
Information 

Business 
Plans 

Strategies 
Tactics 

Business 
Processes 

Figure 2: Business Processes and Business Information must support Business 
Plans 

3.2 Data Modelling 

Data models should ideally be based on directions set by management for 
the future. As discussed, these are defined in business plans. Where business 
plans are not available or are out-of-date, or the reasons why business pro
cesses exist are lost in the dark recesses of history, data models of business 
information provide clear insight into future needs. 



www.manaraa.com

Information Engineering Methodology 411 

Data models can be developed from any statement, whether it is a nar
rative description of a process, or a statement of a policy, goal, objective or 
strategy. Redundant data versions that typically have evolved over time in 
different areas of an organization (each defining its own version of the same 
data) can be consolidated into integrated data models so that common data 
can be shared by all areas that need access to it. Regardless of whichever 
area updates the common data, that updated data is then available to all 
other areas that are authorized to use it. 

Consider the following example, based on the analysis of a data model 
developed for business processes involved in Sales and Distribution, stated as 
follows: 

• Order Processing "A customer may have many orders. Each order 
must comprise at least one ordered product. A product may be requested 
by many orders." 

• Purchase Order Processing "Every product has at least one supplier. A 
supplier will provide us with many products. " 

• Product Development "We only develop products that address at least 
one need that we are in business to satisfy." 

• Marketing: "We must know at least one or many needs of each of our 
customers. " 

Figure 3 is an integrated data model that consolidates these functions of 
Order Entry, Purchasing, Product Development and Marketing. It illustrates 
an important principle of business-driven Information Engineering, used to 
develop and rapidly deliver priority business systems as sub-projects from 
subsets of data models. This principle is stated as: 

Intersecting entities in a data model represent functions, processes 
and/or systems. 

We will later see (in Business Re-Engineering) that this leads to iden
tification of business re-engineering opportunities from a data model, from 
examination of cross-functional processes that arise from data model integra
tion of the Order Entry, Purchasing, Product Development and Marketing 
functions. 

Referring to Figure 3, ORDER PRODUCT is an intersecting (or "associa
tive") entity formed by decomposing the many to many association between 
ORDER and PRODUCT (an order comprises many products; a product may 
be requested in many orders). It represents the Order Entry Process used in 
the Order Entry business area. When it is implemented, it will become the 
Order Entry System; but we will focus on identifying processes from the data 
model at this stage. Similarly, PRODUCT SUPPLIER is an intersecting en
tity that represents the Product Supply Process in Purchasing. PRODUCT 



www.manaraa.com

412 Clive Finkelstein 

NEED is the Product Development Process used in the Product Development 
area. Finally, CUSTOMER NEED represents the Customer Needs Analysis 
Process used in Marketing. These are summarized in Figure 3. 

SUPPLIER 

PRODUCT 

Entity 
ORDER PRODUCT 
PRODUCT SUPPLIER 
PRODUCT NEED 
CUSTOMER NEED 

Represents the ••. 
Order Entry Process 
Product Supply Process 
Product Development Process 
Customer Needs Analysis Process 

~_C_U_S_TO_M_E_R __ ~-~-----+I~~L __ C_U_~_~O_E_~_ER __ ~~~---H~ ___ N_E_ED ____ _ 

Figure 3: Integrated data model 

3.3 Process Modelling 

A business event is the essential link between a business plan and a business 
process. It initiates strategies and tactics (see Figure 2). In the plan, an 
event is defined as a narrative statement. Physically, it may be a transaction 
that invokes a business process. Or it may represent a change of state. The 
process invoked by each event should be clearly indicated. 

Without a link to the plan, the business reason(s) why the process exists 
may not be clear. It may be carried out only because we have always done 
it that way. If the process cannot be seen to support or implement relevant 
plans at a strategic, tactical or operational level of the business, or provide 
information needed for decision-making, then it has no reason to remain. To 
implement these processes without first determining whether they are needed 
also for the future is an exercise in futility. 

If the process is essential, then the strategies or tactics implemented by 
the process must be clearly defined. Associated goals or objectives must be 
quantified for those strategies and tactics. Relevant policies that define the 



www.manaraa.com

Information Engineering Methodology 413 

boundaries of responsibility for the process and its planning statements must 
be clarified. Missing components of the plan can thus be completed, with 
clear management direction for the process and hence the business. 

Process modelling documents processes using a variety of diagrams. These 
include data flow diagrams, state transition diagrams and object-oriented 
process and class hierarchy diagrams. These documented processes are used 
to provide input to systems design and systems implementation. 

3.4 Systems Design and Implementation 

The Business Model, comprising data models and process models that are 
developed from business plans, indicate the business needs to be addressed 
by relevant information systems and data bases. They define the systems 
requirements from a business perspective, which is one part of systems design. 
The other part considers available technologies to be used for design and 
implementation. 

These technologies may be used for the design of client/server systems 
using relational data base management systems and object-oriented develop
ment tools. Or technologies may be used for design of Data Warehouses, ac
cessed using Executive Information Systems (EIS), Decision Support Systems 
(DSS), OnLine Analytical Processing (OLAP), Relational OnLine Analytical 
Processing (ROLAP) and Decision Early Warning Systems (DEWS) based 
on the information and processing needs indicated by the Business Model. 

Client/Server systems and Data Warehouses, designed and developed us
ing technologies as described above, may be deployed using LANs or WANs 
across the corporate Intranet, or via Extranets with customers, suppliers and 
business partners, or may be deployed directly to the Internet. The Systems 
Implementation phase ensures that the performance requirements, identified 
in the Systems Design phase, are achieved using the available technologies. 

4 A pplication Categories 

CASE tools developed to support the DP-driven variant of IE typically fo
cused on one of three application categories: Forward Engineering, Reverse 
Engineering or Business Re-Engineering. If an organization's requirements 
addressed more than one category, different CASE tools therefore had to be 
used. But most business applications cannot be so conveniently pigeon-holed. 
There may be new or enhanced databases and systems to be developed (using 
Forward Engineering techniques). There may also be existing databases and 
systems that need to be captured (using Reverse Engineering techniques) and 
integrated with the new systems. And there may be business processes that 
have to be reengineered (using Business Re-Engineering techniques). 

Recognizing this, Business-driven Information Engineering and the Mod
elling tools that support it were designed so that Forward Engineering, Re-



www.manaraa.com

414 Clive Finkelstein 

verse Engineering and Business Re-Engineering application categories can be 
supported for any project, and in any combination. Typical applications in 
each of these categories are discussed below. 

4.1 Forward Engineering Applications 

Forward Engineering is based on business plans set for the future, and applies 
the IE phases in the sequence described above. The business plans provide the 
input for data modelling and process modelling to develop Business Models 
that support those plans. Four types of Forward Engineering applications 
are: 

• Strategic Systems Development: Develops information systems from 
corporate-wide strategic business plans. 

• Business Systems Development: Uses IE for rapid development and 
delivery of high priority systems. 

• Data Warehouse Development: Develops corporate Data Warehouses 
or smaller Data Marts (such as for Customer, Product or Market) with 
EIS, DSS, DEWS, OLAP and ROLAP access for decision-makers. 

• Commercial Application Software Package Evaluation: Uses a variation 
of Strategic Systems Development or Business Systems Development to 
evaluate and acquire externally developed software package solutions. 

Forward Engineering addresses top-down, business-driven systems develop
ment. Its goal is to build, or buy, complete systems and implement them 
in the organization with all of the infrastructure components that ensure its 
success. It may be used for any type of system in business, science, engineer
ing or government. The system and its components are linked rigorously to 
business plans, models and designs created in a systems development project 
using Information Engineering. 

4.2 Reverse Engineering Applications 

Reverse Engineering uses existing systems and databases to provide input 
for the redevelopment of systems often using different software and hardware 
platforms from those presently utilized. This may be necessary to save the 
investment in legacy systems and databases, or to conserve resources by not 
replacing systems that still meet enterprise needs. The three types of Reverse 
Engineering applications are: 

• Current Systems Analysis: Documents and cross-references components 
of an existing system to the business plans and business model devel
oped using another application type or category. 



www.manaraa.com

Information Engineering Methodology 415 

• System Reengineering: Migrates an existing system from its current 
implementation environment to a new one, while cross-referencing it to 
a business model as an interim result. 

• Systems Integration: Combines the functionality of two or more existing 
systems into one new system cross-referenced to the business model. 

Applications developed using Reverse Engineering integrate legacy systems 
with each other and with new systems, or update existing systems to support 
new business requirements. Reverse Engineering starts at the Systems Design 
phase to capture existing application and database designs, developing data 
models and process models of those existing systems. These are integrated 
with data and process models addressing the new business requirements. The 
resulting integrated data models and process models are then implemented 
on new hardware and/or software platforms. 

4.3 Business Re-Engineering Applications 

Business Re-Engineering applications have the purpose of facilitating change 
in the enterprise to enable it to become more effective. Three types of Busi
ness Re-Engineering applications are: 

• Reorganization Planning: Uses a logical analysis of the business model 
representing the enterprise as the basis for planning infrastructure evo
lution. 

• Business Process Reengineering: Streamlines the enterprise through 
innovative, often radical, changes to its infrastructure, business rules, 
processes and activities to improve its productivity, quality and effec
tiveness. 

• Strategic Business Planning: Uses a sophisticated series of internal and 
external analysis techniques to determine new directions, and identify 
the opportunities that are necessary for success. 

These Business Re-Engineering applications represent an opportunity to fa
cilitate change in the enterprise; to improve effectiveness by identifying nec
essary infrastructure changes, allocating resources and improving procedures. 

With the consolidation of redundant data versions using integrated data 
models as discussed in relation to Figure 3, redundant business processes ear
lier needed so those redundant data versions could be maintained up-to-date 
are no longer required. Instead, new cross-functional processes are needed. 
The following example illustrates how these cross-functional processes can be 
identified from integrated data models by using Re-engineering Opportunity 
Analysis, an IE technique used in Business Re-Engineering. Elements of For
ward Engineering and Reverse Engineering are also included indirectly in the 
example. 



www.manaraa.com

416 Clive Finkelstein 

5 Business Re-Engineering Example 

As common data is integrated across parts of the business, data that pre
viously flowed to keep redundant data versions up-to-date no longer flows. 
With integrated data models, implemented as integrated databases, data still 
flows to and from the outside world but little data flows inside the organiza
tion. Processes that earlier assumed that data existed redundantly may no 
longer work in an integrated database environment. New, integrated, cross
functional processes are required. But how can cross-functional processes be 
identified? Process models using Data Flow Diagrams provide little guidance 
in this situation. 

Cross-functional business processes can be identified from an analysis of 
data models using an objective technique called Entity Dependency as de
scribed in [Fin92]. Its importance was acknowledged in [McC93]. Entity 
dependency is rigorous and repeatable: it can be applied manually, or can be 
fully automated. When used to analyze a specific data model, the same result 
will always be obtained - regardless of whether the analysis is done by man or 
machine. Entity dependency automatically identifies all data entities that a 
specific process is dependent upon; this is important for referential integrity 
or data integrity reasons. It automatically identifies inter-dependent and pre
requisite processes, and indicates cross-functional processes. It uncovers and 
provides insight into re-engineering opportunities. 

The data model in Figure 3 is common to many organizations and indus
tries. We can use it to illustrate the principles of reengineering opportunity 
analysis. For example, we can assess re-engineering opportunities to inte
grate the functions shown in that data model based on our understanding of 
the business. But what of mandatory rules we are not aware of, that have 
been defined in other business areas? How can we ensure that these manda
tory rules are correctly applied in our area of interest? The complexity of 
re-engineering based on business knowledge is difficult; it can be greatly as
sisted by automated entity dependency analysis from this simple data model. 

5.1 Entity Dependency Analysis 

A Business-driven IE Modelling tool, Visible Advantage (see footnote in sec
tion 2.2) that fully automates entity dependency analysis using Reengineering 
Opportunity Analysis, was used to analyze the data model in Figure 3. The 
results are shown in Table 1, an extract from the Cluster Report produced 
by entity dependency analysis of the data model. 

Each potential function, process or system represented by an intersecting 
entity (as discussed above) is called a Cluster. Each cluster is numbered and 
named, and contains all data and processes required for its correct operation. 
It can be implemented as a sub-project for early delivery of priority systems. 
A cluster is thus self-contained: it requires no other mandatory reference 
to data or processes outside it. Common, shared data and processes are 



www.manaraa.com

Information Engineering Methodology 417 

automatically included within it to ensure its correct operation. 

Business Re-Engineering and the Internet 
Thu Oct 8 10:00:00 1998 
l.CUSTOMER NEEDS ANALYSIS PROCESS (derived) 

1) CUSTOMER 
l)NEED 

2)CUSTOMER NEED 
(CUSTOMER NEEDS ANALYSIS PROCESS) 

2. ORDER ENTRY PROCESS (derived) 
1) SUPPLIER 

2)PRODUCT SUPPLIER 
(PRODUCT SUPPLY PROCESS) 

l)NEED 
2)PRODUCT NEED 
(PRODUCT DEVELOPMENT PROCESS) 

l)PRODUCT 
2)CUSTOMER NEED 
(CUSTOMER NEEDS ANALYSIS PROCESS) 

1) CUSTOMER 
2)ORDER 

3)ORDER PRODUCT 
(ORDER ENTRY PROCESS) 

Table 1: Entity dependency analysis 

Cluster Report 
Page 1 

Table 1 shows Clusters 1 and 2, representing the Customer Needs Analysis 
Process and the Order Entry Process. These have been automatically derived 
from the data model in Figure 3. Each of these clusters addresses a business 
process, structured as a potential sub-project; common data and processes 
appear in all clusters that depend on the data or process. The intersecting 
entity that is the focus of a cluster appears on the last line of that cluster. 

Notice that a right-bracketed number precedes each entity in Table 1: this 
is the project phase number of the relevant entity in the process. Shown in 
outline form above for each cluster, it represents a conceptual Gantt Chart as 
the Project Plan for implementation of the process. Modelling tools that use 
entity dependency can automatically derive Project Plans from data models. 

An intersecting entity indicates a process; the name of the process in Table 
1 is shown in brackets after the name of the entity. The intersecting entity 
on the last line of the cluster is called the "cluster end-point". It is directly 
dependent on all entities listed above it that are in bold: it is also dependent 
on those entities above it that are not bold (ie. plain text). These entities 
indicate common data and processes that may also be shared by many other 
clusters. 

Cluster 2, the Order Entry Process (based on ORDER PRODUCT in 
Table 1) depends on three processes: Product Supply Process, Product De
velopment Process and Customer Needs Analysis Process. We can see that 



www.manaraa.com

418 Clive Finkelstein 

these are all prerequisite processes as their end-point entities are shown in 
plain text. Analysis of the data model has determined that they must all be 
carried out prior to the Order Entry Process. Furthermore, we see that the 
Customer Needs Analysis Process (Cluster 1, based on CUSTOMER NEED) 
has only bold entities within it, indicating that it is not dependent' on any 
other processes and therefore is an independent, prerequisite process. 

Table 2 next shows that the first two of these processes are fully inter
dependent: a product supplier cannot be selected without knowing the needs 
addressed by the product (as each supplier names its products differently to 
other suppliers). ' 

Business Re-Engineering and the Internet 
Thu Oct 8 10:00:00 1998 
3. PRODUCT DEVELOPMENT PROCESS (derived) 

l)SUPPLIER 
2)PRODUCT SUPPLIER 
(PRODUCT SUPPLY PROCESS) 

l)PRODUCT 
l)NEED 

2)PRODUCT NEED 
(PRODUCT DEVELOPMENT PROCESS) 

4. PRODUCT SUPPLY PROCESS (derived) 
l)NEED 

2)PRODUCT NEED 
(PRODUCT DEVELOPMENT PROCESS) 

l)PRODUCT 
1) SUPPLIER 

2)PRODUCT SUPPLIER 
(PRODUCT SUPPLY PROCESS) 

Table 2: Further entity dependency analysis 

5.2 Automatic Data Map Generation 

Cluster Report 
Page 1 

A cluster in outline form can be used to display a data map automatically. 
For example, vertically aligning each entity by phase, from left to right, 
shows the data map in Pert Chart format as illustrated in Figure 4. Or 
instead the data map can be rotated 90 degre~s clockwise so that the entities 
are horizontally displayed by phase, from top to bottom, in an Organization 
Chart format. An entity name is displayed in an entity box; the attribute 
names may also be displayed in the entity box. And because the data map 
is generated automatically, it can be easily displayed using different data 
modeling conventions: for example by using the IE data modeling notation 
in Figure 4 or instead by using the IDEFIX notation. 

This ability to automatically generate data maps in different formats is 
a characteristic of many of the Modelling tools that support the business-



www.manaraa.com

Information Engineering Methodology 419 

driven IE variant: data maps can be automatically displayed after entity de
pendency analysis; the entities within specific clusters can also be displayed. 
These data maps are not manually drawn; they are generated automatically. 
When new entities are added, or associations changed, data maps do not have 
to be changed manually: they can be automatically regenerated. This elim
inates much of the delay and potential for error of manually-updated data 
maps. Furthermore, project plans for related clusters that represent other 
sub-projects are automatically updated. The impact of the changes on these 
related project plans can then be readily assessed. 

• ORDER PRODUCT entity is 
the Order Entry Process 

a.JST0IIER ()R)ER 

bJItnIneI 11ft I~~, CUSIomer atiess 
CUSIomer b!IIIInce order dille 
CUSIomer ely orderloi'al 
GUStomername 
GUStomer po$tcode 

·11 

1 

Figure 4: Data Map in Pert Chart format 

1)SU'PUER 
2)PROOlJCT SlI'PLER (PROOUCT SlI'PL Y PRo. 

1)toEED 
2)PRODUCT i'EED (pROOUCT DEYB.~ pf 

1)PRODUCT 
2)CUSTOMER i'EED (CUSTOMER NEEDS ANAL Y 

1)CUSTOMER 
2)ORDER 

3)ORDER PRODUCT (ORDeR ENTRY PRO( ~ 

5.3 Building Business Objects from Data Models 

Similarly, process maps can be generated from data models. For example, 
data maintenance and data access processes (Create, Read, Update, Delete) 
can be automatically generated from entities in data models. These processes 
operate against the relevant entities as reusable object-oriented methods. 
They can be used to build reusable business processes that are documented 
as object-oriented process maps for business objects such as Customer or 
Product. 

For example, the Customer business object represents all data relating to 



www.manaraa.com

420 Clive Finkelstein 

a Customer. It includes methods to Create a Customer, Read a Customer, 
Update a Customer and Delete a Customer. It also includes standard Cus
tomer screen formats and standard report formats for different security levels. 
Thus any changes made to the Customer object are automatically reflected in 
all processes that use the Customer business object; they automatically ap
ply those Customer changes. Similarly methods derived from Product, with 
Product screen and report formats, exist for the Product object. Any Prod
uct changes can be made to this Product object, so automatically changing 
all processes that refer to Products. 

5.4 Project Critical Path Maps 

We saw in Figure 3 that a PRODUCT must have at least one SUPPLIER. 
Table 1 thus includes the Product Supply Process to ensure that we are aware 
of alternative suppliers for each product. But where did the Product Devel
opment Process and Customer Needs Analysis Process come from? 

The data map in Figure 3 shows the business rule that each PRODUCT 
must address at least one NEED relating to our core business. Similarly the 
data map follows the Marketing rule that each CUSTOMER must have at 
least one core business NEED. The Product Supply Process, Product Devel
opment Process and Customer Needs Analysis Process have therefore all been 
included as prerequisite processes in Table l. 

The sequence for execution of these processes is shown in Figure 5. This 
shows each cluster as a named box, for the process represented by that clus
ter. Each of these process boxes is therefore a sub-project for implementa
tion. This diagram is called a Project Critical Path Map as it suggests the 
development sequence for each sub-project. 

Cust. Needs 
Analysis , ~ 
Product ...... Order ..... 

Development ~ - Entry .- Invoicing 
~ 

) , 
Product ~ 

Supply ~ 

Figure 5: A Project Critical Path Map 

We can now see some of the power of entity dependency analysis: it 
automatically applies business rules across the entire enterprise. As business 



www.manaraa.com

Information Engineering Methodology 421 

rules are defined in the data model, the case tool becomes a business expert: 
aware of all relevant business facts. It determines if other business areas 
should be notified of relevant business rules, data and processes. It derives 
a Project Critical Path Map for project management of each sub-project 
process that is needed to implement those processes as potential computer 
systems. 

So why have these prerequisite processes been included in tHe cluster in 
Table 1 for the Order Entry Process, and in the Project Critical Path Map 
in Figure 5? What do these processes suggest? Do they help us to identify 
re-engineering opportunities? Entity dependency uses Reengineering Oppor
tunity Analysis to provide direct assistance for Business Re-Engineering. 

5.5 Reengineering Opportunity Analysis 

Figure 5 shows that the prerequisite processes for Order Processing are cross
functional; these separate processes can be integrated. Consider the following 
scenario for Order Processing - before Business Re-Engineering: 

Customer: 

Order Clerk: 

Customer: 

"Customer 165 here. I would like to order 36 units 
of Product X. " 
"Yes, certainly . ... Oh, I see we are out of Product 
X at the moment. I'll check with the Warehouse. I 
will call you back within the hour to let you know 
when we can expect more of Product X into stock." 
"No don't bother, I need to know now. Please 
cancel the order." 

Clearly, this example shows that the Order Clerk has no access to the In
ventory Control System in the Warehouse. There is no way to determine 
when outstanding purchase orders for out-of-stock products will be deliv
ered. It requires a phone call to the Warehouse staff to get that information. 
A call-back in an hour is no longer responsive for today's customers. The 
sale was therefore lost. Now consider the same scenario - after Business Re
Engineering: 

Customer: 

Order Clerk: 

"Customer 165 here. I would like to order 36 units 
of Product X. " 
"Yes, certainly. ... Oh, I see we are out of Product 
X at the moment. One moment while I check with 
our suppliers. ... Yes, we can deliver 36 units of 
Product X to you on Wednesday." 

What has happened in this scenario? Product X was out of stock so the 
Product Supply Process then automatically displayed all suppliers of Product 
X. The Purchasing function had been re-engineered so the Order Clerk can 



www.manaraa.com

422 Clive Finkelstein 

now link directly into each supplier's inventory system to check the avail
ability and cost of Product X for each alternative source of supply. For the 
selected supplier, the Clerk placed a purchase order for immediate shipment 
and so could confirm the Wednesday delivery date with the customer. 

But there are problems with this approach, due to incompatibilities be
tween the supplier's Inventory Control System and the Order Entry System. 
There may be incompatibilities between the Operating Systems, Data Base 
Management Systems, LANs, WANs and ED! data formats used by both 
organizations. We will discuss these problems and their resolution, shortly. 

The re-engineered Product Supply Process discussed above seems revolu
tionary, but other industries that also take orders online consider this inter
enterprise approach to Order Entry the normal mode of operation. For ex
ample, consider the Travel Industry. We phone a travel agent to book a flight 
to Los Angeles (say) because we have business there. We need to arrive on 
Wednesday evening for business on Thursday and Friday. But we also decide 
to take the family and we plan to stay for the weekend, returning Sunday 
evening. The travel agent uses an Airline Reservation terminal to book seats 
on suitable flights. These are ordered from an inventory of available seats 
offered by relevant suppliers: the Airlines. Let us now return to the customer 
on the phone - still talking to the Order Clerk, who says: 

Order Clerk: 

Customer: 

"By the way, do you know about Product Y. It 
allows you to use Product X in half the time. I can 
send you 36 units of Y as well for only 20%. 
Also users of Product X enjoy Product Z. Have 
you used this? It has the characteristics of ..... . 
and costs only ... ... Can I include 36 units of 
Product Z as well in our Wednesday delivery?" 
"Yes and thanks for those suggestions. I confirm 
that my order is now for 36 units each of Products 
X, Y and Z - all to be delivered on Wednesday." 

The Product Development Process displayed related products that met 
the same needs as Product X. This suggested that Product Y may be of 
interest. An order for Y, based on the current order for X, was automatically 
prepared and priced ... and Y was in stock. This extension to the order 
only needed the customer's approval for its inclusion in the delivery. Once 
again, this is commonplace in the Travel Industry. The travel agent knows 
the customer will be in Los Angeles over several nights and so asks whether 
any hotel accommodation is needed. If so, a booking is made at a suitable 
hotel using another supplier's system: Hotel Reservations. 

The Customer Needs Analysis Process then indicated that customers in 
the same market as Customer 165, who also used Products X and Y, had 
other needs that were addressed by Product Z. A further extension to include 



www.manaraa.com

Information Engineering Methodology 423 

Z in the order was automatically prepared and priced. Z was also in stock 
and was able to be included in the delivery, if agreed. This is analogous to 
the Travel Agent asking if a rental car and tour bookings are also needed: 
quite likely if a family is in Los Angeles for a weekend, and thus near the 
theme parks and tourist resorts. 

Instead of waiting for stock availability from the Warehouse in the first 
scenario based on separate, non-integrated processes for each function, the 
re-engineered scenario let the Clerk place a purchase order directly with a 
selected supplier so that the customer's order could be satisfied. And the 
Product Development and Customer Needs Analysis processes then suggested 
cross-selling opportunities based first on related products, and then on related 
needs in the customer's market. 

Cross-functional processes identified with reengineering opportunity anal
ysis can suggest reorganization opportunities. For example, inter-dependent 
processes may all be brought together in a new organization unit. Or they 
may remain in their present organization structure, but be integrated auto
matically by the computer only when needed - as in the re-engineered scenario 
discussed above. 

But what about the incompatibilities we discussed earlier with inter
enterprise access to suppliers' Inventory Systems? This is achieved by linking 
customers, suppliers and business partners together by Extranets, using the 
Internet. This use of Internet technologies offers us dramatic new ways to 
deploy applications and address otherwise insurmountable incompatibilities. 

6 Deployment of Information Engineering 
Applications 

Databases and information systems are today implemented using many tech
nologies. These include Data Warehouses with Executive Information Sys
tems, Decision Support Systems, Online Analytical Processing and Decision 
Early Warning. They also include Client/Server systems developed using 
object-oriented languages. These are implemented today via Intranets or 
Extranets, or are deployed directly to the Internet. Reviewing the status of 
Internet and Intranet technologies today we find that: 

• Web browsers are available for all platforms and operating systems, 
based on an open architecture interface using HyperText Markup Lan
guage (HTML). A key factor influencing future computing technologies 
will be this open architecture environment . 

• The Web browser market is largely shared between Microsoft and Net
scape. But the strategy adopted by Microsoft has seen it rapidly gain 
market share at the expense of Netscape: it is using its desktop owner
ship to embed its browser technology (Internet Explorer) as an integral 
and free component of Windows NT and the successors to Windows 95. 



www.manaraa.com

424 Clive Finkelstein 

• The Internet is based on TCP /IP communications protocol and Domain 
Naming System (DNS). Microsoft, Novell and other network vendors 
recognize that TCP /IP and DNS are the network standards for the 
Internet and Intranets. This open architecture network environment 
benefits all end-users. 

• The battle to become THE Internet language - between Java (from Sun) 
and ActiveX (from Microsoft) will likely be won by neither. Browsers 
support both languages and automatically download code as needed 
from Web servers in a relevant language (as "applets") for execution. 
Instead, the winners of this battle will again be the end-users, who will 
benefit from the open architecture execution environment. 

• Data Base Management System (DBMS) vendors (those that plan to 
survive) support dynamic generation ofHTML for browsers, with trans
parent access to the Internet and Intranets by applications using these 
tools. They accept HTML input direct from Web forms, process the 
relevant queries and generate dynamic HTML Web pages to present 
the requested output. DBMS products with this capability include: 
Microsoft SQL Server, IBM DB2, Oracle, Sybase, CA-OpenIngres and 
Informix. Extensible Markup Language (XML) promises even more 
powerful dynamic capabilities. 

• Client/Server vendors (again those that plan to survive) also provide 
dynamic generation of HTML for browsers that are used as clients, 
with transparent access to the Internet and Intranets for applications 
built with those tools. Client code - written in either ActiveX or Java 
- is downloaded as needed for execution and for generation of dynamic 
HTML or XML output to display transaction results. Products include: 
Microsoft Visual Basic, Visual J++, Access; Powersoft Optima++ and 
Powerbuilder; Centura and SQLWindows; Borland Latte, Delphi & 
C++. 

• Data Warehouse and Data Mining products provide a similar capability: 
accepting HTML input and generating HTML output if they are to be 
used effectively via the Intranet and Internet. Screen Scraper tools 
with GUI interfaces for Legacy Systems have also become internet
aware: accepting 3270 data streams and dynamically translating them 
to (or from) HTML to display on the screen. Thus they provide a 
transparent HTML interface for easy migration of 3270 Legacy Systems 
to the Internet and Intranets. 

6.1 Internet and Intranet Deployment 

The Internet has emerged since 1994 as a movement that will see all businesses 
inter-connected in the near future, with electronic commerce as the norm. It 



www.manaraa.com

Information Engineering Methodology 425 

indicates that most DBMS and Client/Server tools will interface directly and 
transparently with the Internet and Intranet. Web browsers, Java, HTML, 
XML, the Internet and Intranet all provide an open-architecture interface 
for most operating system platforms. Previous incompatibilities between 
operating systems, DBMS products, Client/Server products, LANs, WANs 
and EDI disappear - replaced by an open architecture environment based on 
HTML, XML and Java. 

6.2 Client/Server Systems 

The client software for Client/Server systems becomes the web browser, op
erating as a "fat" client by automatically downloading Java or ActiveX code 
when needed. Client/Server tools typically offer two options, each able to be 
executed by any terminal which can run browsers or HTML-aware code: 

1. Transaction processing using client input via web forms, with dynamical
ly-generated HTML or XML web pages presenting output results in a 
standard web browser format, OR 

2. Transaction processing using client input via Client/Server screens, 
with designed application-specific output screens built by client/server 
development tools. This client environment recognizes HTML and 
XML, dynamically translating and presenting that output using the 
designed application-specific screens. 

6.3 Data Warehouses 

Client/Server development tools provide transparent access to data base 
servers using HTML-access requests, whether accessing operational data or 
Data Warehouses. In turn data base servers process these requests - transpar
ently using object-oriented logic developed with 0-0 languages such as Java, 
or with ActiveX, to access new or legacy data bases as relevant. These may 
be on separate servers, or instead may be on mainframes executing legacy 
systems. 

Web servers then operate as application servers, executing Java, ActiveX 
or conventional code as part of the middle-tier of three-tier Client/Server 
logic distribution for operational databases, with data base servers also exe
cuting Java, ActiveX or conventional code as the third logic tier. Data Ware
houses then take periodical extracts from operational databases for multi
dimensional, time-dependent analysis using EIS, DSS, OLAP and DEW soft
ware products. 

7 Conclusion: What does the Future hold? 

Managers of organizations in all industries and environments whether Public 
Sector, Private Sector or Defense now recognize that the design and devel-



www.manaraa.com

426 Clive Finkelstein 

opment of successful information systems depends on busine;ss knowledge as 
well as expertise in Information Technology. Business-driven Information 
Engineering provides a very productive design partnership between business 
experts and IT experts. Together they are able to utilize their respective 
knowledge to design databases and systems that are more flexible and so are 
able to accommodate business change more readily. This rapid change ca
pability will be essential for survival and prosperity in the competitive years 
ahead. 

Development is also becoming easier: many of the incompatibilities we 
previously had to deal with will soon be a thing of the past. Open architecture 
development using the technologies of the Internet enables deployment on any 
PC with any hardware, operating system, DBMS, network, client/server tool 
or Data Warehouse. This will be the direction that the IT industry will take 
for the foreseeable future. 

The open-architecture environment enjoyed by the audio industry - where 
any CD or tape will run on any player, which can be connected to any am
plifier and speakers - has long been the holy grail of the IT industry. Once 
the industry has made the transition over the next few years to the open
architecture environment brought about by Internet and Intranet technolo
gies, we will be close to achieving that holy grail! 

References 

[Cod70j 

[Cod79] 

[Dat82] 

[DeM82] 

[Dru74] 

[Fin81] 

[Fin89] 

[Fin92] 

Codd, E., A Relational Model for Large Shared Data Banks, CACM 
13 (6), 1970, 377-87 

Codd, E., Extending the Database Relational Model to Capture 
More Meaning, ACM Trans. on Database Systems 4 (4), 1979, 397-
434 

Date, C., Introduction to Data Base, Volumes 1 and 2, Addison
Wesley, Reading, 1982 

De Marco, T., Software Systems Development, Yourdon Press, New 
York,1982 

Drucker, P., Management: Tasks, Responsibilities, Practice, Harper 
& Row, New York, 1974 

Finkelstein, C., Information Engineering, six InDepth articles in: 
Computerworld, Framingham, 1981 

Finkelstein, C., An Introduction to Information Engineering, 
Addison-Wesley, Sydney, 1989 

Finkelstein, C., Information Engineering: Strategic Systems Devel
opment, Addison-Wesley, Sydney, 1992 



www.manaraa.com

[FM81] 

[Jac75] 

[Mar87] 

[McC93] 

[Orr77] 

[YC78] 

Information Engineering Methodology 427 

Finkelstein, C., Martin, J., Information Engineering, Volumes 1 and 
2, Savant Institute, Carnforth, Lancs, 1981 

Jackson, M., Principles of Program Design, Academic Press, New 
York, 1975 

Martin, J., Information Engineering, Volumes 1, 2 and 3, Prentice
Hall, Englewood Cliffs, 1987 

McClure, S., Information Engineering for Client/Server Architec
tures, Data Base Newsletter, Boston, 1993 

Orr, K., Structured Systems Development, Yourdon Press, New 
York, 1977 

Yourdon, E., Constantine, L., Structured Design: Fundamentals of 
a Discipline of Computer Program Systems Design, Prentice-Hall, 
Englewood Cliffs, 1978 



www.manaraa.com

CHAPTER 19 

Object-Oriented Software 
Engineering Methods 

Brian Henderson-Sellers 

Object-oriented software engineering is coming of age. The focus in the first two 
generations of object-oriented (00) methods (around 1990 and 1994 respectively) 
was on techniques and modelling. In the current third generation approaches, ex
emplified here by OPEN, a software engineering process is the key element which 
supplies the necessary underpinning to link together the second generation tech
niques into a viable approach to software development in a commercial/business 
environment. 

1 Introd uction 

Object-oriented software engineering methods are relatively new. Whilst 
object-oriented (00) ideas have been developing since the late 1960s when 
the language Simula was first developed, the real interest in 00 methods, 
from an information systems perspective, only commenced around 1990; and 
even in the subsequent few years, the subject was dominated by technical 
arguments rather than the the considerations of the full lifecycle implemen
tation for employment in commercial IS projects (Section 2). 

Consequently, most 00 "methods" are in fact highly technically focussed 
and are no more than a set of (usually coherent) techniques (see Section 3). 
As research and practice both progressed, a large number of 00 methods 
were developed (Section 4) so that by around 1995/6 there was a strong 
impetus to try to "slim down the choice" and standardize, at least on a 
common metamodel (Section 5). Full 00 software engineering methods are 
now beginning to "come of age" with new, third-generation, full-lifecycle 
development approaches such as OPEN (Section 6). The need is not only for 
a technical lifecycle focussed on the creation of the software product almost 
considered independently of the people who build it and the environment in 
which this manufacture occurs, but also on the project management, business 



www.manaraa.com

430 Brian Henderson-Sellers 

focus, customer focus and usability/quality issues (including GUIs) that are 
vital for modern software developments. 

Whilst many 00 approaches are traditionally referred to as either an 
00 method or methodology (the terms will be taken as synonomous for the 
purposes of this discussion) or as 00 analysis and design, it is important 
in this contribution to focus not only on OOAD (object-oriented analysis 
and design - some OOAD techniques are discussed in Section 7) but also 
on the broader issues. Indeed, this contribution attempts to integrate both 
the technical and the broader management issues in its evaluation of the 
state-of-the-art of 00 software development. 

2 The Software Process and Lifecycle 
Seamlessness 

2.1 Process 

The overall process of software development can be considered to possess 
three dimensions: 

a) Methodology: which can be viewed as the manifestation of attempts 
to introduce rigour into software development, at least by capturing 
and standardizing recognised good practice as well as by seeking good 
underpinning theory. 

b) People and organizational influences - directly related to the manage
ment of the human activities that lead to the development of software 
systems; and 

c) Technology. 

It is the balance of elements from these three dimensions that defines a specific 
software process and allows an approximation and subsequent comparison of 
the level of the capability, in process assessment terminology (e.g. Capa
bility Maturity Model: CMM), of an instance of such a process. Indeed, it 
is a well-defined software process that is the central requirement for attain
ing a CMM or ISO-SPICE (Software Process Improvement and Capability 
Determination) [EDM97] level 3 maturity. 

We can therefore consider a software process as being defined in terms of 
a mix of an instance of a methodology, being conducted within a particular 
organizational context and utilizing a specific set of technologies [YH97]. 
A high quality software process, however, not only has to cover the three 
areas above, but also has to be understandable, enactable, repeatable, and 
improvable. To achieve these attributes, a software process has to be formal, 
granular, precise and measurement-based. 



www.manaraa.com

Object-Oriented Software Engineering Methods 431 

2.2 Lifecycle Seamlessness 

In many 00 methodologies, the words analysis and design are retained. How
ever, in doing so, it is sometimes not clear whether traditional definitions 
(analysis = breaking down, sometimes called discovery; design = building up 
or synthesis, sometimes called invention) are being used or not. Often it is 
the case that a distinction similar to the second one in Figure 1 is being used: 
the word analysis covers all activities through to the beginning of language
specific design details. This is generally the flavour, for instance, in two 
second-generation 00 methods: BON (Business Object Notation) [WN95] 
and MOSES (Methodology for Object-Oriented Software Engineering of Sys
tems) [HE94a]- where, in the latter, the word analysis was replaced by the 
word Specification to avoid confusion. There is also a recent trend to talk 
about requirements engineering and how to incorporate that into method
ologies (see e.g. discussion on FOOM (Formal Object-Oriented Method) by 
Swatman [Swa96] and on BIO by Moser [MCF96]). 

Task 
Object 
Model 

4--

Requirements capture 

Analysis 

Systems 
Knowledge 

=-,---'--------, Language 

System 
Object 
Model 

mapping 

-- <J-- Logical design------<> 

_____ ---lC> _ Physical design -------l> 

World -------=c:=-<ll----- System ----------C> 

Figure 1: Seamlessness and the various object models [GHY97bj 

Whatever the words that are used, we can consider that 

(i) there is indeed a highly seamless transition across the lifecycle. The 
gaps between the four boxes of Figure 1 are minimal. 

(ii) there is a need to address the transitions between the task object 
model to the business object model (business focus) to the system 
object model (software focus) and also from the system object model 
to the' implementation 1 model (the code). 

The last (third) transition is most discussed. It is essentially the transition 
from logical design (OOPL-independent) to physical design, in which the 
nuances and capability of the chosen OOPL are utilized to their full. The 

1 Note that sometimes, confusingly, not only is the coding stage referred to as imple
mentation but so too is the act of installing the software with the end user. 



www.manaraa.com

432 Brian Henderson-Sellers 

boundary between systems design and implementation in object-oriented sys
tems is a blurred one, although perhaps more identifiable than the OOAjD 
boundary in that design documentation is of a very different nature to im
plementation documentation (viz. code). Although it could be argued that 
implementation is merely a continuation of design, just at a very detailed 
level, it is more realistic to differentiate design and implementation as two 
different activities, design being at a level of abstraction above implementa
tion. A good design (as represented by the System Object Model) is one that 
represents the problem and also has a number of good software engineering 
traits. Design thus combines knowledge gained in analysis (of the problem 
domain) with more detailed solution techniques - the focus is on semantics. 
Coding in a chosen programming language finalizes the solution using tech
niques available in that language, and is syntactically-focussed. Indeed, it 
is argued that, for some OOPLs, such as Eiffel supported by a methodology 
such as BON or OPEN, this transition is so smooth as to be almost unno
ticeable. For C++ the transition is not so smooth, but is well catered for by 
the detailed discussions of a methodology like Booch. 

We should remember that the (physical) design model is not a model 
of the UoD (universe of discourse) but rather a model of the conceptual 
model, as represented by the Business Object Model. The purely logical 
or semantic object classes identified in "analysis" are now supplemented by 
"physical" object classes, used to model entities which only occur in the 
solution domain and not in the problem domain. This also involves resource 
allocation, security checks, efficiency considerations etc. Reuse should be even 
better supported than in design, both in terms of process (e.g. generalization 
and testing techniques) and in terms of quality control. 

As part of quality control, a significant post-development activity (at all 
granularities) must include defect management procedures such as testing 
as well as verification and validation. In current methods, neither are well 
described; in fact, generally being omitted totally in methodologies other 
than OPEN. However, testing procedures for object hierarchies are currently 
under development and verification and validation (V&V) techniques in
creasingly stressed. These techniques must address both technical (software) 
competency as well as user satisfaction; the latter, especially, being relevant 
throughout the lifecycle. Methodologies should therefore support peer, ex
pert and customer review, as well as consistency and completeness checking 
plus a mechanism to support audit ability. Indeed, in OPEN (Section 6), 
we go even further and mandate testing as part of the post-condition on all 
lifecycle Activities. 

Good, reusable classes require additional effort. The methodological 
metamodel supports reuse through generalization and class refinement specif
ically (as well as a higher level class reuse mindset throughout the lifecycle). 
Such class reuse strategies should be seen both as part of the normal object
oriented lifecycle as well as activities needed for modification, extension and 



www.manaraa.com

Object-Oriented Software Engineering Methods 433 

maintenance. 
The first two transitions, however, provides more challenge. Translating 

from the task object model which represents the business knowledge to the 
business object model, still capturing business knowledge but now described 
in object-oriented terms, followed by the transition into the software domain 
to create the System Object Model, described by an OOAD modelling lan
guage such as OML (OPEN Modelling Language) or UML (Unified Modeling 
Language), requires significant skill. The OPEN approach is to ensure that 
this transition is as smooth as possible. 

Figure 2 shows how this seamlessness is accomplished in both SOMA (Se
mantic Object Modelling Approach) and OPEN. From the Mission, a set of 
objectives is derived. By analyzing the business objectives using hierarchi
cal task analysis (roughly a higher-level, business-focussed type of use case), 
which gives a set of task scripts, the objectives can thus be represented by 
Task Object Models which can then be decomposed down to atomic tasks. 
Each of these atomic tasks corresponds to a single business object in the soft
ware domain. The trick is to notice that these task trees constitute "plans" for 
interaction during task performance and, thus, for system execution. Then 
each root task corresponds to EXACTLY ONE system operation: in the class 
that initiates the plan. By making this link, we can generate event traces 
which correspond to aspects of the system functionality (what the user re
quires to be delivered). This now gives us a seamless link from mission down 
to the code - AND BACK! [Gra96]. 

Figure 2: A seamless process from Mission to Atomic Task Script and on into 
code [Gra96) 

2.3 "Analysis" and "Design" 

It is often argued that the reason for separating analysis from design is related 
to the target of the modelling at each level. At the analysis or conceptual 



www.manaraa.com

434 Brian Henderson-Sellers 

modelling phase, we are trying to represent a part of the real world, whereas 
at the design stage we are representing an information systems design. Thus 
"information systems analysis is the process of creating a model of (the hu
man perceptions of) the real system to be represented in the information 
system," [WW89] while "design is the process of creating a model of the in
formation system (artifact) to be constructed based upon the model of the 
real system" . 

An analysis-level model is then primarily concerned with providing an 
accurate picture of the real-world situation, and an object-oriented require
ments engineering (OORE) and object-oriented analysis (OOA) must have 
this as their primary objective. The object-oriented design (OOD) model's 
major objective is to support "good" software engineering design in terms of 
correctness, modularity, reusability, and abstraction. The goal of a "seam
less" transition between phases should be subsumed by the primary goals of 
each level of modelling identified above. 

This separation of analysis and design, and the explicit recognition of 
language constructs and analysis constructs, are reflected in, and supported 
by, many of the current analysis and design methodologies. This leads some 
authors to offer a notation that is slightly different between OOA and OOD. 
However, the graphics of the two stages should be as compatible as possible 
to provide as seamless a transition as possible from analysis to design, yet 
support powerful enough concepts to be useful modelling tools at each stage. 

The problem of moving from analysis to design is obviated in a differ
ent way in other methodologies in which there is no distinct analysis/design 
boundary. Methodologies such as MOSES and BON, which focus strongly 
on the notion of a seamless transition (as discussed above in Section 2.2), 
have a single "phase" at the large scale level encompassing the analysis and 
design phases of other methodologies. However, these authors point out that 
they are not suggesting that the acts of analysis and design do not occur; 
rather that they do so at much too fine a time scale to be recognized within 
any fulllifecycle model. Analysis, the breaking down of a problem, is almost 
inevitably complemented (in time) by the emergence of bits of the solution 
being stuck together (the synthesis of design) whilst the analysis continues. 
Another advantage is that there is no rationale now for making the notation 
in OOA any different from OOD. Of course, at some time in the process, 
OOPL-specific notation will be needed. However, this is seen as part of the 
implementation decision (after all, it can only take place after an implemen
tation language choice has been made); the modelling process of creating 
the final models being totally independent of the technology. This, for in
stance, then allows object modelling also to be applied to modelling large 
scale enterprises and elevates the technique beyond a simple computing aid. 

In a fully object-oriented (Le. pure 00) lifecycle systems development, 
the object-oriented paradigm is utilized during analysis, design, and coding, 
thus providing a single model valid throughout the lifecycle stages. The use 



www.manaraa.com

Object-Oriented Software Engineering Methods 435 

of this "seamless transition" permits a continuity across phase "boundaries" 
(Figure 1) and also allows highly similar terminologies and graphical notation 
to be used at each successive stage. At the same time, it blurs the analy
sis/design boundary so much that it often becomes difficult to distinguish 
between these two traditional phases. Indeed, in methodologies like MOSES, 
SOMA, OPEN and BON, discussed below, the analysis/design dichotomy is 
not recognized; rather the emphasis is on a smooth, fulllifecycle transition. 

In general, a methodology should be programming-language independent; 
although in some, particularly in OOD, there may be a (partial) influence 
from one specific language. This occurs because some methodologies have 
clearly grown "backwards" from OOP - for instance, RDD from Smalltalk, 
Booch91 from Ada, BON from Eiffel. Others have evolved from an informa
tion systems environment and thus show no programming language bias (e.g. 
OMT - Object Modeling Technique, Martin/Odell, MOSES, OPEN). 

2.4 An Alternative to Sequential Analysis and Design 

In the alternative process view, as recommended here, OOA and OOD are not 
segregated at the macroscale. Instead, it is argued that software developers, 
whilst undertaking analysis and design in the sense described above, do so in 
a way in which they alternate between the two over a timescale of minutes 
or seconds. Analyzing the problem often leads rapidly to thoughts of likely 
solution (design); discovery (analysis) immediately leads on the human brain 
to building a model of the discovered artefact which by its very nature is the 
design process. In other words, in methodologies such as MOSES, SOMA and 
OPEN which use this approach of merging OOA and OOD at the macro- or 
activity-level, the arguments discussed above remain valid but the timescale 
of their applicability is very much shortened (possibly by several orders of 
magnitude) . 

In the OPEN process lifecycle (Section 6.1) the object model is con
structed during the Evolutionary Development Activity which is a programm
ing-independent language process of gradual refinement, elaboration, discov
ery of business objects and then computer-specific objects but not in a con
strictive way. Towards the end of each iteration, it is likely that the classes 
being discovered and refined will have more "computer-specificity" - they 
may be newly demanded classes or themselves derived from concerns already 
present from the earlier requirements analysis. Flexibility is thus supported 
and the methodology acts as a roadmap [UM95] rather than a straightjacket 
for construction. 

Thus, in this approach, Modelling is an iterative development which is 
a refinement and elaboration, augmented by the discovery of new object 
classes as appropriate. The "end point" is a detailed design deliverable ready 
for coding. Analysis and design activities occur concurrently, often on very 
short timescales; whilst the deliverables (on the timescale of weeks or months) 
are clearly delineated and refer to the detailed design documentation not 



www.manaraa.com

436 Brian Henderson-Sellers 

intermediate "analysis diagrams" . 
It is this notion of "Specification" (a term also used by [CD94]) for the 

same SDLC structuring) or "Modelling" (as preferred in OPEN) which corre
sponds to the optimal support for a seamless transition and a discrimination 
between language-independent system object model construction and the de
tailed design and coding towards the implementation model (the code itself). 

3 The Evolution of Object-Oriented Software 
Development Approaches 

Let us trace the history of object-oriented "methods". In the late 1960s, 
object orientation was in its infancy; yet this decade was when many of 
the object-oriented concepts were laid down. Object orientation had little 
real-world application and object-oriented tools were generally confined to 
university and industry research laboratories. At this stage, it was under
stood that, with regards to object orientation; 

"Methodology" = set of programming level standards, tips and hints 

Concepts are important but do not intrinsically contain information on 
how, when and where these should be used. In the 1970s and 1980s, tech
niques such as CRC cards, scenario analysis, the use of interaction diagrams 
and how to object model became well-developed. This laid the foundation 
for the development of object-oriented design methods. At this stage, our 
understanding was extended to encompass these new considerations, such 
that the popular view of object orientation in this era was 

"Methodology" 
= 

set of design level techniques guidelines supporting documentation 

As object technology matured, a veritable explosion of published OOAD 
methodologies occurred. Dependent on your definition of a "methodology" 
(a.k.a. method), there are between 20 and 80 of these for industrial software 
developers to choose from. This is an unenviable task for the project man
ager. Not only are there technical considerations (lifecyclecoverage, metrics 
support, implicit object (meta)model) but there are also pragmatic concerns 
regarding ongoing support, industry norms, perceived methodology "market 
share" as well as the degree of support from CASE tool vendors. Some were 
purer 00 than others, some fuller lifecycle, some more influenced (or you 
may say biased) towards one particular programming language, supporting 
the adoption of OT in mainstream markets such as finance, insurance, bank
ing, health, airlines. 



www.manaraa.com

Object-Oriented Software Engineering Methods 437 

It also takes time for any software development approach to become es
tablished. Consequently, the most well-known methods are those published 
some years ago. Thus the choice often focusses on the older methods such 
as RDD, OMT, Booch, Coad/Yourdon, Shlaer/Mellor, OOSE/Objectory. A 
second crop of methods was published in the 1994/1995 period. These have, 
in general, a broader scope, plugging some of the gaps of the pioneering 
OOAD methodologies, particularly the non-technical, reuse, quality and pro
cess omissions. Whilst they are newer and have a lower user base (because 
of their shorter time in the marketplace), they should not be disregarded 
simply on market share arguments. Some examples here are Fusion, SOMA, 
MOSES, BON and OOram. 

Around 1993, there was concern raised among the methodologists them
selves that this plethora of methods might be in fact retarding, rather than 
encouraging, industry adoption of OT, and particularly of an appropriate 
OOAD methodology. Whilst not wishing to slow down progress, as evident 
in more recently published books and articles, it was clearly time to try to 
consolidate our knowledge of OT in its "analysis and design" guise. 

Towards the end of 1994 it began to be realized that text books describing 
methods were inadequate for many organizational needs [Jac94]. Textbook
based methods are fine for learning the techniques and for pilot projects and 
small industries. However, even the best are somewhat deficient with respect 
to real process support - in other words, they have no or little method! 
Published methods were often limited to particular foci e.g. a modelling fo
cus in OMT [RBPEL91], a telecommunications influence on OOSE [JCJ092] 
etc. No single method (of those published up to 1995) is complete, mostly 
because they don't fully deal with the difficult issues of project management, 
quality assurance and project practicalities. Granted there is some embry
onic evidence of some of these in these books - for instance OOSE [JCJ092] 
includes some discussion on testing, SOMA [Gra95a] on requirement analy
sis and user interaction, MOSES [HE94a] on metrics, quality and project 
management. Neither do any of these pre-1995 methods integrate well in hy
brid environments in which interfacing to traditional code is vital. Graham 
[Gra93a, Gra93b] in some of his Object Magazine articles, discusses the ideas 
of interfaces in terms of wrapper technology. 

Overall, this led to disenchantment with Booch [Bo094], OMT [RBPEL91], 
OOSE [JCJ092] and the like by many organizations who, instead, chose to 
"roll their own" by merging together bits of all these familiar methods. There 
are, however, dangers in this [HKM94]. This leads us to presume that what is 
now meant by methodology is: 

<1M ethodology" 

= 
client-specific methods that cover 

the lifecycle requirements of the particular project 



www.manaraa.com

438 Brian Henderson-Sellers 

By the end of 1994, it was clear that there were potentially three types 
of methodology. Henderson-Sellers and Edwards [HE94b] proposed a three 
level discrimination 

1. Teaching methodologies - smaller than those published to date, not 
commercially complete but useful for learning. 

2. Public domain methodologies - the backbone of the "methodology 
industry". These are almost all the ones we have talked about here 
- they are published in a book, they have CASE tool support, etc. 

3. Sophisticated yet proprietary methodologies, such as Objectory, Syn
tropy and Mentor. Such level 3 methodologies are often strongly 
linked, like Mentor, to a Level 2 methodology (in this case, OPEN). 

Most of the work is focussed on Level 2 methodologies; although there is 
likely to be significant action at Level 3 as large consulting firms develop 
their proprietary versions of an 00 methodology. I would also like to think 
that we shall soon see some smaller methodologies for teaching purposes, as 
suggested by Susan Lilly [LiI94]. 

Over the period 1991-6, OMT, Booch, RDD, Coad and Yourdon and 
OOSE became the most widely known of the "00 methods". However, as 
we began to suggest above, these well-known "00 methods" are not really 
methods at all but rather a somewhat coherent set of useful techniques. What 
is needed is full process support, but a process that is not frozen as a partic
ular model (e.g. waterfall), but is flexible and tailorable and may be applied 
to many project domains. We need to consider the larger scale issues of or
ganizational structures, corporate as well as departmental reuse strategies, 
component-based development and costing models. 

A good method or process, be it 00 or not, has several roles: it can 
provide a set of standards for what is to be done, when these actions are to 
be undertaken and in what order, what the elements are that are involved 
in the process as well as what will be delivered. It can give guidance and 
support through its techniques and guidelines; it can provide a framework for 
monitoring and control. At the higher (Software Process) level this monitor
ing and control may be achieved through advice on project management and 
quality procedures and by the use of appropriate technologies. In an object
oriented domain, these must be selected in such a way that are sympathetic 
with an 00 development approach [Hen95]. Consequently, as many have 
pointed out, an object-oriented process is not simply a recipe book by which 
a series of steps is followed slavishly to produce the perfect "meal". Access to 
business knowledge is mandatory as is creativity and skill in design. Rather 
than a "cookbook", a process or method may be better regarded as a good 
guidebook or roadmap [UM95]. Such a book provides the traveller with the 
basic layout of the streets, complete with hints, procedures and rules that 
apply, thus providing for a successful navigation. However, no-one expects it 



www.manaraa.com

Object- Oriented Software Engineering Methods 439 

to predict occasional disturbances such as burst water mains or closed paths 
for renovation. 

A well-defined process or method thus provides a standard, yet flexible, 
framework for developing systems that blend engineering rigour with engi
neering creativity thus permitting success to be repeated and repetition of 
failures to be avoided. Adoption of such an approach will be instrumental in 
permitting the organization to improve their process capability as measured 
by capability maturity assessment models such as the CMM or ISO-SPICE. 

The above brief outline of the history of 00 methodologies and a short de
scription of some of the key players in the methodology field does not attempt 
to give any real detail; more just a flavour. Over the last few years, there has 
been a flurry of publication of books on methodologies augmented by books 
on comparisons of methodologies. The interested reader is recommended to 
study the books by the methodologists themselves. 

4 First and Second Generation 
Methodologies 

There is, as yet, no obvious clear winner in the "methodology stakes". Indeed, 
any such consensus would be immediately visible in the computing press 
worldwide. Whilst many papers e.g. [ABCGH91, CF92, MP92] focus on the 
differences between these various published (and therefore public domain i.e. 
Level 2) methodologies, overall, these methodologies are more similar than 
they are different. The newer methodologies clearly use (and credit) ideas 
abstracted from the methodologies published in the previous three or four 
years intermingled with brand new ideas. For example, Booch [Bo094] uses 
OMT and OOSE; Fusion uses OMT and Booch [Bo091]; MOSES uses RDD, 
OMT, Booch and OOSE; SOMA uses OOSE and MOSES. The list could go 
on. 

On the other hand there are some differences. Some are differences of 
focus. For instance, Booch [Bo091, Bo094] and Firesmith [Fir93] have more 
focus on real-time and large systems; Coad and Yourdon [CY91a, CY91b] 
on data-driven systems; MOSES, SOMA and OPEN on MIS/business ap
plications and on a quality approach to software development; and OOSE 
on telecommunications. Others focus on particular lifecycle phases - RDD 
[WWW90] and [Bo091] have a design focus; [CY90, CY91a] on analysis; Fu
sion uses a different approach in analysis cf. design; MOSES, SOMA, BON 
and OPEN encapsulate the 00 ideas of a seamless transition across all life
cycle phases and also incorporate business issues which other methodologies 
do not; UML has a modelling focus2 • 

Some slight technical differences would also appear to exist: for instance, 
OMT has a two-way association as its default whilst MOSES has a one-way 

2Whilst UML is not a methodology, being simply a notation plus metamodel, it is still 
of significance in the broader "methods" discussion. 



www.manaraa.com

440 Brian Henderson-Sellers 

association; Booch [Bo094] differentiates explicitly between association and 
using relationships by use of different symbols, whereas OMT and MOSES do 
not do so explicitly; rather they discuss one-way and two-way associations. 
Complexity management is less evident in RDD and OMT than in MOSES 
and OPEN. Concurrency and timing issues are only well addressed in, e.g., 
ROOM (Realtime Object-Oriented Method), Booch and ADM3/4. 

One categorization which is often used is the difference between, on the 
one hand (one extreme), the evolutionary 00 methodologies which tend to 
treat objects as if they were predominantly (or indeed totally) data, to con
sider objects to be static with a relatively weak form of information hiding 
and closely allied to traditional (relational) data stores and to use graphi
cal techniques which are weak extensions of structured analysis and design 
techniques. Both Eckert and Golder [EG94] and Berard [Ber95] gives ex
amples of these as including OMT, Shlaer/Mellor, Embley et aI, Fusion and 
Martin/Odell. Revolutionary OOAD approaches are obviously at the "other 
extreme". In these, Berard notes, concepts such as inheritance and poly
morphism are paramount, there is a strong emphasis on information hiding, 
information is localized around objects (as opposed to data), and concepts 
such as abstract, parameterization and/or metaclasses are used. An 00 
mindset prevails; objects can be active and classes and instances are clearly 
differentiated. Typical examples are given as Berard, Booch and RDD (the 
newer methodologies in this category such as BON, SOMA, MOSES, OOram 
and OPEN were, of course, not included in this evaluation). Of course there 
are many other methodologies which try to capitalize on a range of techniques 
without going to either extreme. More detailed comparisons of methodologies 
have also been previously made ([vGBH92, Gra94, HE94a]). 

A significant, and more revolutionary, approach in many ways is that 
of responsibilities and contracting. Responsibilities were introduced in the 
design approach of Rebecca Wirfs-Brock and colleagues in 1990 and their 
approach is now commonly known as RDD standing for Responsibility-Driven 
Design; although other methodologies, notably BON and OPEN, also place 
emphasis on this way of 00 thinking and modelling. 

5 Standardized Methodologies? 

Over the period 1994-1997 there has been growing interest in the possi
ble "standardization" and/or "convergence" of object-oriented analysis and 
design methodologies. Discussion on the internet bulletin boards in late 
May /early June of 1994 underlined this. Over a similar period, at least 
three "standards" organizations, OMG (Object Management Group), ASe 
X3H7 and CDIF, have been working towards a commonality of understanding 
within object technology and particular between 00 methodologies. 

Some authors have used a "check box" type of approach ([ABCGH91, 
CF92]) to compare methodologies which has a tendency to focus on differ-



www.manaraa.com

Object-Oriented Software Engineering Methods 441 

ences between models and breadth of support in an individual model. Un
derlying such an approach might be an implicit assumption that "more is 
better". It is all too easy to assume, upon reading such a work, that because 
Methodology A does not possess many of the features of Methodology B, 
then Methodology B must be unquestionably better. Of course, the miss
ing elements may be because of a lack of quality; but more likely are to do 
with a different focus and/or level of granularity. It is obvious, once pointed 
out, that if your methodology is focussing on, say, transaction processing, 
then support for embedded real time applications may well be irrelevant. 
Thus we would not expect to find many of the elements of, for example, the 
real-time method ROOM [SGW95) present within a data-processing-oriented 
method such as Coad/Yourdon [CY91a, CY91b). This does not degrade ei
ther; but merely suggests we should provide (and use) methodological "horses 
for courses". Indeed, it is even arguable that a methodology satisfying every 
conceivable project type would be so unwieldy as to be incomprehensible and 
hence unmanageable and unuseable. 

Whilst comparisons such as these are undoubtedly useful in helping the 
developer choose the most appropriate set of techniques, they also, unfor
tunately, give the impression of disarray between methods. The published 
descriptions often seem hard to reconcile. Object models, terminology and 
notation all tend to obfuscate the reality of the similarities between ap
proaches. The perception was that differences are all important (for mar
keting presumably) and that the methodologists themselves were all waging 
internecine war. 

In fact, the reverse has been true for some time. Studying any recently 
published (say 1994 onwards) book on OOAD, the reader will see signifi
cant citations to other work. Thus Booch [Bo094) acknowledges influences 
of OMT and OOSE; SOMA [Gra95a) acknowledges the work embodied in 
MOSES [HE94a] which in turn acknowledges Booch [Bo091, Bo094], OMT 
[RBPEL91], VON (Unified Object Notation) [PCW90] etc3 . Rather than 
competition, many of the methodologists have already opted for collabora
tion. This new spirit of "togetherness" is best evinced in three ways - the 
building of metamodels, convergence of terminology and the convergence of 
methods themselves. 

Proponents for standardization note that for the more rapid acceptance 
of OOAD methodologies by industry, something that is solid and ready for 
adoption, something that is widely accepted and widely supported is vital. 
It is felt that this is likely to give them some confidence in the long term 
survival of 00 [Gra94, Jac93). 

Arguments against standardization/agreement include the possible stul
tification of the field before it's sufficiently mature; huge investments of time 
and money by each individual methodologist to create a coherent whole - viz. 

3 And in many unpublished documents from a wide variety of reputable sources 



www.manaraa.com

442 Brian Henderson-Sellers 

an amalgamation might be the "camel" designed by the committee, which 
no-one finds acceptable. Even if agreement were feasible and/or desirable, 
then with a single agreed methodology it is arguably inevitable that someone 
else will come along with a better "00 mousetrap" . 

5.1 Standardization or Interoperability? 

Obviously, since OOAD methodologies are still rapidly maturing, it is inap
propriate to simply adopt anyone at present as being "the industry stan
dard". Interoperability is perhaps the most fruitful way forward. With this 
approach, a common core is identified and agreed and each extant method
ology elaborates (and sells) OT in its own guise - yet, the underlying core 
is agreed so that in practice an industry can move relatively freely between 
the various "brand methodologies" as they mature further. 

One way of building a "common" methodology is to try to identify all the 
features in the various published methodologies and construct some super
set methodology. Such a methodology rapidly becomes overly complex and 
provides a barrier to entry to the 00 market rather than the support that a 
good methodology should provide. 

Another approach is to try to identify a critical "core". This has dangers, 
as outlined in [MSBRSBAW93]. If, say, aggregation was identified as a core 
concept, then any analysis or design method not using aggregation would be 
seen as being penalized. Secondly, the delineation of such a subset might 
restrict growth of new ideas. Forcing everyone to use only the minimal set 
of concepts cannot provide support for more than the standard, run-of-the
mill application; which in any case are probably going to be undertaken by 
experienced analysts rather than a neophyte software engineer following "the 
book" page by page. 

Identification of this core (which may itself mature of course) requires, in 
the opinion of many, the use of metamodelling techniques [Car94a, Car94b, 
Hen94, Jac93]. On the other hand, it is critical to retain flexibility so that 

(i) individual methodologies can retain their own identity, and continue 
to be marketed as such, addressing their own markets and growing in 
time, 

(ii) methodologies can be made available for specific domains, such as 
MIS, realtime, process control, and 

(iii) methodologies can be applied for specific contexts such as greenfield 
development, enhancements, maintenance and conversions. 

The time is ripe for the identification of such a common core. Despite fears 
that such identification will stultify the field [MSBRSBAW93], current efforts 
of the OMG [Jou97], in particular, are creating an atmosphere in which the 
methodologists can share experiences directly or indirectly. The consequences 



www.manaraa.com

Object-Oriented Software Engineering Methods 443 

of this are highlighted in Section 4 below. One important component of this 
identification is the use of metamodelling techniques, which we shall now 
explain briefly. 

5.2 Metamodels 

A metamodel of a methodology effectively describe the rules underlying the 
methodology itself. It provides a model of the methodology. Metamodelling 
at the same time abstracts the real "guts" of the method, yet, as with any 
metamodelling, loses detail. Generality is gained at the loss of granularity. 

In terms of methodologies, the corresponding metamodel will describe 
things such as how class, type and instance are related; when certain rela
tionships are valid and when invalid - essentially the semantics as well as 
the syntax of the methodology. In doing so, a formal language is needed. 
Terms need to be tightly defined and the metamodel itself "strips away" 
all but the essential detail. Using a set of metamodelling rules and nota
tion then permits the construction of a definitive core metamodel for any 
published methodology. This is the focus of the COMMA (Common Object 
Methodology Metamodel Architecture) project [HB96, HB97]. Then with 
this metamethodology, each particular methodology can inherit from this 
core (Figure 3), specializing it in whatever way seems desirable. In parallel, 
some groups of methodologists are also taking the initiative of rationaliz
ing methodologies by actively merging their approaches. Notable examples 
here are Booch + OMT + OOSE (the "Unified Method", later the Unified 
Modeling Language) and SOMA + MOSES + Firesmith together with strong 
influences from RDD, BON, OOram, OBA (Object Behavioral Analysis) (the 
"OPEN" method). 

UML 

ROO BON 

Figure 3: COMMA and its subsets [HB97] 



www.manaraa.com

444 Brian Henderson-Sellers 

6 Emerging Third Generation Approaches 

So what is available? A high quality process-supported method requires 
many aspects: procedures, QA, metrics, techniques, tools, guidelines, lifecy
cle, roles, deliverables, representation (notation), project management, cod
ing standards and models. A match between a commercial process tool such 
as MeNtOR or Objectory (a Level 3 method: [HE94b]) and a public domain 
method (Level 2) provides both full commercial-strength support and, at the 
same time, international validity and entry level documentation through the 
corresponding public-domain version. 

The new, third generation, fulllifecycle methodology OPEN fits this billj 
together with a commercial process embodiment in the MeNtOR process. 
OPEN is an example of a fully object-oriented, responsibility- and contract
driven approach. OPEN's metamodel is derived strongly [HFG97c] from the 
core COMMA metamodel of Henderson-Sellers and Firesmith [HF97] (Figure 
4). OPEN also has a preferred notation known as COMN = Common Object 
Modelling Notation (Figure 5). Collectively, these are known as OML or the 
OPEN Modelling Language [FHG97]. OML is at the same level of detail as 
Rational's UMLj whilst OPEN, the method (see discussion below), comprises 
much more than UML. 

UML, on the other hand, consists of a notation and an underlying meta
model. It makes no contribution to analysis and design techniques nor to 
software engineering process or methodology. UML's focus is on use cases 
and modelling (particular its graphical representation). It is an example of a 
more data-driven approach in which responsibilities playa minor rOle. 

Since UML does not address any process issues (including OOAD) which 
are the focus of this contribution, only providing the representational com
ponent of a method, it will not be discussed further here. Instead, we con
centrate on the fulllifecycle, software engineering characteristics of OPEN. 

6.1 The Heart of OPEN 

OPEN (OPEN stands for Object-oriented Process, Environment and No
tation), consists of a full lifecycle process-centred methodology with wide
ranging emphases on reuse, quality, organizational issues including people, 
and project management and so on. It supports all the elements of a method
ology that one would expect [Hen95]: 

• a collection of rules and guidelines 

• a full description of all deliverables 

• a set of techniques and tools 

• a set of appropriate metrics, standards and test strategies 



www.manaraa.com

Object-Oriented Software Engineering Methods 445 

Figure 4: The proposed COMMA core metamodel [HF97] 

• a description of the underlying models for product and lifecycle i.e. 
process 

• identification of organizational roles e.g. business analyst, programmer 

• guidelines for project management and quality assurance 

• advice on library management and reuse 



www.manaraa.com

446 Brian H enderson-Sellers 

OPEN 

Notation 
Metamodel 
Process 
PM 
Reuse 
Quality 
Deliverables 
Metrics 
etc. 

UML 

Notation 
Metamodel 

Figure 5: Elements in UML and OPEN 

The architecture of OPEN, at the metalevel, is of a set of lifecycle Activities 
represented as objects [Gra95b]. These objects have contracts with each other 
so that the flow of control can pass between these objects in any order so 
long as the contracts are met (Figure 6). This gives the necessary flexibility 
and tailor ability to the overall architecture. Each Activity has a number of 
associated Tasks which describe what is to be done. These Tasks are the 
services/responsibilities/operations of the Activity objects. How the goals 
specified in these Tasks are achieved is described by a set of Techniques. 

On the left hand side of Figure 6 are Activities which are associated with a 
single project (discussed here); on the right hand side, in the shaded box, are 
those Activities which transcend a single project and are associated more with 
strategic planning and implementation concerns e.g. resources across several 
projects; reuse strategies; delivery and maintenance aspects (not discussed 
here). OPEN includes both projects and organizational software strategies. 

Detail of these Activities is outside the scope of this article but are de
scribed in [HGSWR97a]. 

Each Activity has a number of associated Tasks which describe what is 
to be done. They are the smallest unit of work [GR95]. OPEN Tasks can be 
loosely grouped. Some occur typically earlier in the lifecycle; others group 
around a particular domain such as distribution or database management. 
OPEN Tasks are grouped under seven loose headings: 

1. Tasks which focus on modelling or system construction* include: 

• Analyze user requirements 

• Construct the object model 

• Design user interfaces 

• Identify CIRTs (= class or instance or role or type) 



www.manaraa.com

Object- Oriented Software Engineering Methods 

Evolutionary 
development: 
OOA 
OOD 
OOP 
V&V 

Build 
[ Consolidation 

Evaluation 

Other 
l~-+--+-f-'I 

projects 

Figure 6: Contract-driven process lifecycle model [GHY97bj 

• Map roles on to classes 

• Optimize the design 

• Undertake usability design 

• Write manuals and other documentation 

2. Database focussed tasks are: 

• Design and implement physical database 

• Map logical database schema 

3. Tasks which focus on user interactions and business issues include: 

447 



www.manaraa.com

448 Brian Henderson-Sellers 

• Problem definition and user requirements 

• Business process engineering 

• Approval to proceed 

• Business object modelling 

4. Tasks which focus on large scale architectural issues include: 

• Architecture 

• Optimization 

5. Tasks which focus on project management issues, which are described 
in detail in [HD97j, include: 

• Develop software development context plans and strategies 

• Develop and implement resource allocation plan 

• Undertake feasibility study 

6. Tasks which focus on reuse issues include: 

• Optimize reuse (with reuse) 

• Create new reusable components 

7. Tasks focussing on quality issues are: 

• Evaluate quality 

• Test 

• Undertake in-process review 

• Undertake post-implementation review 

Notes: These tasks deal specifically with the 'technology' of object technology 
and utilize those tips and techniques which are often all there is to an 00 
"methodology". In OPEN, these Tasks are only a small portion of the overall 
approach. For further details, consult standard texts or the forthcoming 
OPEN manuals and user guides. 

Detail of these Tasks is outside the scope of this article but are described 
in [HGFRSW96b, GHY97bj. 

How the goals specified in these Tasks are achieved is described by a 
set of Techniques. Techniques are ways of doing things. They include the 
ways that have been tried and tested over the last decade; but also may 
include new techniques that are more experimental. Some indication on the 
level of maturity of the individual technique is thus given as part of its full 
specification. 



www.manaraa.com

Object- Oriented Software Engineering Methods 449 

The key is how to choose the appropriate Technique or Techniques4 to 
fulfil the Tasks. This is accomplished by the use of a "probabilistic" ma
trix (Figure 7) which gives couplings between them. In fact we specify the 
links with a probability selected from one of five levels: M (=mandatory), R 
(recommended) 0 (=optional), D (=discouraged) and F (=forbidden). The 
values in this matrix can either be determined as "industry averages" or they 
can be calculated at lower levels such as industry sectors (e.g. banking) or 
for your own particular organization or department or, indeed, at the indi
vidual project level; although preferably the values, once determined, should 
be retained from project to project, assuming the project characteristics are 
not vastly different. 

Tasks and Techniques 

Tasks say what is to be done 
Techniques say how it is to be done 

CJ) 
Q) 
::l 
0-
C 
..c 
() 
Q) 

r-

M 
D 
D 
F 
F 
R 
D 
D 
R 
o 
F 

D 
D 
D 
o 
M 
R 
R 
F 
R 
D 
M 

Tasks 
F 
F 
o 
o 
o 
M 
F 
M 
D 
o 
o 

F 
F 
o 
o 
D 
R 
M 
D 
R 
o 
F 

F 
D 
D 
F 
F 
o 
o 
D 
R 
R 
D 

For each taskltechnlque combination 
we will recommend five levels of 
probability from Always to Never 

Figure 7: The two-dimensional relationship between Tasks and Techniques Ac
tivities 

Techniques are intrinsically orthogonal to the notion of Tasks. They can
not readily be grouped in any unique way. They are akin to the tools of the 
tradesperson - a carpenter's toolbox contains many tools, some of which 
have superficial resemblances but may have operational affinity to tools of 
different outward appearance. Since a full description of the OPEN toolbox 
of Techniques (currently over 150 techniques have been catalogued) is a book 
in itself (which is currently being prepared), we only give a brief review here 
(in Section 7). 

40ften choices are available. For example, in order to find objects, the choice may be 
between, say, using use CaBes, using noun analysis, identifying concepts and their respon
sibilities, using eRe cards, etc. In reality, many taBks are best accomplished by a mixture 
of techniques rather than just one. 



www.manaraa.com

450 Brian Henderson-Sellers 

6.2 OPEN Principles 

Finally, OPEN embodies a set of (object-oriented) principles. It permits 
enhanced semantics for object models based on the contributions of methods 
such as SOMA, BON, Syntropy, Firesmith etc. Furthermore, OPEN is fully 
object-oriented in that encapsulation is a basic principle. To this end, bi
directional associations are not first-order members of the metamodel, but 
are instead modelled as a pair of uni-directional associations that are semi
strong inverses of each other. It is a logical consequence of this that class 
invariants are not an optional extra in the modelling semantics [GBH97J. 
Rulesets (which generalize class invariants) can be used to model intelligent 
agents as objects. 

In OPEN, 00 principles are basic and should be adhered to. These 
include: 

• object modelling as a very general technique for knowledge representa
tion 

• encapsulation 

• polymorphism 

together with 

• clear, jargon-free and well-founded definitions of all terms 

• extensive use of abstraction techniques, a foundation for semantically 
cohesive and encapsulated "objects" 

7 Some Analysis and Design Techniques 

Object-oriented systems at compile time consist of classes whose structure 
and relationships represent the static aspects of the system. At run-time, the 
system state consists of objects, that is, instances of classes, and references. 
In analysis and design, the system is described in terms of types and roles 
which represent concepts. Sometimes it is hard to be crystal clear whether 
we are talking about Classes, Instances, Roles or Types; so we often use a 
generic term, CIRT, made up from their four initials. 

In order to show the dynamics of the system graphically, CIRTs must be 
displayed as a network of methods and the messages passing between them. A 
relationship between any two CIRTs, whether expressed by aggregation and 
association or represented by client-server, provides a connection channel 
that allows messages (or events) to be sent. These messages trigger methods 
(or processes) that lead to changes of state in the CIRT to which the messages 
were sent. By recognizing that a static relationship exists between two CIRTs, 



www.manaraa.com

Object-Oriented Software Engineering Methods 451 

providing a link for many different events, processes, and state changes to 
occur in a server CIRT, we explicitly recognize the dynamic and static aspects 
of the system. One static architecture, therefore, does not imply a one-to-one 
mapping with any single dynamic arrangement of calls to the supplier class. 
The static link allows the client to call any exported feature of the supplier 
in whatever way its implementation sees fit. Thus the sequence of calls to 
the supplier may be changed, altering the dynamic arrangement, while the 
static structure remains unchanged. 

7.1 Static Object Modelling 

Object modelling focusses on two issues: (i) descriptions of the CIRTs or 
"objects" , and (ii) description of interactions between CIRTs. 

A core concept is that of type or interface (the external view) versus the 
internal view of the full implementation of an "object". It is this dichotomy 
between the external view or specification, much used in analysis and design, 
and the internal or implementation view (the inside of the class) that is, at 
the same time, a major strength of OT and an often-neglected description. 
The external view is taken by the modeller and designer; the internal view 
by the coder. Focussing your attention, at appropriate times in the devel
opment lifecycle, on external and internal views, assists in managing what 
would otherwise be a confusing situation. This confusion has perhaps been 
exacerbated by many 00 programming language texts where this twin view 
is ignored. Examples of code often make it difficult for the novice reader 
to discriminate between external considerations and internal implementation 
details. 

The external view provides a name, services or responsibilities offered, and 
rules and constraints (e.g. valid ranges, necessary preconditions on services). 
This is the specification or interface. It describes the type which represents 
a well-understood concept [M092]. A concept is an idea that is sufficiently 
well-developed to have an identical, shared meaning. An idea held by an 
individual person which means nothing to anyone else does not count. So 
for instance, common words such as dog, student, person, tree all denote 
shared concepts and thus qualify as potentially useful concepts. However, 
it must be stressed that an object type is not simply a set of objects. A 
set is a mere collection of extant individuals; for instance, just the people 
that are in your view at present. Wrongly equating the set with the concept 
will preclude later additions of perfectly valid instances from becoming part 
of the concept. Concept (the intension) first; instances which belong to the 
concept thus forming the set (or extension of the type) come later. That 
means that certain concepts can exist (e.g. unicorn, Father Christmas, tooth 
fairy) which define the intension but for which the extension is a null or 
empty set [M092, M095]. 

Since OT is about modelling business problems with objects and/or classes, 
an initial search for CIRTs should be in the problem domain itself. Obvious 



www.manaraa.com

452 Brian Henderson-Sellers 

candidate CIRTs (and we should start with the notion of candidates which 
may later be cast aside in favour of better concepts) are real-world objects. 
These can be found by looking for nouns in the user requirements specifi
cation [Abo83]; although it should be noted that rigorously taking the user 
requirements specification and underlining every single noun can waste a lot 
of time for a large user requirements specification (apparently this has been 
done on real projects). During system development those "first pass" objects 
(substantive and abstract) will be significantly augmented by objects created 
as artifacts of constructing the conceptual model. A better approach may 
thus be to identify objects in terms of their services offered or their respon
sibilities - this avoids the danger of OOA becoming simply data modelling 
(see earlier discussion). Task scripts or use cases are also useful here (Section 
7.3) as are roles (Section 7.2). 

A service or responsibility is the ability of a CIRT to respond to some 
request for action. A responsibility may be a "responsibility for knowing" 
(also called a property or query); a "responsibility for doing" (also called 
an operation or command); or a "responsibility for enforcing" (rulesets). A 
property always returns an object (indicated by the type statement after 
the property name whilst an operation does not - it just does something. 
It is also important that each service does only one thing. For instance, a 
request to withdraw an amount from a BANK_ACCOUNT class should not 
also give you the balance. This requires two services: a withdraw service 
and a telL.me..my_balance service. Normally, you do not depict services for 
create, read, update and delete (or CRUD services - create, read, update 
and delete services). 

Properties often relate to adjectives in the user requirements specification. 
They are services that return (tell you) information (usually by accessing 
hidden data). The information received back is an object. This object may 
be a simple value such as an INTEGER or a more complex object such as an 
ENGINE or a WING. The use of properties in the interface does not imply 
that the information requested by the property is stored as data. It mayor 
it may not be. For instance, consider the property of a person's age. This 
is a number. It may be stored as a number within the instance; or, equally, 
it may be calculated from other stored information such as birth date and 
today's date. It is, however, not good style to put attributes in the service 
list; rather, any data should only be accessed by methods which implement 
the services. Properties can be regarded as a shorthand for services offering 
read and write methods to the hidden attributes. 

Operations are roughly equivalent to verbs in the user requirements spec
ification. They represent functionality or commands (procedures). A good 
identification rule is found from taking an anthropomorphic perspective and 
asking "can I suffer this operation?". One useful and simple technique for 
following up this anthropic principle is that of CRC cards [BC89, WiI95]. 
Here each person takes a single index card to represent a type and asks what 



www.manaraa.com

Object-Oriented Software Engineering Methods 453 

is my name? (we saw above how important a good name is); (ii) what are 
my responsibilities i.e. what services can I offer to other object types?; and 
(iii) in providing these services with whom do I have to collaborate first? 

Modeling is the key focus to build the object model. In OOA/D, the issues 
of implementation are of no concern and the notation should therefore reflect 
semantically important concepts rather than be concerned with later design 
issues that mayor may not be object-oriented. In other words, the concepts 
of uniform reference and information hiding are paramount. The distinction 
between properties and operations often becoming unnecessary. With a true 
responsibility-driven design these are dealt with together as "services". 

In detailed design, it may be necessary to graphically depict internal (hid
den) services (Figure 8). For example, it may be clear that certain services 
really will be stored as attributes (data) because they already exist in the 
database. For services which do not relate directly to stored data, the op
eration is likely to be coded within the class as a method (a procedure or 
a function). In languages such as C++ and Eiffel these methods resemble 
miniature procedural programs. 

CIRTNAME 

List of 
Public 
Services 

Figure 8: Internal and external information may be depicted visually as internal 
or external (actually cross-boundary) on the icon (MOSES notation) 
[Hen97] 

7.2 Relationships between CIRTs 

It is generally agreed that there are three (maybe four) main relationships 
between CIRTs: inheritance (including generalization/specialization and im
plementation inheritance); association (which may include the using relation
ship or this may be a separate, fourth relationship); and aggregation (which 



www.manaraa.com

454 Brian Henderson-Sellers 

is alternatively regarded by some as a special form of association). How
ever, it should be noted that for detailed design/coding typically only two 
relationships (inheritance and client-server) are supported. 

An association is a named "uses-a" relationship; for example, a CUS
TOMER uses a CAR and also the financial services of a BANK. It is gener
ally pictured by a line joining icons representing each of the two participating 
classes. In OPEN, the default is unidirectional (a mapping); whereas in UML 
it is bidirectional. 

Aggregations depict a tighter, more permanent affiliation: the "is-com
posed-of" relationship. For example, a room is composed of door(s), walls, 
a ceiling, a floor and often windows. It is fairly permanent. A room is not 
an aggregate of the people or the furniture inside it since these are patently 
temporary and (re) movable. Equating aggregation with the containing rela
tionship is a mistake frequently made - the containing relationship is valid 
but different. Aggregations 

• reflect an inherent asymmetry (whereas associations are often symmet
rical) , 

• describes a parts hierarchy, 

• can be described by the phrase "is-part-of", and 

• in many cases destroying the aggregate also destroys its component 
parts. 

Aggregation is a useful modelling tool which assists in rationalizing many 
levels of abstraction. If it is useful, use it. If a specific relationship creates 
argument between your team members as to whether it really is an aggrega
tion, then the optimum solution is to stop arguing and use association. 

Often properties are equally well expressed as relationships (often associ
ation). For example (and assuming all these services are externally visible), 
a CUSTOMER may have a service of personaLprofile. But it is equally 
useful, especially as you elaborate the detail of the design, to make this an 
explicit relationship to a class PERSONAL-PROFILE; which itself then may 
have services, such as name, address and credit...rating. These services 
may, in turn, also be replaced, at an appropriate time, with explicit relation
ships to other CIRTs. 

Inheritance covers many sins. The most discussed is the difference be
tween specialization inheritance (or generalization) and implementation in
heritance. The distinction relates to knowledge representation and the merg
ing and equating of the notions of abstract data type and module in OT. 
Generalization is to be encouraged; implementation inheritance to be strongly 
discouraged. Generalization represents the "is-kind-of" relationship in which 
the subclass is a kind of its superclass. This makes the relationship between 



www.manaraa.com

Object-Oriented Software Engineering Methods 455 

class and subclass also a type/subtype relationship. In implementation inher
itance, only the class/subclass relationship holds and the knowledge repre
sented by the relationships between types is destroyed. Typically, a subclass 
inherits all the "knowledge" of its parent. This makes it a very open rela
tionship insofar as the subclass is concerned. 

One sin which inheritance should not cover directly is that of roles (the 
R of CIRT) - a focus of OOram [RWL96]. For example, an example com
monly seen to illustrate an inheritance relationship might be that of a class 
MANAGER inheriting from class PERSON. From a knowledge representation 
viewpoint, applying the rule of is-a-kind-of sounds OK at first. However, 
that manager later in the day may return home, becoming first an object of 
type COMMUTER and then an object of type HOUSEOWNER and possi
bly PARENT. It may be that two roles are played concurrently. Perhaps the 
COMMUTER takes his daughter to a hockey match by train and is thus also 
a PARENT. Drawing separate inheritance relationships for the many rOles an 
individual can play in a single day even can lead to a veritable explosion. In 
the worst case, a subclass can often by created for each valid combination of 
rOle and state. In other words, be careful in using the inheritance relationship 
when really a role relationship is needed. Roles can be very useful in mod
elling and ways to implement them in an OOPL have recently been proposed, 
both in extensions to MOSES [RH95] and in the role-focussed approach of 
OOram [RWL96]. 

7.3 Dynamic Modelling 

The behaviour of objects rather than the collaboration of sets of objects can 
be shown using some form of state-transition diagrams, often based on the 
statechart of Harel [Har87]. 

At a system level, sequencing of messages may also be necessary. These 
are often shown in two flavours: some form of a collaboration diagram or 
a sequence diagram. In a collaboration diagram, icons representing objects 
are shown with message paths. The ordering of message passing along those 
paths is then enumerated so that it is clear in what order these should occur. 
The sequence diagram, as used in OOSE for example, lays out similar infor
mation in a two dimensional fashion. The objects are named across the top 
and time flows vertically. A good visual impression is thus given of the dy
namic nature of the specific part of the system being scrutinized. Of course, 
in large systems both representations become unwieldy. However, this sort 
of fine granularity of objects and their messages only usually occurs over a 
small portion of the system. These diagramming notations should therefore 
be used in that smaller spatial framework. 

Another way of showing particular uses of a system and the control flow 
patterns, yet again at a fairly abstract level are the task script, the scenario 
and the use case. In books a few years old, these last two terms tended to be 
used interchangeably to describe a prototypical user's involvement with the 



www.manaraa.com

456 Brian Henderson-Sellers 

system and their sequence of actions. Now it is generally agreed that a use 
case is at a more abstract level than a scenario and can be regarded as a "set 
of scenarios" [Gra97j. 

The purpose of use cases and task scripts is to describe in natural language 
a small number of typical interaction sequences of a user with the system. 
The notion of the user playing a role is also important since it is not people 
that are important here as users but rather their role which determines the 
type of interaction they wish to have with the system. The word actor is 
thus often used to typify the user. 

Use cases and task scripts are good for identifying user requirements; 
they identify the dynamic aspects of the system; they can help to identify 
the operations (services) offered by particular classes; and they can be used 
for testing and evaluation against user requirements. Use cases and task 
scripts show a trace of events and the response by the supplier. These traces 
should show the interactions involved in fulfilling the responsibilities of the 
subsystem leading to a detailed examination of how the system behaves. 

Task scripts or use cases should be developed for different situations that 
the system is to handle, concentrating on those "typical" for the system. 
Such task scripts are useful in identifying external events and how they are 
handled by the system. Each use case and task script should be significantly 
different; minor differences may be recorded within the same use case or task 
script. Differences between use cases and task scripts become more obvious 
when more amplification is made. 

7.4 Business Rules and Contracting 

As well as using a graphical representation for object-object interactions, 
a second concept should be applied to each and every client-server rela
tionship: the notion of a service contract. The terms of these contractual 
obligations/benefits are spelled out in a 2x2 matrix (Figure 9), which can 
be clarified in a contract diagram as a table of features and requirements 
[Mey92j. This states the obligations and the benefits to each of the two par
ticipating parties (see below regarding relationships between pairs of CIRTs). 
The obligation imposed by any CIRT and a particular service is, in effect, a 
precondition which any other CIRT wishing to avail itself of this particular 
service must meet. 

The idea of contracts is related to that of "responsibilities" by defining 
a contract as a cohesive set of responsibilities that a client can depend on 
(the interface contract) [WWW90j. Many authors stress this need to use a 
responsibility-driven conceptual approach since a data-driven approach "in
herently violates encapsulation." Furthermore, a contract diagram is neces
sary not only for association relationships but also for aggregation respon
sibilities, as both are represented by client-server relationship at the design 
level. 

Contracting is an excellent way of moving software towards fuller support 



www.manaraa.com

Object-Oriented Software Engineering Methods 

Obligations Supplier 

Details of Details of 

Client 
obligation benefit to 
on client client 

Details of Details of 
Supplier obligation benefit to 

on supplier supplier 

But benefits to both client and supplier 
contingent upon client meeting obligation 

e.g. buying your lunch 

Figure 9: Contracting matrix [Hen97] 

457 

of the business. Business rules, which are essentially statements of policies 
and conditions, are essentially captured in this way. In a more general sense, 
we can think of modelling business rules at the class level by supplementing 
the notion of a class as having "name", "properties" and "operations" by 
a fourth classification: "a ruleset". Rules are non-procedural and include 
representation of control constraints, business rules, exception handling and 
triggers. They may be written in IF THEN ELSE structures or in natural 
language. Rules need to be at the same time rigorous and understandable by 
the end users in the business domain. 

8 Summary and Conclusions 

The use of object-oriented techniques for developing commercial software is 
rapidly increasing and the methods by which this development takes place 
are themselves maturing. From first and second generation methodologies are 
now emerging collaboratively so-called "third generation" 00 development 
approaches. OPEN is one such example which is typified by its fulllifecycle 
process support for building object-oriented information systems. At the 
same time, the Object Management Group are aiming to standardize on 
an underpinning metamodel for the modelling component of such advanced 
methodologies. From a focus on technical modelling aspects, more concern is 



www.manaraa.com

458 Brian Henderson-Sellers 

currently being shown on an integration of these into the information systems 
culture involving project management, organizational culture and people. 
These emerging third-generation 00 methodologies should thus fulfil most, 
if not all, of the requirements for facilitating the adoption of object technology 
as a key technology by commercial IS software development organizations. 

Acknowledgments: I wish to thank Houman Younessi and Simon Moser for 
constructive comments on an earlier draft of this manuscript. This is Contribution 
no 97/9 of the Centre for Object Technology Applications and Research (COTAR). 
Figures 1 and 6 were reprinted by permission of Addison-Wesley Longman Ltd. 

References 

[ABCGH91] 

[Abo83] 

[BC89] 

[Ber95] 

[Boo91] 

[Boo94] 

[Car94a] 

[Car94b] 

[CD94] 

[CF92] 

Arnold, P., Bodoff, S., Coleman, D., Gilchrist, H., Hayes, F., An 
evaluation of five object-oriented development methods, JOOP 
Focus on Analysis and Design, 1991, 107-121 

Abbott, R. J., Program design by informal English descriptions, 
Communications of the ACM 26 (11), 1983, 882-894 

Beck, K., Cunningham, W., A laboratory for teaching object
oriented thinking, SIGPLAN Notices 24 (10), 1989, 1-6 

Berard, E. V., What is a "methodology?", comp.object newsnet, 
1995 

Booch, G., Object Oriented Design with Applications, Ben
jamin/Cummings, Menlo Park, CA, 1991 

Booch, G., Object-Oriented Analysis and Design with Applica
tions (2nd edition), The Benjamin/Cummings Publishing Com
pany, Inc., Redwood City, CA, 1994 

Carmichael, A., Towards a common object-oriented meta-model 
for object development, Chapter 19, in: A. Carmichael (ed.), Ob
ject Development Methods, SIGS Books, New York, 1994, 321-
333 

Carmichael, A., Methods war, methods truce, methods trade, in: 
ObjectExpo Europe Conference Proceedings, 1994, 26-30, Lon
don, England, SIGS Conferences, Inc., 1994, 41-50 

Cook, S., Daniels, J., Designing Object Systems, Prentice Hall, 
UK, 1994 

de Champeaux, D., Faure, P., A comparative study of object
oriented analysis methods, J. Object-Oriented Programming 5 
(I), 1992, 21-33 



www.manaraa.com

[CY90] 

[CY91a] 

[CY91b] 

[EDM97] 

[EG94] 

[FHG97] 

[Fir93] 

[GBH97] 

[GHY97b] 

[GR95] 

[Gra93a] 

[Gra93b] 

[Gra94] 

[Gra95a] 

[Gra95b] 

[Gra96] 

Object- Oriented Software Engineering Methods 459 

Coad, P., Yourdon, E., Object-Oriented Analysis, 1st edition, 
Prentice-Hall, 1990 

Coad, P., Yourdon, E., Object-Oriented Analysis, 2nd edition, 
Prentice-Hall, 1991 

Coad, P., Yourdon, E., Object-Oriented Design, Prentice-Hall, 
1991 

Emam, K., Drouin, J.-N., Melo, W., SPICE, The Theory and 
Practice of Software Process Improvement and Capability De
termination, IEEE Computer Society Press, Los Alamitos, CA, 
USA, 1997 

Eckert, G., Golder, P., Improving object-oriented analysis, Inf. 
Software Technol. 36 (2), 1994, 67-86 

Firesmith, D., Henderson-Sellers, B., Graham, I., OPEN Model
ing Language (OML) Reference Manual, SIGS Books, NY, 1997 

Firesmith, D. G., Object-Oriented Requirements Analysis and 
Logical Design: A Software Engineering Approach, J. Wiley and 
Sons, New York, 1993 

Graham, I. M., Bischof, J., Henderson-Sellers, B., Associations 
considered a bad thing, J. Obj.-Oriented Programming 9 (9), 
1997,41-48 

Graham, I., Henderson-Sellers, B., Younessi, H., The OPEN Pro
cess Specification, Addison-Wesley, 1997 

Goldberg, A., Rubin, K. S., Succeeding with Objects, Decision 
Frameworks for Project Management, Addison-Wesley, Reading, 
MA,1995 

Graham, I., Migrating to object technology, Object Magazine 2 
(5), 1993, 22-24 

Graham, I., Interoperation: reusing existing software components 
and packages, Object Magazine 2 (6), 1993, 25-26 

Graham, I. M., Object-Oriented Methods (2nd edition), Addison
Wesley, Wokingham, UK, 1994 

Graham, I. M., Migrating to Object Technology, Addison-Wesley, 
Wokingham, UK, 1995 

Graham, I. M., A non-procedural process model for object
oriented software development, Report on Object Analysis and 
Design 1 (5), 1995, 10-11 

Graham, I., Linking a system and its requirements, Object Ex
pert 1 (3), 1996, 62-64 



www.manaraa.com

460 

[Gra97] 

[Har87] 

(HB96] 

(HB97] 

[HD97] 

[HE94a] 

[HE94b] 

(Hen94] 

[Hen95] 

(Hen97] 

(HF97] 

[HFG97c] 

[HG96a] 

[HGFRSW96b] 

Brian Henderson-Sellers 

Graham, I., Some problems with use cases ... and how to avoid 
them, 00lS'96, D. Patel, Y. Sun, S. Patel (eds.), Springer, Lon
don, 1997, 18-27 

Harel, D., Statecharts: a visual formalism for complexf;1ystems, 
Sci. Computer Program. 8, 1987, 231-274 

Henderson-Sellers, B., Bulthuis, A., The COMMA project, Ob
ject Magazine 6 (4), 1996, 24-26 

Henderson-Sellers, B., Bulthuis, A., Object-Oriented Metameth
ods, Springer, New York, 1997 

Henderson-Sellers, B., Due, R. T., OPEN project management, 
Object Expert 2 (2), 1997, 30-35 

Henderson-Sellers, B., Edwards, J. M., BOOKTWO of Object
Oriented Knowledge: The Working Object, Prentice Hall, Syd
ney, 1994 

Henderson-Sellers, B., Edwards, J. M., Identifying three levels of 
00 methodologies, Report on Object Analysis and Design 1 (2), 
1994,17-20 

Henderson-Sellers, B., COMMA: an architecture for method in
teroperability, Report on Object Analysis and Design 1 (3), 1994, 
25-28 

Henderson-Sellers, B., Who needs an object-oriented methodol
ogy anyway?, J. Obj.-Oriented Programming 8 (6), 1995, 6-8 

Henderson-Sellers, B., A BOOK of Object-Oriented Knowledge 
(2nd edition), Prentice Hall, NJ, 1997 

Henderson-Sellers, B., Firesmith, D., COMMA: Proposed core 
model, J. Obj.-Oriented Programming (ROAD) 9 (8), 1997, 48-
53 

Henderson-Sellers, B., Firesmith, D., Graham, I., OML meta
model: relationship and state modeling, J. Obj.-Oriented Prog. 
(ROAD) 10 (1), 1997, 47-51 

Henderson-Sellers, B., Graham, I. M., with additional input from 
C. Atkinson, J. Bezivin, L.L. Constantine, R. Due, R. Duke, 
D. Firesmith, G. Low, J. McKim, D. Mehandjiska-Stavrova, B. 
Meyer, J.J. Odell, M. Page-Jones, T. Reenskaug, B. Selic, A.J.H. 
Simons, P. Swatman and R. Winder, OPEN: toward method con
vergence?, IEEE Computer 29 (4), 1996, 86-89 

Henderson-Sellers, B., Graham, I. M., Firesmith, D., Reenskaug, 
T., Swatman, P., Winder, R., The OPEN heart, TOOLS 21, C. 
Mingins, R. Duke, B. Meyer (eds.), TOOLS/ISE, 1996, 187-196 



www.manaraa.com

Object-Oriented Software Engineering Methods 461 

[HGSWR97a] Henderson-Sellers, B., Graham, 1. M., Swatman, P., Winder, R, 
Reenskaug, T., Using object-oriented techniques to model the 
lifecycle for 00 software development, Procs. OOIS '96, D. Patel, 
Y. Sun, S. Patel (eds.), Springer-Verlag, London, 1997, 211-220 

[HKM94] Henderson-Sellers, B., Kreindler, R J., Mickel, S., Methodology 
choices - adapt or adopt?, Report on Object Analysis and De
sign 1 (4), 1994, 26-29 

[Jac93] Jacobson, 1., Time for a cease-fire in the methods war, J. Obj.
Oriented Programming 6 (4), 1993, 6 - 84 

[Jac94] Jacobson, 1., public communication on OOPSLA 94 panel: 
Methodology standards: help or hindrance?, 1994 

[JCJ092] Jacobson, 1., Christerson, M., Jonsson, P., Overgaard, G., 
Object-Oriented Software Engineering: A Use Case Driven Ap
proach, Addison Wesley, 1992 

[Jou97] Joukhadar, K., OMG committee meets on object analysis & de
sign proposals, Object Magazine 7 (1), 1997, 12-13 

[LiI94] Lilly, S., Planned obsolescence, Object Magazine 3 (5), 1994, 79-
80 

[MCF96] Moser, S., Cherix, R, Flueckiger, J., BI-CASEjOBJECT (BIO) 
V3, Bedag Informatik, Berne, Switzerland, 1996 

[Mey92] Meyer, B., Applying "design by contract", IEEE Computer 25 
(10), 1992, 40-51 

[M092] Martin, J., Odell, J. J., Object-Oriented Analysis & Design, 
Prentice Hail, Englewood Cliffs, NJ, 1992 

[M095] Martin, J., Odell, J. J., Object-Oriented Methods. A Foundation, 
PTR Prentice Hall, New Jersey, 1995 

[MP92] Monarchi, D. E., Puhr, G. 1., A research typology for object
oriented analysis and design, Comms. ACM 35 (9), 1992, 35-47 

[MSBRSBAW93] Mellor, S. J., Shlaer, S., Booch, G., Rumbaugh, J., Salmons, J., 
Babitsky, T., Adams, S., Wirfs-Brock, R. J., Premature methods 
standardization considered harmful, J. Obj.-Oriented Program
ming 6 (4), 1993, 8-85 

[PCW90] Page-Jones, M., Constantine, L. L., Weiss, S., Modeling object
oriented systems: the Uniform Object Notation, Computer Lan
guage 7 (10), 1990, 69-87 

[RH95] Renouf, D. W., Henderson-Sellers, B., Incorporating roles into 
MOSES, in: C. Mingins, B. Meyer (eds.), TOOLS15, Prentice 
Hall, 1995, 71-82 . 



www.manaraa.com

462 

[RBPEL91] 

[RWL96] 

[SGW95] 

[Swa96] 

[UM95] 

[vGBH92] 

[Wil95] 

[WN95] 

[WW89] 

[WWW90] 

[YH97] 

Brian Henderson-Sellers 

Rumbaugh, J., Blaha, M., Premerlani, W., Eddy, F., Lorensen, 
W., Object-oriented Modelling and Design, Prentice Hall, New 
Jersey, 1991 

Reenskaug, T., Wold, P., Lehne, O. A., Working with Objects. 
The OOram Software Engineering Manual, Manning, Greenwich, 
CT, USA, 1996 

Selic, B., Gullekson, G., Ward, P. T., Real-Time Object-Oriented 
Modelling, John Wiley & Sons, Inc., New York, 1995 

Swatman P. A., Formal Object-Oriented Method - FOOM, in: 
H. Kilow, W. Harvey (eds.), Specification of Behavioural Seman
tics in Object-Oriented Information Systems, Kluwer Academic 
Publishers, Norwell, Massachusetts, 1996 

Unhelkar, B., Mamdapur, G., Practical aspects of using a 
methodology: a road map approach, Report on Object Analy
sis and Design 2 (2), 1995, 34-36, 54 

van den Goor, G. P., Brinkkemper, S., Hong, S., A comparison 
of six object-oriented analysis and design methods, Method En
gineering Institute, University of Twente, 1992 

Wilkinson, N., Using CRC Cards: An Informal Approach to 0-0 
Software Development, SIGS Books, NY, 1995 

Walden, K., Nerson, J.-M., Seamless Object-Oriented Architec
ture, Prentice Hall, 1995, 301 

Wand, Y., Weber, R., An ontological evaluation of systems analy
sis and design methods, in: E. D. Falkenberg, P. Lindgren (eds.), 
Information Systems Concepts: An In-depth Analysis, Elsevier 
Science Publishers (North Holland), Amsterdam, The Nether
lands, 1989, 79-107 

Wirfs-Brock, R. J., Wilkerson, B., Wiener, L., Designing Object
Oriented Software, Prentice Hall, 1990, 368 

Younessi, H., Henderson-Sellers, B., Cooking up improved soft
ware quality, Object Magazine, 7(8), 1997, 38-42 



www.manaraa.com

CHAPTER 20 

Euromethod 
Contract Management 

Alfred Helmerich 

Acquiring an information system to meet new business needs is not a trivial task. It 
includes deriving the acquisition goal, developing a strategy for its implementation, 
contracting for parts of the acquisition goal, integrating the parts into the complete 
information system and into the business processes of the acquiring organisation. 
Properly addressing these issues during acquisition significantly increases the like
lihood of a successful outcome. Effective acquisition of an information system and 
related services requires clear descriptions of the desired final state and the current 
situation. It is important that the customer and supplier have the same understand
ing of the current situation and the information system and related services to be 
achieved. Euromethod has been designed to help organisations with the acquisi
tion of effective information systems and related services in a variety of situations. 
It encourages customers and suppliers to control costs and timescales, to manage 
risks, to improve mutual understanding and to reach a fair contract. Through the 
achievement of these objectives, the European Commission aims to encourage the 
opening of the information system (IS) market, to improve the mobility of people 
internationally, to ease the organisation of international projects by a flexible con
tract management. 

1 Introduction 

One of the principles of the European Union is the completion of a single 
market. Therefore the EC requires for their administrations that the call for 
tenders be open throughout Europe to allow competition to take place and 
refer to product descriptions based on standards rather than on brand names 
[EGKS94]. In the private sector various disciplines have defined procurement 
guidance and standards for procurement, e.g. the telecommunication ini
tiative SPIRIT (Service Providers Integrated Requirements for Information 
Technology) or SOTIP (The Swedish Government Open Telecommunications 
Systems Interconnection Profil). Other procurement guidelines issued by var
ious countries, like TAP [TAP91] (Total Acquisition Process of CCTA), UfAB 



www.manaraa.com

464 Alfred Helmerich 

(Unterlagen fur Ausschreibung und Bewertung von DV-Leistungen, BMI, 
1985) or EPHOS [Ephos94] (European Procurement Handbook for Open Sys
tems of the EC) have already been or will be harmonised with Euromethod 
[SPRlTE97] . 

1.1 Why should the Tenders be open? 

There are good reasons for any customer to favour open tenders, even though 
they might require more work in the beginning and result in starting dates 
of projects to be shifted in time: 

• competition will generally lead to more cost-effective solutions, 

• competition increases the variety of solutions and generally will lead to 
better solutions, 

• standards will prevent a lock-in to one supplier and secure the invest
ment for future updates, 

• better planning of the acquisition leads to better control and results. 

However, not only the customers but also the suppliers profit from an in
creased market. Indeed many standards are rooted in initiatives by suppliers 
to make their products interchangeable and secure their investment in re
search. 

1.2 Why are the Council Directives not enough? 

The EC has regulated the public procurements of various types, e.g. the 
procurement of: 

• construction work (Works Directive), 

• IS-products (Supplies Directive [EEC93a]), 

• IS-services, e.g. for processes that represent an economic value not 
related to the production of material goods (Service Directive [EEC92]), 

• for IS-services in special branches, e.g. telecommunications (Utility 
Directive [EEC93b]). 

As can be seen by the number of directives, the various types of procure
ments require special treatments. Whereas in the procurement of prod
ucts standards can be defined and off-the-shelf products therefore exist, it 
is impossible to do likewise with defining services that entail creative work 
and problem solutions. Moreover, information has become a cornerstone of 
modern organisations. And the procurement of an information system (IS), 
whether in the private or the public sector, be it paper-based, partially or 



www.manaraa.com

Euromethod 465 

fully computerised, often is a key to the success and often the survival of an 
organisation. Also the complexity of a computerised system may range from 
a single PC to a distributed heterogeneous system containing many complex 
and interacting applications. Uncertainty will depend on the type of appli
cation, organisational aspects, technology to be used, etc. Applications that 
are common across organisations and are well understood present little risk. 
Novel and/or specific applications have the potential to provide competitive 
advantage but may be more risky. However, neither standards nor the Coun
cil Directives alone can guarantee a good quality of the solution. A method 
- Euromethod [EM96] - is needed to install the directives in practice. 

1.3 Why should Euromethod be applied? 

1.3.1 The Method Euromethod 

Euromethod was designed to support the definition, planning, and execution 
of the effective acquisition of information systems and related services. With 
Information system (IS) Euromethod understands the aspect of the organ
isation that provides, uses and distributes that information, together with 
the associated organisational and technical resources. It is used to assess and 
determine: 

• the problem situation and the associated risks [FA94], 

• the goal of the acquisition, 

• the strategy for the acquisition, for the IS-adaptation and service pro
vision, 

• the delivery plan showing the customer-supplier relationships at con
tractuallevel including the exchange of deliver abIes [Fra94]. 

Euromethod does not address legal aspects. Neither is it an IS-development 
method. 

1.3.2 The Framework Euromethod 

Euromethod provides a framework i.e. a set of concepts and a terminology: 

• to improve the customer-supplier relationship, 

• to harmonise methods, 

• to standardise the procedure, 

• to provide standardised templates. 



www.manaraa.com

466 Alfred Helmerich 

One of the main obstacles in achieving mutual understanding is the variety 
of methods using different concepts and terminology. These methods often 
use a vocabulary that stems from software engineering and may be difficult 
to understand by IS users, procurers and contract managers. Euromethod 
addresses this problem by considering adaptations and service provisions from 
an acquisition point of view rather than an engineering point of view. A 
bridging dictionary enables people to understand the types of deliver abies 
proposed by a method without having been trained in that method. Bridging 
dictionaries already exist between some methods (like SSADM [SSADM96], 
SPICE [ME98], Merise [QCKI91], MEiN, Dafne) and Euromethod [EM96] . A 
standardised procedure and templates reduce the efforts for the next tender 
and generally lead to more transparent and fairer contracts. 

1.3.3 The Project Euromethod 

In a first phase in early 1989 the European Union Member states agreed on 
the needs and requirements for a Euromethod [Fra94]. In a second phase from 
May 1990 - Feb. 1991 the CEC DG XIIIjPPG funded a Feasibility Study 
performed by an pan-European consortium (Eurogroup). From May 1992 -
April 1994 Version 0 of Euromethod [EM94] was developed and put to trial in 
the next phase. From July 1994 - July 1996 Euromethod was applied within 
seven projects throughout Europe, including a PHARE project in Hungary. 
The results were used to develop the current version 1 of Euromethod [EM96] . 

Solution 

0 

t Products 0 

Information skills 1-
Know-how 

Figure 1: Structure of an acquisition organisation 

The customer j supplier relationship takes place on three distinct levels 
(Figure 1): 



www.manaraa.com

Euromethod 467 

• the contract, 

• management and 

• production/provision level. 

1.4 How is the Contract Relationship defined? 

Euromethod addresses the first level, whereas most IS-development methods 
address the second and/or third level. 

1. Contract level 
The acquisition management function controls the acquisition and its 
various contracts. It is responsible for the service and system require
ments that are documented in the request for proposals, tender re
sponses and contracts. It controls whether requirements are met by 
the services and system and takes the appropriate measures when they 
are not. 

2. Management level 
The service or project management function plans and monitors the 
service or the production. It organises the team, allocates resources to 
the tasks, and makes sure that the required quality is achieved within 
timescales and budget. 

3. Production/provision level 
The service provision or project production function provides the re
quired service or systems for the customer, e.g. business process engi
neering, computer system operation, network maintenance, software 
development. For this purpose it uses resources (skills, knowledge, 
products, etc.) from the supplier and sometimes from the customer. 

In complex acquisitions, this level may be split into acquisition management 
and contract management and the various contracts may involve different 
people in their management. 

2 Making a Contract 

Due to the complexity of information systems acquisitions are usually split 
into several procurements regulated by contracts allowing for smaller lots and 
increased competition. Acquisitions may involve more than one supplier, each 
one being responsible for a subset of systems and services. Suppliers in their 
turn may have sub-contractors providing them with some services and sys
tems. The offside is an increase in preparation and administration especially 
at the beginning. A very common example of a stepwise acquisition is a 
pre-study performed internally or externally, before the actual procurement 
with a call for tender is launched. 



www.manaraa.com

468 Alfred Helmerich 

2.1 The Initiation of the Acquisition 

The acquisition process (or acquisition for short) is the process of obtaining 
a system or a service, or any combination thereof. Its necessity usually arises 
from some business needs. The acquisition goal is used to drive the acqui
sition process, which starts with the formulation of an acquisition strategy 
determining the number and the kinds of adaptations, service provisions, and 
contracts, that are needed to reach the acquisition goal. The planning of the 
acquisition process on the other hand usually results in a further refinement 
of the acquisition goal, in terms of 

• target domain affected, 

• systems and services requirements, 

• cost/benefit analysis, 

• stakes and stake holders. 

The acquisition planning will start by determining the overall adaptations 
and service provisions scenarios, then analysing the risks and designing an 
acquisition strategy within a risk management framework; setting up the 
acquisition organisation; and finally planning the main decision points of the 
acquisition: 

• decide to change some situational factors, 

• decide to change or refine requirements prior to tendering, 

• decide to use external assistance in the acquisition management, 

• decide the types of suppliers: internal or external, 

• determine the types of tendering (open, restricted, negotiated), 

• determine the interaction with suppliers (single-phase, multi-phase ten
dering), 

• determine the flexibility of contracts (capability to modify or refine), 

• decide the strategy regarding standards, 

• identify contracts and sequencing constraints (one or several contracts), 

• decide to buy or develop, 

• determine requirements to adaptation strategy, 

• determine the type of service arrangement, 

• determine requirements to service provision strategy. 



www.manaraa.com

Euromethod 469 

An acquisition strategy may be to perform the acquisition in more than one 
step, e.g. split the hardware procurement from the software procurement, 
or the feasibility study from the implementation. Each step is called a pro
curement and is defined within a separate contract. A procurement usually 
consists of a sequence of three processes: 

• tendering process, 

• contract monitoring and 

• contract completion process. 

2.2 Mode of Tendering 

The EC directives [EGKS94] ask that all call for tenders with a value above a 
certain limit (GATT-limit) are officially and openly announced in the Euro
pean Journal or electronically in Tenders Electronically Daily (TED; telnet: 
echo.lu). The directives regulate the structure and scope of the announce
ments; Euromethod prescribes the structure and supports the preparation of 
the accompanying detailed technical information. A standardised structure 
of the tender information and tender response already reduces the work load 
of both suppliers and customers. It is only natural that in Euromethod the 
tender information as well as the tender response are already in the same 
format as the technical annex of the final contract. According to the EC 
directives there are four modes of tendering described: 

• Open call for tender: 

The default for any procurement allowing unlimited participation of 
suppliers. 

• Restricted call for tender: 

In special cases the call for tender can be given to a short list of sup
pliers only. Generally this is admissible when the short listed suppliers 
effectively are all possible suppliers for the specific procurement. The 
above condition can be verified by a market study, a previous open call 
for tender or by a previous open call for application. 

• Negotiated call for tender: 

Allows the customer to make a contract with one supplier, if an open 
competition is proofed to be without success, not possible or not justi
fied by the procurement. Mostly it is used to contract some additional 
work (less than 20% of the original contract) or if there is only one 
supplier. 

• Open call for application: 



www.manaraa.com

470 Alfred Helmerich 

Describes a two phase tender process, where the customer first calls 
openly for suppliers to claim their interest. In a second step the call 
for tender is given to those suppliers only that have applied in the first 
step. 

In UK customers use the open call for application mode to generate a short 
list of possible suppliers. That is, they first call for mini-proposals, select 
admissible suppliers and then call the short listed suppliers for their full 
proposals. It is conceivable that the customer uses the mini-proposals to 
generate options for solutions that are then discussed with all short listed 
suppliers on a round table prior to the call for a full proposal for one selected 
option. 

3 What contains a Contract? 

A contract is a binding agreement between two parties especially enforceable 
by law or a similar internal agreement wholly within an organisation, for 
the supply of services or systems. Several contracts may be required for the 
acquisition of the systems and services needed by an organisation. It is the 
main goal of any contract to describe clearly the deliverables that are to be 
exchanged between customer and supplier. Deliverables can be products or 
services and are described 

• by their goals, constraints and quality characteristics (e.g. deliver a 
certain product to a customer within a certain time and cost and to 
the customers satisfaction), 

• by their results (e.g. delivered product), 

• by their activities (or sub-process) (e.g. the delivery process will consist 
in getting the product out of stock, checking its characteristics, selecting 
the transportation means). 

3.1 Description of Goals 

The goals of an acquisition are described in terms of a business strategy with 
market survey and estimates for costs and benefits. The acquisition goal is 
needed to co-ordinate all subsequent procurements and to guarantee the over
all success. Ideally the acquisition goals should well fit into the objectives of 
the enterprise. However, the complex of strategic planning, where objectives 
are analysed, mission statements formulated and business strategy planned, 
is outside the scope of Euromethod. The point of view Euromethod takes 
on the acquisition goal is that of the final state of the IS-adaptation or the 
service level that has to be achieved by the acquisition. Both are part of the 
delivery model of Euromethod and supported by templates and concepts that 
can be used. In other words the final state captures the results or deliverables 
of the acquisition. 



www.manaraa.com

Euromethod 471 

3.2 Description of Results 

The description of results is easiest if the products are already standard
ised as described in the European Procurement Handbook of Open Systems 
[Ephos94j. If the results are information systems, they can be described in 
Euromethod by the concepts of initial and final states. 

3.2.1 The Levels of Abstraction 

In analogy of the different levels of customer/supplier relationship, products 
of different level of abstraction are passed on between the levels. As Eu
romethod supports the contractual relationship, it only provides templates 
or profiles to characterise descriptive items. These profiles do not contain 
a summary of the content of the descriptive items, they rather classify the 
scope, the quality and functional properties of the descriptive item. For that 
reason the profiles are very flexible and can be 

• used to describe information at the contract abstraction level for deci
sion making, 

• used as acceptance criteria for controlling the contract, 

• adapted to the situation by defining the granularity of the grid to suit 
its objective. 

The latter can be used to describe the necessary deliver abIes for decision 
points. The common decisions are the selection of suppliers in the tender
ing phase, decisions about system design, future investments, and system 
acceptance in the contract monitoring and completion phases. 

3.2.2 The Types of Deliverables 

When characterising descriptive items by profiles, Euromethod recognises 
three main types of deliverables, for which different default profiles are pro
vided (Figure 2). 

3.2.3 Initial and Final States 

The profiles of all deliverables available at the starting point of the IS- adap
tation are called the initial state profile. Likewise is the set of profiles at 
the expected end point called the final state profile. The two are used to 
illustrate the transition the information system is meant to undergo during 
the IS-adaptation. 

An IS-adaptation is defined by its initial and final state. System develop
ment methods help create documents that describe the IS (IS-descriptions). 
Euromethod in addition helps to create profiles that characterise and describe 
the IS-descriptions 



www.manaraa.com

472 Alfred Helmerich 

3.3 Description of Tasks 

Task descriptions are used to steady state processes outsourced to some sup
plier supporting the day-to-day functioning of the organisation. They are 
usually continuous and they contain activities that are repeated regularly 
during the life of the organisation. They remain in the same steady state, or 
incur only slight changes, for long periods. Task descriptions are also used to 
manage contracts and allow for the flexibility of contracts needed during the 
adaptation of an organisation to its changing environment. Each adaptation 
is a specific process that has a beginning and an end and that executes a 
state transition in the organisation, i.e. it moves the organisation from an 
initial state to a final state in a certain elapsed time. The adaptation process 
can be adjusted to the problem situation and monitored to guarantee success 
by the following activities: 

• Risk Analysis, 

• Strategy Selection, 

• Decision Point Planning. 

3.3.1 Risk Analysis 

Euromethod provides a list of situational factors that need to be analysed as 
to their potential to cause risks, e.g. their likelihood of happening and the 
severity of consequences. For each situational factor, Euromethod proposes 
heuristics to diminish the inherent risk. Some actions are rather local and 

Deliverable Types 

Figure 2: Deliverable types in Euromethod 



www.manaraa.com

Euromethod 473 

Tenderiog Process 

Decision Points of the Contrad Monitoriog Process 

Figure 3: The connection of delivery planning and contract monitoring 

address one situational factor only, others are more global and affect the 
strategy selected for the IS-adaptation, like the splitting of the project into 
various steps or the evolutionary development. 

3.3.2 Strategy Selection 

Table (1) lists the strategy options among which one can choose in Eu
romethod. The choice is determined by the situational factors as explained 
in the previous section. Risks that are not covered by the chosen strategy 
have to be specially treated and monitored by the project control. 

3.3.3 Decision Point Planing 

A key element of flexible contracts are decision points (Figure 3). They allow 
the customer in co-operation with the supplier to make intelligent decisions 
based on the deliverables produced. 

Although the outcome of a decision can not be planned, it is possible to 
plan the decision and to specify the necessary deliverables. Actually, during 
the tendering process a refinement of that planning takes place and finally 
leads to the formulation of a delivery plan as a basis of the contract. 

4 Conclusion 

In Euromethod, a contract is not used as a legal means to pull the wool over 
the partner but as an instrument to come to a fair and clearly understood 
agreement that can be tailored to the problem situation and is flexible enough 
to adopt if needed. 



www.manaraa.com

474 Alfred H elm erich 

Adaptation approach Strategy options 
Description approach 
- cognitive approach l. Analytical: 

• use of abstractions and specification 

2. Experimental: 
• use of experiments and prototypes 

Description approach 
- social approach l. Expert-driven: 

• production and assessment separated 

2. Participatory: 
• joint production and assessment 

Construction approach 
l. One shot construction: 

• a single version constructed and tested in 
one step 

2. Incremental construction: 
• parts constructed and tested in a sequence 
of steps 
• no change of descriptions after first 
construction 

3. Evolutionary construction: 
• versions constructed and tested in a 
sequence of steps 
• changes of descriptions are possible after 
learning from test 

Installation approach 
- system coverage l. One shot installation: 

• a single version installed in one step 

2. Incremental installation: 
• parts installed in a sequence of steps 
• no change of descriptions after first 
installation 

3. Evolutionary installation: 
• versions installed in a sequence of steps 
• changes of descriptions are possible after 
learning from usage 

Installation approach 
- geographical coverage l. Global installation: 

• installation in all locations in one step 

2. Regional installation: 
• stepwise with more and more locations 

Table 1: Strategy options 



www.manaraa.com

Euromethod 475 

Benefits to customers 

• Clearer expression of requirements 

• Improvement of risk management 

• Guidance in choosing the appropriate acquisition approach for a specific 
problem situation 

• Better understanding of suppliers' proposals 

• Easier evaluation of suppliers' proposals 

• Easier system and service acceptance, through better requirements def
initions and planning 

• Improved decision process relating to deliverables and services 

• Avoidance of lock-in to a supplier 

• Avoidance of lock-in to a specific method 

• Better information to control costs 

• Easier control of ambitions 

Benefits to suppliers 

• Better information to control ambitions and costs 

• Enhanced management of risks involved in a project and/or a service 
provision 

• easier system and services acceptance, through better requirements def
initions and planning 

• Selection of the appropriate methods, techniques and tools 

• Determination of the appropriate approach for a project or service pro
vision 

• Easier to obtain a clear endorsement from customers of the key design 
decisions 

• A clearer view of the customer's IS 

• Better understanding of customer's needs 



www.manaraa.com

476 Alfred Helmerich 

References 

[EEC92] 

[EEC93a] 

[EEC93b] 

[EGKS94] 

[EM94] 

[EM96] 

[Ephos94] 

[FA94] 

[Fra94] 

[ME98] 

[QCKI91] 

[SPRITE97] 

[SSADM96] 

[TAP91] 

92/50/EEC: Service Directive, 1992 

93/36/EEC: Supplies Directive, 1993 

93/38/EEC: Utilities Directive, 1993 

EGKS, Offentliche Auftragswesen in Europa, Briissel-Luxemburg, 
1994 

Euromethod VO: Eurogroup, Euromethod Version 0, 1994 

Euromethod VI: Eurogroup, Euromethod Version 1, 1996 

European Procurement Handbook for Open Systems, Conference 
Proceedings, Na, DIANE Publishing Co, 1995 

Franckson, M., Anderson, N. E., The Euromethod Situational Ap
proach, (unpublished presentation), 1994 

Franckson, M., The Euromethod Deliverable Model and its contribu
tion to the objectives of Euromethod, in: A. A. Veriihn-Stuart,T. W. 
Olle (eds.), Methods and Associated Tools for the Inormaitno System 
Life Cycle, A-55, Elsevier Science B.V., North-Holland, 1994 

Melo, W., Emamn, K., The Theory and Practice of Software Process 
Improvement and Capability Determination, in: K. Emamn, J. N. 
Drouin (eds.), IEEE Computer Society, 1998 

Quang, P. T., Chartier-Kastler, C., IntI, S., Merise in Practice, 
MacMillan Computer Science, 1991 

SPRITE-S2 Initiative, http://www.ispo.cec.be/sprites2/spriobje. 
htm, 1997 

SSADM, Version 4.3, CCTA Library, 1996 

TAP, A Guide to Procurement within the Total Acquisition Process, 
CCTA M Treasury, 1991 



www.manaraa.com

PART THREE 

Tools for Analysis and Design 

This part is about those tools which can support information systems mod
elling helping management and technical personnel to collect, organise, store, 
and analyse information about the system, and to produce system descrip
tions on various levels of formality. Originally, CASE tools were developed 
with the aim of supporting the hard aspects of information systems design, 
i.e. the detailed design, implementation, validation, and testing of software 
("Lower CASE" tools). 

With time it has become clear that this approach was limited, on two 
accounts: 

• Designers need tools which support the requirements of management 
and technical personnel throughout the entire life-cycle of the system. A 
number of CASE tools have been built in support of the softer aspects 
of design, to help the task of requirements specification and analysis 
(collectively called "Upper CASE" tools). 

• It is clear that the information system life-cycle does not end at the 
design or implementation phase; a continuity between the design and 
implementation tools, and execution environments is highly desirable. 
This includes the management of executable models of the information 
system i.e. the management of the release to operation of implementa
tions (of human and computer implemented processes), and the man
agement of the execution of these processes, commonly referred to as 
workflow management. 

The above realisation resulted in a) the need for modelling entire business 
processes, including human and computer implemented activities, with the 
requisite need for analysis, as well as b) following the models after their 
implementation to operation through the implementation of some form of 
model based control. 

Naturally, the relevant analysis questions and synthesis rules of human 
implemented processes is markedly different from the analysis questions and 



www.manaraa.com

478 Peter Bemus 

synthesis rules of computer software, and today we are just at the beginning 
of being able to develop tools which support both. A complete treatment of 
the CASE tool area would have required a very extensive volume in itself. 
There are many fine CASE tools which for one reason or another are not 
represented in this volume and the editors had to decide to contend with 
a sample of typical tools - this is enough for the reader to appreciate the 
various types of functionality that an end user may wish to expect from such 
tools, and equip the reader with a shopping list of features when selecting 
a CASE tool for in-house use. However the handbook can not be used as a 
recommendation of preferred tools, only a very extensive survey of the area 
could find answers to such questions. 

One should read the part on information systems design tools in conjunc
tion with the part on modelling languages (Part 1), because the tools support 
the design process using these modelling languages. Nevertheless the sepa
ration of tools from languages is useful because all too often the blurring of 
the difference results the end user being locked in in the use of a tool if the 
selected tool is not based on well defined and published languages: as a result 
the produced models may only be usable in conjunction with the given tool. 
An end user committing to a tool of which the underlying modelling language 
is not public and is not exposed to outside scrutiny is playing a dangerous 
game, or at least is exposed to the tool vendor to an undesirable level. 

Given (a set of) languages supported by a tool the user (or more likely a 
group of users) will be able to produce models with the tool's help. These 
models are then used for a variety of tasks, limited by the language's ex
pressive power and afforded by the capabilities of the tool. Provided the 
underlying modelling language allows the representation of the requisite in
formation, the tool may support static or dynamic analysis of the system, the 
derivation of various system characteristics (such as expected performance in
dicators e.g. processing times and cost), sensitivity analysis, what-if analysis, 
etc. These can be achieved either by analytic or statistical evaluation of the 
design models, or through using simulation and statistical experimentation. 

This part presents examples of tools for analysis and design, as well as one 
example tool for detailed design and implementation which are available in 
the marketplace. There are seven contributions dedicated to such products 
or families of products. 

Florence Tissot and Wes Crump describe an integrated enterprise mod
eling environment based on the IDEF family of languages. They provide an 
overview of this approach, explaining the primary motivations for developing 
the software and describing its main features and characteristics. 

Walter Rupietta presents WorkParty, a family of tools for business process 
and workflow management. The contribution describes the concepts and the 
members of the family. 

Gunther Schuh, Thomas Siepmann, and Volker Levering present Pro
plan, a tool for the representation, analysis and documentation of business 



www.manaraa.com

Tools for Analysis and Design 479 

processes. 
August-Wilhelm Scheer presents the Architecture of Integrated Informa

tion Systems (ARIS). ARIS aims at addressing the entire information system 
life-cycle: from business process design to information technology deploy
ment. 

Gay Wood and Herrmann Krallmann present Bonapart. It is a general
use modeling, simulation and dynamic analysis tool designed to support both 
experts and non-experts in organizational decision making and planning. 

Kai Mertins and Roland Jochem present M02GO, a tool for object
oriented modelling and analysis of business processes. 

Finally, Alois Hofinger presents VisualAge, a comprehensive development 
environment, which is a tool supporting the detailed design and implemen
tation life-cycle phase of the software component in the information system, 
including its Human-computer Interface. 

Peter Bernus 



www.manaraa.com

CHAPTER 21 

An Integrated Enterprise 
Modeling Environment 

Florence Tissot, Wes Crump 

Increasingly complex systems have stimulated the development of sophisticated 
methods and tools for enterprise design and analysis. Advances in information tech
nology as well as significant progress in analytical and computational techniques 
have facilitated the use of such methods in industry. However, enterprise modeling 
and analysis methods are yet to make a significant impact in the decision-making 
process of most companies and organizations. In this contribution, we provide a 
detailed analysis of some of the major roadblocks to a broader use of enterprise 
modeling methods in industry. We then describe an approach that addresses each 
of those roadblocks. Finally, we provide an overview of a commercial software en
vironment that implements the approach, explaining the primary motivations for 
developing the software and describing its main features and characteristics. 

1 Enterprise Design and Analysis 

To survive in today's extraordinarily competitive and ever expanding world
wide economy requires a skillful management capable of monitoring and con
trolling highly complex situations and systems involving a growing number of 
interdependent parameters and variables. This phenomenon can be witnessed 
in a variety of organizations, institutions, and industries ranging from tradi
tional manufacturing industries, to software development, medical facilities, 
government agencies, and universities. 

Increasingly complex systems have stimulated the development of sophis
ticated methods and tools for enterprise design and analysis. Fueled by 
tangible benefits in many domains and by the synergy between academia 
and industry, many industries have increasingly accepted enterprise analysis 
methods such as optimization, simulation, cost analysis, and stochastic anal
ysis. Two key factors have accelerated the use of such methods: (1) advances 
in information technology (increased efficiency in the collection, storage, and 



www.manaraa.com

482 Florence Tissot, Wes Crump 

control of information) and (2) significant progress in analytical and compu
tational techniques. Nevertheless, enterprise analysis methods remain largely 
unharnessed, and advances in enterprise analysis theories have yet to filter 
into the mainstream of managerial decision-making. 

The reason for the limited success of enterprise analysis methods on a 
large industrial base is that these methods are generally very elaborate and 
require acute expertise to be used effectively. They operate on very intricate 
models of the enterprise being analyzed. Such models require specific formats 
and use technical jargon hardly comprehensible to the non-initiated. In this 
regard, an interesting parallel can be drawn between enterprise analysis and 
modern physics [Gig91]. A common approach to analyzing complex systems 
or phenomena consists of providing abstractions of the system being ana
lyzed. These abstractions isolate certain system characteristics from others. 
In the study of physical phenomena, physicists have repeated the process 
of abstracting to the point that it has become impossible to visualize the 
resulting abstractions. Zukav [Zuk79] writes: 

We have come a long way from Galileo's experiments with falling 
bodies. Each step along the path has taken us to a higher level 
of abstraction; first to the creation of things that no one has ever 
seen (like electrons), and then to the abandonment of all attempts 
even to picture our abstractions. 

In the process of modeling the world around us while trying to account for 
all of its complexity, physicists have created powerful and sophisticated mod
els. These models enable us to predict events, understand their impact, and 
manage and react more efficiently to the changes they generate. However, 
most people find it difficult to relate these complicated models to their own 
perception of the world. A similar situation has developed in the area of en
terprise analysis. This field of science and engineering has made tremendous 
progress in its ability to answer questions, determine optimums, and weigh 
alternatives. However, it has done so by providing abstractions that are far 
removed from the systems they model and hence that are inaccessible to the 
average decision-maker. While in physics the path from our perception of 
the real world to intricate mathematical models is paved with intermediate 
abstractions, in enterprise analysis there still exists a significant breach be
tween a decision-maker's perception of an enterprise and an executable model 
of that enterprise. 

This dichotomy between the executable models created for analysis and 
the actual enterprises they model has promoted the impression that enter
prise analysis is complex, time consuming, and prohibitively expensive. This 
perception is reinforced by the following characteristics of today's analysis 
efforts. 

1. Enterprise analysis efforts are analyst-dependent. To produce exe
cutable models, most enterprise analysis methods rely heavily on an 



www.manaraa.com

An Integrated Enterprise Modeling Environment 483 

expert. Applying a particular analysis technique requires the abstrac
tion and classification of enterprise concepts and elements into non
intuitive categories. In addition, enterprise analysis methods make use 
of specialized languages that demand a substantial amount of training 
to learn. For example, the building of an optimization model necessi
tates the expression of business rules and constraints with mathematical 
equations and the classification of elements and concepts of the enter
prise into parameters and variables. Hence, most domain experts do 
not have the training necessary to generate and execute analysis models 
and instead must rely on experts in the various analysis fields. 

2. Enterprise analysis involves time- and communication-intensive activi
ties. The domain experts' dependence on experienced analysts to gen
erate an executable model of a complex enterprise has made effective 
communication imperative. Domain experts possess in-depth knowl
edge of the enterprise to be analyzed. They understand the concepts 
underlying its functioning, the rules that constrain and govern its op
erations, and the interfaces and relationships among its components. 
Analysts, on the other hand, are experts in their particular analysis 
methods but typically have no understanding of the intricacies of an 
enterprise. Hence, the success of enterprise analysis depends on how 
well the domain expert can transfer his knowledge of the enterprise to 
the analyst and on how well the analyst can understand that enterprise, 
extract needed information, and design a valid executable model from 
that information. 

3. A significant amount of the effort spent is not reusable. The knowl
edge transfer between a domain expert and an analyst is mostly an 
ad-hoc one. The analyst directs the activity to extract the information 
and data needed to create a specific type of executable model of the 
enterprise. The analyst abstracts the domain expert's enterprise knowl
edge and directly encodes the resulting abstractions into mathematical 
formalisms and highly technical languages. It is seldom possible to 
reuse that knowledge later in other analysis efforts of a different na
ture. Because knowledge transfer is one of the most critical and most 
time-consuming activities of an enterprise analysis effort, this situation 
is one that can greatly influence its cost. 

4. Decision-makers are not in control of the enterprise analysis effort. The 
analysis models used to respond to a particular problem or to improve 
a certain aspect of an enterprise depend on the nature of the problem 
or on the desired improvement. The prevailing approach is to develop 
piecemeal custom models tailored to each specific decision-making sit
uation. Hence, given a series of questions about a particular enterprise, 
an analyst may develop as many as 5 different models encoded in 5 dif
ferent formalisms. This customization is often necessary because each 



www.manaraa.com

484 Florence Tissot, Wes Crump 

analysis method is better suited to answer a particular type of question. 
Nevertheless, since there is no underlying representation of the knowl
edge from which the various models are obtained, there is no mechanism 
to help the domain expert interpret the results of the various analyses 
as a whole and ascertain their impact on the overall enterprise. Hence, 
each question or goal is answered in isolation from the rest of the anal
ysis process, and the burden falls on the decision-maker to relate and 
integrate these independently obtained results. 

These four characteristics are often viewed by decision-makers as significant, 
if not insurmountable, obstacles that are far too costly to overcome. There
fore, a major challenge to increasing the use of enterprise analysis methods 
in businesses and organizations is to provide the tools and methods that will 
address those obstacles and render analysis activities more attractive to all 
participants. 

2 Enterprise Models as Intermediate 
Representations 

To overcome these obstacles, practitioners and researchers have followed an 
approach that consists in providing intermediate representations between a 
practitioner's perception of an enterprise and a typical executable model of 
that enterprise. Computer programming is a field in which this approach 
has been used successfully. In the early 1950's, first generation computers 
required programs written in machine language. Using machine language, a 
programmer encodes a set of instructions as strings of zeros and ones that 
specify the desired states of a computer's internal circuits and memory banks. 
Programming in machine language was (and still is) extremely tedious and 
time consuming. In addition, only a limited number of experts actually 
understood the language. The next generation of computer language was 
the assembly language. This language is a direct symbolic representation 
of the strings of zero and ones from the machine language. Although it 
still requires programmers to understand fully the computational model of 
the computer they are programming, it simplifies the programming tasks by 
providing a syntax that is more intelligible to humans. Over the years, to 
further the development of software and render programming accessible to 
more researchers and engineers, high level languages (such as LISP) were 
developed and refined. By providing an additional level of abstraction, these 
languages enable programmers to follow a simplified model of computation 
that is more natural because it is closer to the human way of individuating 
the world. Each step in the evolution of programming languages has resulted 
in programs that are closer to the human mental model of computational 
activities and, hence, that are easier to create, manipulate, and maintain. 

In enterprise analysis, representations that lie between a decision-maker's 



www.manaraa.com

An Integrated Enterprise Modeling Environment 485 

perception and an analyst's model of the same enterprise are often called 
conceptual models in recognition of their basic conceptual nature [BMS84]. 
These special-purpose representations describe the various aspects of an en
terprise with the goal of supporting a business (usually decision-making) 
activity. Conceptual models are formal or informal abstractions of a sys
tem that are expressed using special-purpose modeling constructs. Typically 
part of a modeling language's syntax, these constructs include simple graph
ical elements such as circle, boxes and arrows. These graphical elements are 
combined into easy-to-understand diagrams that can generally be augmented 
using annotations (Figure 1 gives an example of such type of diagrams). 

Figure 1: A Sample Entity-Relationship Diagram 

The rationale for using relatively simple diagrams to represent a particular 
aspect of an enterprise derives from the original objective for building these 
models, best summarized by van Gigh [Gig91]: 

The first objective of modeling is to attempt a simplification of 
the real world situation through abstraction. [ ... ] A good model 
must display the same characteristics or properties as the slice of 
the world from which it has been extracted. However, because a 
model is much simpler, it can more easily be studied and manip
ulated to yield a solution. 

Note that the use of diagrams or graphical means to represent an enterprise 
does not imply a lack of formality. Some of the IDEF modeling methods, for 
example, have precise syntax and semantics. 

2.1 Enterprise Models and their Characteristics 

The term enterprise model set is used to refer to a group of conceptual mod
els built to obtain a coherent and comprehensive picture of an enterprise. 
This set includes models of various types, and each type of model defines 
"a perspective or viewpoint from which the system is considered for a given 
purpose, concentrating on some aspects and hiding irrelevant ones to reduce 
complexity" [Ver96]. An enterprise model set can include various activity, 
process, organization, information, and behavioral models. This diversity of 
model types is based on an important insight. A typical enterprise contains 



www.manaraa.com

486 Florence Tissot, Wes Crump 

many different information types arising from different aspects of that enter
prise: the relatively static information that might be stored in an employee 
database, the dynamic information involved in planning or processing, the 
complex array of information found in a detailed product design, etc. Con
sequently, a particular model type is tailored to a given kind of information, 
and models tailored to one type of information may be quite unsuitable with 
regard to another. 

Enterprise model sets have three critical characteristics. First, as stated 
above, each type of model in a set is different in nature from any other model 
type. This fact is worth emphasizing. A model of a given type does not sim
ply provide a view on the information known about an enterprise, but also 
captures information that is different in nature from the information cap
tured in other model types. The central way in which one model type differs 
from another is not in the amount of information or the characteristics of the 
enterprise that it describes. Rather, the difference lies in its semantic cate
gories, the kinds of things that are taken as primitive (processes, activities, 
classes, attributes, etc.) and the logical relations those categories can bear 
to one another. Zachman writes [Zac86]: 

A significant observation regarding these architectural represen
tations is that each is of a different nature than the others. They 
are not merely a set of representations, each of which is an in
creasing level of detail than the previous one. Level of detail is 
an independent variable, varying within each architectural repre
sentation. 

The second critical characteristic of these models is that all model types are 
equally important in describing an enterprise. Each model type is necessary 
to capture different aspects of the enterprise and, ideally, all types of models 
should be developed to provide a comprehensive and coherent description of 
the enterprise. Again, Zachman writes [Zac86]: 

[ ... ] there is not an architecture, but a set of architectural repre
sentations. One is not right and the others wrong. The architec
tures are different. They are additive, complementary. There are 
reasons for electing to expend the resources for developing each 
architectural representation. And, there are risks associated with 
not developing anyone of the architectural representations. 

Finally, the third major characteristic of an enterprise model set is that the 
models constituting the set are not independent from one another. Each 
model describes some aspect of the enterprise that depends upon and is con
strained by aspects of the enterprise described in other models. For example, 
the information captured in a data model may limit the execution of tasks 
described in a process model. The dependencies and relationships across 
models ultimately enable the projection of a comprehensive, consistent, and 
coherent enterprise view. 



www.manaraa.com

An Integrated Enterprise Modeling Environment 487 

2.2 Today's Enterprise Modeling Methods and Tools 

The potential of conceptual models to describe, design, and analyze complex 
systems was recognized in the late 1970's, and enterprise modeling technology 
has made steady progress since then. Today enterprise modeling methods and 
software tools exist for a variety of model types including data, function, pro
cess, object, and organization models (IDEF, SADT, GRAI/GIM, CIMOSA, 
etc.). Because these modeling methods typically provide intuitive, easy-to
understand graphical languages to represent concepts and their relationships, 
domain experts are able to directly and explicitly capture and represent some 
of their domain knowledge with limited training in the corresponding meth
ods and tools. 

The use of these methods and tools benefits enterprises and organizations 
in several important ways. First, conceptual models can be used to transfer 
knowledge between domain experts and system analysts in three steps. In 
the first step, domain experts record their knowledge of the enterprise in 
an enterprise model set. The system analyst then studies this set to gain a 
good understanding of the enterprise and its characteristics. Finally, the two 
parties meet to discuss missing pieces of information and ambiguities in the 
models. Thus, the time and associated cost of knowledge transfer activities 
is significantly reduced in two ways. First, the interview process, formerly 
an activity in which success depended largely on the analyst's interviewing 
and the domain expert's description skills, is now replaced by the structured 
best-practice guidelines and procedures provided by the modeling methods. 
Second, the amount of time required for meetings between the two parties is 
dramatically reduced. 

Another way in which enterprise modeling positively impacts analysis ef
forts is reuse. Because enterprise models are not committed to a low-level 
representation language (such as a particular simulation language), they pro
vide the foundation from which a variety of analysis models can be built 
to satisfy various goals. Enterprise models created by a domain expert can 
be reused by a number of analysis method specialists to build a variety of 
analysis models. Even as the enterprise changes over time, the enterprise 
models can evolve to reflect these changes and, hence, be reused in future 
analysis efforts. Finally, because analysis models are built from an explicitly 
represented set of conceptual models, decision-makers and domain experts 
can more easily relate the results of analysis efforts to the enterprise being 
analyzed. These conceptual models enable them to exercise better control 
over these efforts and to participate more fully in the design and evaluation 
of alternatives. The benefits of using conceptual models therefore increase 
domain expert's acceptance and motivations to using analysis methods. 

Not surprisingly, these important advantages have prompted great inter
est and expectations in enterprise modeling. Kosanke writes [Kos92]: 

Enterprise modeling has to fulfill a number of requirements to 
meet the needs of day-to-day operation. Modeling has to result 



www.manaraa.com

488 Florence Tissot, Wes Crump 

in better understanding and handling of complexity in enterprise 
operation. Modeling has to enable simulation of alternatives and 
identification of optimum solutions. The ultimate use of a model 
will be its direct execution to control and monitor enterprise op
erations. 

Similarly, Grosof and Morgensten [GM92] expect enterprise models to en
able rigorous reasoning about an enterprise and to generate executable spec
ifications that can then be used for experimentation and simulation. These 
expectations, however, have yet to be fulfilled. Although enterprise models 
are gaining popularity in industries and organizations and are at the center 
of a number of success stories, particularly in business process reengineer
ing, enterprise technology has yet to realize its full potential in a commercial 
setting. Four major challenges stand in the way. 

The first challenge originates in the critical characteristics of enterprise 
model sets, namely the differential and complementary nature of the models 
that comprise the set. Recall that the various conceptual enterprise models 
(data, activity, process, organizational models, etc.) each focus on a spe
cific type of information that differs in nature from that dealt with by any 
other model types. Each is necessary to describe a particular aspect of an 
enterprise, and only a set that includes all of the models can provide a com
prehensive representation of an enterprise's operations. Consequently, the use 
of enterprise models for controlling and monitoring an enterprise requires the 
generation of a number of different model types. Today, this model genera
tion can typically be accomplished only by developing each model separately, 
using independent software applications with proprietary storage mechanisms 
and formats. Hence, it is at best cumbersome and at worst impossible for a 
domain expert to reuse, in some automated fashion, the information captured 
in a model of one type in a model of another type. This situation has made 
the development of a complete enterprise model set a: time consuming and 
effort-intensive endeavor that requires the use of a number of disjointed soft
ware applications. Call this the challenge of heterogeneous modeling methods 
and tools. 

The second challenge. facing enterprise modeling technology stems from 
the third major characteristic of enterprise modeling sets, namely the inter
dependency of the conceptual models that constitute the set. Because all 
models of an enterprise capture some aspect of the same enterprise, there 
will be a number of relationships and dependencies among the concepts rep
resented in the various models. Consequently, to develop a comprehensive 
and coherent picture of the enterprise, the various models must be correlated 
to permit understanding of the relationships and constraints between the el
ements represented in the various models. Only such correlation can make it 
possible for decision-makers to detect conflicts and inconsistencies between 
models, identify missing information, and calculate the impact of changes in 
one aspect of the enterprise on other aspects. However, in today's modeling 



www.manaraa.com

An Integrated Enterprise Modeling Environment 489 

development environments, each type of model is generally captured, repre
sented, and stored using a stand-alone application. Hence, it is impossible, 
for all intents and purposes, to explicitly correlate enterprise models and use 
the correlations effectively to (1) obtain a coherent view on the enterprise 
and (2) evolve the models over time while maintaining consistency between 
them. Call this the model correlation challenge. 

As discussed earlier, each modeling method focuses on a particular as
pect of an enterprise. For example, a process modeling method focuses on 
the processes or tasks that are performed, on the partial ordering of these 
tasks with respect to time, and on the objects involved in each task. A 
data model, on the other hand, captures information about the types of data 
stored and managed in the enterprise, the characteristics of the data, and the 
relationships and constraints between them. While soundly motivated, this 
restriction on the types of information managed by each modeling method 
leads to the third challenge facing enterprise technology. When representing 
their knowledge using a modeling tool, decision-makers and domain experts 
will often feel the need to record some information elements whose type is not 
supported by that particular modeling method and tool. These information 
types can be critical for providing a good understanding of the enterprise's 
operations and/or for generating analysis models of the enterprise. Usually, 
these types of information elements are not supported by the modeling meth
ods because they are too specific to a particular domain or enterprise and fall 
outside the scope of each particular method. To capture and store such in
formation elements, practitioners are therefore reduced to using ad-hoc notes 
and annotations (when the modeling tool supports them). Consequently, the 
effectiveness with which this additional information can be used (and reused) 
is dependent on the communication skills of the domain expert, in effect go
ing against one of the primary reasons for using modeling methods in the 
first place. Call this the challenge of representation extensibility. 

Finally, the last challenge to effective use of enterprise model technol
ogy concerns the automatic generation of executable analysis models (such 
as simulation or optimization models) from conceptual models. The goal 
of compiling an enterprise model into an executable model is not to reduce 
the role of analysis experts in the analytical process. Given the complexity 
and the expertise needed to apply analysis methods effectively and to inter
pret the results of analysis effort, this exclusion would not be a realizable 
goal. Rather, the goal is to minimize the non-value-added activities that are 
involved in transferring knowledge from domain experts to system analysts. 
Once automatically generated, an initial executable model can be completed, 
fine tuned, validated, and finally run by an expert in the corresponding anal
ysis method. Call this the challenge of enterprise modeling compiling. 

Today only a handful of commercially available software applications ex
ist that are capable of compiling enterprise models into executable models. 
The reason is that automatic generation of executable models is a difficult 



www.manaraa.com

490 Florence Tissot, Wes Crump 

problem that requires expertise from both fields of enterprise analysis and en
terprise modeling. Building even a draft executable analysis model requires 
extensive expertise in the chosen analysis method. Creating one based on 
the information contained in a conceptual model is not simply a matter of 
translating knowledge from one language to another. Not only does it re
quire a deep understanding of both the modeling method and the targeted 
analysis method, but it also demands the development of generic, and often 
complex, mappings from one method to the other. The development of such 
a compiler is made even more difficult because analysis models require types 
of information that are generally not accounted for in high-level conceptual 
models. Consequently, this type of information must either be added after 
the executable models have been generated, in which case that information 
is never explicitly linked to the original model elements, or it must be cap
tured as part of the conceptual models, which requires ad-hoc additions and 
modifications to the original modeling methods and tools. 

Another issue about enterprise model compilers is the quality of the ex
ecutable models generated. Today, most commercially available compilers 
generate executable models from one type of model (e.g., simulation models 
are generated from process or activity models, but not both). This restriction 
limits the quality of the executable models being generated as they can only 
rely on the description of one focused aspect of the enterprise. More effective 
and better initial models generated by an integrated set of enterprise models 
would together capture various but interdependent aspects of the enterprise. 

In summary, then, enterprise modeling faces four significant challenges: 
(1) heterogeneous modeling methods and tools; (2) model correlation; (3) 
representation extensibility; and (4) enterprise model compiling. In 1980, 
Brodie, Mylopoulos, and Schmidt wrote [BMS84]: 

We believe that further advances in conceptual modeling require 
the integration of the concepts, tools, and techniques that were 
developed for system description. 

Although some advances have been made in conceptual model integration 
since then, the four challenges described above remain major roadblocks to 
the use of enterprise modeling technology on a large industrial base. For 
a description of some research efforts in this field, the reader is referred to 
[Ver91, Fox91, HJKSMC91, Kos92, MSJ91, Que91, FMM95]). 

In the next two sections, we will describe a truly integrated enterprise 
modeling environment that addresses the challenges described above. Sec
tion 3 focuses on the underlying conceptual approach to addressing those 
challenges while section 4 provides a detailed description of the resulting 
commercial software. The development of the approach and of the commer
cial software that implements it is the result of over six years of research and 
development in the area of enterprise integration, enterprise model integra
tion, and enterprise model compiler technology. 



www.manaraa.com

An Integrated Enterprise Modeling Environment 491 

3 A Truly Integrated Approach to Enterprise 
Modeling and Analysis 

Our approach to overcoming the four challenges described in the previous 
section is the development of an integrated modeling environment that sup
ports the following elements: capture of the entire enterprise model set within 
a single application, model integration, and extensions to the information 
types managed by the various model types. In the following subsections, 
we describe how our approach provides a solution to each of the identified 
challenges. 

3.1 Overcoming the Challenge of Heterogeneous 
Modeling Methods and Tools 

Our approach to overcoming the challenge of heterogeneous modeling meth
ods and tools involves two goals. The first is to provide an environment that 
supports the capture, representation, and storage of a variety of model types 
within one application. This application is composed of a variety of modules, 
each providing the necessary functionality for capturing and manipulating 
the information types relevant to a particular model type and each responsi
ble for enforcing the rules and procedures of the associated modeling method. 
All models in the enterprise model set can then be concurrently viewed and 
manipulated within the application's uniform user interface. The informa
tion captured in the various models that constitute the enterprise model set 
is stored in a single integrated information base. 

Our second goal is to provide a mechanism for reusing information cap
tured in one model type to create different model types. This is done by 
identifying relationships and dependencies among the concepts (i.e., infor
mation types) supported by the various modeling methods. The identified 
relationships are used to define rules for automatically generating a given 
perspective of an enterprise (i.e., a given model type) from one or more ex
isting enterprise models of different types. In this manner, the creation of a 
variety of model types to describe an enterprise is partly automated, and the 
potential for model and model element reuse is increased dramatically. 

3.2 Overcoming the Challenge of Model Correlation 

Recall that the model correlation challenge concerns the capture, represen
tation, and storage of inter-model relationships and the use of these relation
ships to maintain consistency across the enterprise model set. Our approach 
to solving this problem is to provide users with the means to identify and 
record relationships between model elements across model types. Because 
the integrated modeling environment enables users to view multiple models 
concurrently, the identification of relationships is simply of matter of select
ing the model elements to be related and the relationship that relates them. 



www.manaraa.com

492 Florence Tissot, Wes Crump 

Once identified, the relation instance is stored in the integrated information 
base and used to maintain consistency between the related elements. 

Our approach to using relation instances for maintaining inter-model con
sistency is based on a simple but powerful observation. Inconsistencies across 
models in an enterprise model set can be of three types. The first type oc
curs when one or more properties of an element in a model (or of the model 
itself) conflicts with properties of one or more elements in another model. 
An example is the duration of a process in a process model differing from the 
duration of an activity representing the same real-world event in an activity 
model. The second type occurs when an association between two elements in 
one model conflicts with associations between elements in another model. As 
an example, consider a process in a process model being associated to a par
ticular type of resource through the 'use-as-input' relation. Suppose that the 
real-world event represented by the process is recorded as an activity A and 
the type of resource as a concept C in an activity model of the same enter
prise. Then, an inconsistency between the two models occurs if C and A are 
not related through the 'input' relation (or some similar relation) in the ac
tivity model. Finally, the third type of inconsistency that can occur between 
two models of the same enterprise happens when one of the models lacks 
information the other contains. The detection of this type of inconsistency 
is harder to automate as it may simply be the result of a conscious decision 
on the part of the domain expert to describe an aspect of the enterprise with 
more details than those used in another model. 

Given the nature of inter-model inconsistencies, it is possible to automate 
conflict detection and consistency maintenance in the following manner. The 
relationships between elements across models are characterized by the way 
they constrain (1) the properties of the elements they relate and (2) the 
relationships that these elements have to other elements in their respective 
models. The impact of a change on an information element in an enterprise 
model can then be automatically assessed based on the characterization of 
the relationships it bears to elements in others models. This assessment 
is then used by the environment to detect conflicts and propagate changes 
automatically. 

3.3 Overcoming the Challenge of Representation 
Extensibility 

An important characteristic of enterprise models is that each type of model 
focuses on a very specific aspect of an enterprise and therefore is limited 
with regard to the types of information that it can represent. As described 
in previous sections, although soundly motivated, this feature of enterprise 
models hinders the ability of domain experts to capture information that is 
highly domain-specific and hence may not fall within the types of information 
supported by the environment. Our approach to overcoming this challenge 
is to enable seamlessly integrated extensions to the information types sup-



www.manaraa.com

An Integrated Enterprise Modeling Environment 493 

ported by the environment. Such extensions are made possible by the flexible 
underlying structure of the integrated information base. 

The integrated information base's underlying structure is rooted in a flexi
ble knowledge representation system developed at Knowledge Based Systems, 
Inc. (KBSI) called the Container Object System (COS) [SBMM91]. Briefly 
stated, the COS representation scheme is based on the separation of ex
istential knowledge from descriptive knowledge. A container object has a 
non-qualitative, unique property that distinguishes it from any other object. 
The existence and identity of the object is therefore determined by that prop
erty. The set of descriptive information elements for that object, including 
the object's qualitative properties and the relationships that it bears to other 
objects, forms a 'container' that is simply attached to the object and can be 
easily modified over time. 

The integrated information base is thus structured to represent the var
ious information types needed by modeling methods as types of containers. 
In this manner, an object can have multiple sets of descriptive knowledge 
(or containers) that are used to describe it according to various perspectives. 
In effect, the containers capture the information known about the model 
elements that represent, in the various models, the real-world object corre
sponding to the container object (as illustrated in Figure 2). This approach 
enables and facilitates extensions to the properties of existing information 
types (an activity which corresponds to adding a property or relation to a 
type of container) and the creation of new information types (an activity 
which corresponds to the construction of new types of containers). Because 
relationships are explicitly represented in the information base, new informa
tion elements and types can easily be related to existing ones, and behaviors 
can be assigned to those relationships in the manner described in Section 3.2. 
Extensions made in such a manner are seamlessly integrated with existing 
information elements in the information base and can be manipulated and 
reused as if they were an integral part of the enterprise model set. 

Activity View 

l----~ Input: 

Output: 

Process View 

Duration: 1.5 b 

Successor: 

Figure 2: Logical View of the Information Base 



www.manaraa.com

494 Florence Tissot, Wes Crump 

3.4 Overcoming the Challenge of Enterprise Model 
Compiling 

Recall from Section 2 that the generation of executable models requires de
tailed information typically not found in more abstract conceptual models 
and that, traditionally, executable models have been generated from a single 
perspective (i.e., a single type of model). There are three ways in which our 
approach addresses these problems associated with the challenge of enter
prise model compiling. The first two ways, which also provide solutions to 
the other challenges to enterprise modeling technology, come in the form of 
the integrated information base and its extensibility. The extensible property 
of the information base allows information specific to analysis methods to be 
captured, represented, and stored in the information base as well as explic
itly linked to the appropriate model elements. In this fashion, information 
captured for the purpose of generating a particular executable model can be 
reused for other analysis efforts of a different nature. The integrated infor
mation base also enables enterprise model compilers to generate executable 
models from the total set of enterprise models. In our integrated modeling 
environment, because the various models that constitute the enterprise model 
set are tightly coupled through meaningful relationships and constraints, ex
ecutable models can be generated from a coherent and comprehensive picture 
of the enterprise. 

The third way in which our approach addresses the enterprise model com
piling challenge is by providing the means to extend the functionality of the 
environment and to integrate such extensions through a uniform user inter
face. This feature allows for the total integration of the various compilers 
with the original environment. With such extensions, the integrated model
ing environment truly supports all phases of analysis efforts, from conceptual 
modeling to the generation of executable models, while maximizing reuse and 
minimizing non-value-added activities. 

4 The Uniform Modeling Environment 

The Uniform Modeling Environment (UME) is a commercial software ap
plication developed at KBSI that implements the approach described in the 
previous section. In addition to addressing the major challenges of enterprise 
modeling technology, the design and development of the UME has been mo
tivated by the need for the effortless and rapid specialization and extension 
of current modeling tools. The goal of the UME is therefore to provide an 
integrated suite of enterprise modeling tools and an environment that can be 
easily extended to provide an ideal setting for performing enterprise analysis. 

The impetus for the system design was to support two fundamental au
diences. One is the end users or model builders. They have the task of 
analyzing a real-world domain, of creating and abstracting out of that do-



www.manaraa.com

An Integrated Enterprise Modeling Environment 495 

main the various enterprise models that represent different aspects of the 
enterprise, and of generating initial executable analysis models from these 
enterprise models. The second audience is the developers of modeling tools 
and enterprise model compilers. They are responsi1;>le for building and sup
porting modeling activities by maintaining and extending the environment 
as necessary. The UME's architecture supports the activities of. both audi
ences by (1) supplying a team-based integrated modeling environment and 
(2) providing developers with the mechanisms to rapidly and easily generate 
inter-operable extensions to the UME. 

Figure 3 illustrates the system architecture that supports these objec
tives. The heart of the system, the core component, provides three main 
pieces of functionality, the user interface shell, the database access services, 
and the mechanisms for model integration. The user interface shell provides 
the foundation for the common user interface, which includes basic user ges
tures support, common menus, toolbars, etc. The database access services 
implement the basic functionality for storing and managing models and other 
types of information in the integrated database via a common database in
terface. Finally, the core component encapsulates a powerful inference engine 
that is responsible for providing model integration through inter-model con
sistency maintenance and automatic change propagation. 

The first echelon of the architecture contains the various modeling mod
ules, called modelers, that operate within the environment. Each modeler 
supports the creation and management of a single model type. Each modeler 
is a separate, complete component that interfaces with the core through the 
common database and common user interface. Each modeler provides the 
core component with a description of the types of model elements that must 
be managed in the common database. The core component uses this descrip
tion to create the necessary database tables and entries as requested by the 
modeler. This technique allows new modelers to be added to the environment 
without disturbing the database. The modelers also provide their own user 
interfaces that extend the core's user interface to enable the creation and 
management of models and model elements. 

At the second echelon, the plug-in applications provide another level of 
functionality and integration. They extend the environment even further 
by building on the core component and one or more of the modelers. In 
particular, this echelon is designed to facilitate and support the development 
of enterprise model compilers to create bridges between the basic modelers 
and a variety of analysis tools. 

At the third and final tier lie the custom extensions. Custom extensions 
are only a degree different from applications as they are melded with the 
environment in a similar way. The goal is to provide an easy point of access 
for end users to create their own extensions to the modeling environment. 
This echelon allows virtually unlimited extensibility to the environment while 
maintaining the integrity and consistency of the formal methodologies sup
ported by the tool. 



www.manaraa.com

496 Florence Tissot, Wes Crump 

Custom Extensions 

Plug-in Applications 

t~:~ ' 

Application 
Storage 

Model Repository 

Figure 3: Conceptual Architecture of the UME 

Application 
Storage 

4.1 Providing for the Modeling Tool End-Users 

In striving to satisfy the needs of two very different groups, end-users of 
modeling modules and modeling modules developers, programmers invariably 
face conflicting requirements: enhance the application being developed to 
provide maximum assistance to the end-user, or program the application to 
optimize the time, money and effort spend on the development phase. Our 
focus at KBSI has always been on helping the end-users first and only then 
assisting the tool developers. After all, software is ultimately built to enhance 
and assist end users, not to make the developers' jobs easier. While this seems 
like an obvious objective, in reality, software is frequently written to satisfy 
given functionality requirements while minimizing effort and cost, a situation 
that often shortchanges the user. 

Enterprise modeling is an extraordinarily complex endeavor requiring 
many skills and detailed thought processes. Developing software tools that 
supports domain experts in performing modeling activities requires that tool 
developers design user interfaces that are as transparent as possible while 
still providing users with the power to handle complex modeling tasks. An 
effective user interface should be invisible, allowing the modeler to concen-



www.manaraa.com

An Integrated Enterprise Modeling Environment 497 

trate on the complex systems being modeled rather than on how to operate 
the supporting tool. A key focus in the design of the UME was to facilitate 
enterprise modeling activities by making the user interface as pleasant and 
transparent as possible. 

4.1.1 User Interface Based on Sound Principles 

While each application has its own special needs and concerns for the user 
interface, general guidelines help make the difference between an exceptional 
user interface and just an average one. Our first objective was to make the 
user interface fade from the user's mind, to make it invisible to the users. The 
second objective was to follow, as closely as possible, the users' mental model 
of the system and of the data being manipulated to make interfacing with 
the environment intuitive and logically consistent. The third and final aim 
was to allow as much direct manipulation of the models and model elements 
by enabling user gestures such as drag-and-drop actions, single and multi
element selection, edit-in-place, etc. 

4.1.1.1 Provide an Invisible Interface A simple design technique to 
improve an application's user interface is to replace most dialog boxes with 
direct manipulation, edit-in-place, and status bar messages. Dialog boxes 
interrupt the user's thought process, demanding answers and forcibly ex
tracting acknowledgments. These interruptions distract users from the task 
at hand and often make using a software application a frustrating experience. 
In the UME, we have carefully analyzed the process of building enterprise 
models and used the analysis results to drastically reduce the number of 
unnecessary interruptions caused by dialog boxes. 

The modeling modules of the UME allow users to pace themselves when 
developing models by allowing them to enter information in a variety of ways 
and in any order they chose. Normally, when a complex system descrip
tion is constructed, the process of refining a model includes various stages of 
incompleteness, inconsistency, and inaccuracy. To support this kind of en
vironment, the system allows incomplete data to be entered and completed 
later whenever possible. The ability to postpone filling in all information and 
to delay the validation phase allows the model builders to continue working 
uninterrupted until the model has reached a stable point. 

In the UME, we used a variety of techniques to achieve such user inter
face, including typical defaults, user input saving and reuse, input validation 
delays, automatic translation, and automatic information completion. Al
though these changes are more difficult and time consuming to implement, 
they do eliminate the peevish tone of an application that continuously forces 
perfection on the user. One aspect of our approach to designing and building 
the user interface is to plan for the most common case and allow users to 
deviate from it without any complaints from the tool. To paraphrase Alan 
Cooper [Coo95] on user interface design, 'no matter how good your interface 



www.manaraa.com

498 Florence Tissot, Wes Crump 

is, less of it would be better.' By removing environmental obstacles and dis
tractions, the UME allows model builders to concentrate on their thought 
process and the task at hand, and to only notice the user interface when 
necessary or convenient for them. 

4.1.1.2 Follow Users' Mental Models Another aspect of our approach 
to user interface design is to let the user do the thinking but the software do 
the work. The UME provides the ability to do complex tasks with simple user 
gestures. In order to provide this capability, we identified common repetitive 
tasks that occur during the creation and manipulation of enterprise models 
and implemented sensible manipulation techniques to allow users to easily 
perform these tasks. For example, a common characteristic of modeling tools 
is the ability to create and manipulate diagrams and graphs. In the UME, 
these graphs can be manipulated directly through multiple selection and drag
and-drop actions, (e.g., to create a link between to nodes in a graph). These 
features facilitate the interaction between the user and the environment, in 
effect, enabling users to concentrate on the task of creating diagrams rather 
than on interacting with the tool. 

Our tools have traditionally supported auto placement and auto routing 
capabilities, eliminating the problem of tiresome manual placement of graphi
cal elements. The UME continues this tradition but adds a few enhancements 
that give the user more control over model element placement. Our guiding 
principle in providing enterprise modeling tools continues to be to provide 
end-users with as much automated support as possible but always provide a 
way for the user to override the default behavior of the tool. In this manner, 
the tool automatically performs actions grounded on the probable case and 
then provides the ability for the user to change that default behavior. In 
the case of diagrams, this principle translates into letting the user place and 
reposition diagrams elements within a diagram while providing basic auto 
routing of links between those elements and a feature that can redraw entire 
diagrams automatically. 

An important characteristic of today's end-users is that they never make 
mistakes (that is, in their minds, at least). Their mental model of how an 
application should operate does not include the possibility of their making an 
error. Error messages generated by an application are really just indications 
that the software is not robust enough to handle input from the user. The 
way to mitigate this shortcoming is by providing the user with an undo 
capability. Thus, when the tool users and the tool developers differ in their 
expectations of how the application should operate, the user does not lose. 
The UME supports the undo command through the use of special-purpose 
objects, which allow users to roll back undesired actions until a previous 
(and desired) state of the information base is reached. This functionality, 
while usually invoked to correct mistakes made by the user, is also useful for 
experimentation. Users can tryout various actions and features and, if the 



www.manaraa.com

An Integrated Enterprise Modeling Environment 499 

results aren't the ones desired or expected, can undo the action and recover 
the previous model state. 

4.1.1.3 Allow Direct Manipulation Direct manipulation is an essen
tial component to providing an immersive environment for users. An immer
sive environment is one that allows users to fully concentrate on the task at 
hand by never having to interrupt their thought process to ponder on how 
to make the application behave in some particular fashion. This means that, 
for every possible action that the user can take to change the models, the 
tool should provide a way to do it directly. For example, if users can see a 
model element on the screen, then they should be able to directly edit and 
manipulate it. Almost everything that can be done to an object in the envi
ronment using dialogs and menu commands must also be supported by direct 
manipulation in the form of edit-in-place; multi-select; drag-and-drop move, 
copy, etc. 

4.1.1.4 Enable a Novice to Perform at an Expert Level Clearly 
there is an enormous gap in the skills and abilities between novice and ex
pert model builders. While it is not possible to immediately provide novices 
the years of experience of the expert, novice users can be guided through 
the modeling processes, helping them to perform at much better than novice 
levels. The system aids the novice user in several important ways. First, 
it supports and enforces the rules and the syntax of the modeling methods, 
thereby guiding the user through the proven benefits of using these formal 
methods. By doing so, it enables users with a limited knowledge and un
derstanding of the methods to build meaningful and valid models. Second, 
by providing automatic input completion and allowing users to build their 
models in a piece-wise manner, it allows novices and beginners to experiment 
with the tools and work at their own pace. In turn, this characteristic of the 
UME allows model builders to slowly gain confidence in their ability to build 
models and use advanced modeling techniques, without being intimated by 
the environment. Finally, by providing automatic translation and consistency 
maintenance, it provides tremendous support for users to validate and refine 
their models. 

4.1.2 Integrated Modeling Environment 

The UME is an integrated environment at both the data and the user in
terface levels. As described in previous sections, our approach to solving 
some of the challenges to enterprise modeling technology and model integra
tion in particular is to automate the reuse of enterprise models and their 
elements. Traditionally, applications have attempted to support such au
tomation through the ability to import or export files between applications. 
Although the ability to import or export files between applications is a nec
essary feature, creating a foundation that will support the integration of the 



www.manaraa.com

500 Florence Tissot, Wes Crump 

various perspectives is even more imperative. The goal of such capability is 
to make the user more effective by removing burdensome excise tasks. The 
UME introduces a radically different paradigm that allows the model builder 
to work in all perspectives, as needed, without needing to switch between ap
plications via export/import operations. With this paradigm, model builders 
can manipulate a variety of models concurrently and generate automatically, 
with a simple user gesture, a model of a given type from one or more models 
of different types. 

4.1.2.1 Make Modelers More Effective The ultimate purpose of any 
application is to make its users more effective, to remove any obstacle that 
stand in the way of performing their tasks, and to simplify and automate 
otherwise tedious and non-value-added activities. The UME is specifically 
designed for those performing modeling and analysis tasks. Enterprise mod
eling is a very creative mental activity. It is an activity that requires a high 
level of concentration on the part of the model builder due to the very com
plex nature of the systems being modeled. The suite of modeling tools that 
are seamlessly integrated in the UME allows the model builder to effortless 
switch among the many perspectives of an enterprise, moving, copying, and 
linking model elements across method borders. This integration is made pos
sible by special-purpose components called translators. Recall from an earlier 
section that our approach to solving the challenge of heterogeneous modeling 
methods and tools is to provide automatic generation of enterprise models 
from existing enterprise models. This functionality is made possible by the 
identification and characterization of relationships between the information 
types supported by the various modeling methods. These relationships, in 
turn, are used to define translation and mapping rules between model types. 
The translators that are provided by the UME implements these rules, effec
tively enabling the automatic translation of model elements from one model 
type to any other model type supported by the UME. 

In accordance to our objectives and guiding principles for the user in
terface, this translation functionality is made available to user in a trans
parent and unobtrusive way. Simply selecting and dragging part of a model 
(e.g., elements in a diagram) and dropping the selected items in another 
model stirs the translators into action and causes the selected items and their 
inter-relationships to be translated into appropriate model element types and 
added to the target model. For example, when a user drops an element from 
an IDEFO model into a diagram of an IDEF3, the UME examines the source 
and target objects, determines the appropriate translation mapping, and in
vokes the resulting translation procedure. This feature of the UME is critical 
to providing users with an environment in which the effective manipulation 
and management of their enterprise through an enterprise modeling set be
comes a reality. 



www.manaraa.com

An Integrated Enterprise Modeling Environment 501 

4.1.2.2 Visualize the Integrated Information Base The UME allows 
domain experts to model their enterprise in a number of ways using a variety 
of perspectives. In addition to supporting a number of modeling methods 
to enable the representation of various aspects of an enterprise, the UME 
supports a multitude of techniques to visualize the information stored in 
the integrated information base. These techniques include an assortment 
of diagram types, various customizable matrices that depict summaries of 
fundamental relationships and associations among model elements, and a 
project node-tree built on the model of the Windows 95™ Explorer. The 
project node-tree provides both an overview of the entire enterprise model 
sets and powerful navigation mechanisms to view and manage the information 
contained in the set. 

4.1.3 Knowledge and Rule Base 

The system, built upon a modeling knowledge base, uses a powerful produc
tion rule system to provide total integration between the different models of 
an enterprise. There are several advantages to using a rule-based engine as 
the foundation for model integration. Rules for maintaining consistency be
tween models and model elements do not need to be coded into the program 
but simply explicitly captured and stored in the knowledge base. Because the 
rules are not represented in the source code, they can be changed without 
rebuilding the application. This means that they can be changed without 
intervention or support from a developer. This flexibility allows the user 
to customize the behavior of the model integration mechanisms to better 
fit their specific domain and needs. Currently, only basic rules are used to 
provide behavior for keeping the various complementary perspectives consis
tent with each other. The rationale for providing only these basic rules is 
to provide robust model integration while avoiding users to be overwhelmed 
with unexpected or unnecessarily complex tool behavior. However, experi
enced end-users can extend, modify, and enhance the rule base to include 
additional change propagation and consistency maintenance behavior. 

Note that giving the tool the ability to maintain and manipulate meta 
information (i.e., the information types supported by the various modeling 
methods) allows users to work at a higher, more generic level of abstraction. 
At this meta level, users can make connections and define relationships be
tween model and model element types. This unique feature greatly increases 
the flexibility and the power of integrating models to maintain consistency 
among the various enterprise perspectives, focuses, and levels of detail. 

The use of a rule base engine to maintain consistency and propagate 
changes across models is made possible by the encoding of all the information 
contained in the enterprise model set (as well as other types of information) in 
the integrated information base. The set of model integration rules, together 
with the integrated information base, form a knowledge base that is used by 
the UME to provide expert system-like functionality. When changes are made 



www.manaraa.com

502 Florence Tissot, Wes Crump 

to some part of the information base, the expert system is invoked and the 
rules are evaluated and applied as appropriate. In this manner, the various 
aspects of the enterprise are synchronized and remain consistent without any 
cumbersome effort on the part of the user. 

To maintain consistency across the various aspects of an enterprise, the 
UME expert system requires users to identify relationships between model 
elements across models. To this end, and through simple drag and drop 
user gestures, it lets users designate associations between model elements 
displayed on the screen. Once such associations have been explicitly captured, 
consistency across models is maintained automatically by the firing of rules 
in the knowledge base. To simplify the model integration task, the UME 
provides users with a set of predefined relationships that can be used to 
relate model elements in a meaningful way. 

4.1.4 Representational Flexibility 

The primary enabling technology for the UME modeling environment is the 
enhanced level of integration of information in the information base. The 
common storage mechanisms facilitate the use of modular modeling tools and 
plug-in applications, supplying an extensible and flexible foundation. To sup
plement this capability, the system's common storage mechanism currently 
uses the ODBC standard and the OLE structured storage specification, pro
viding users with a choice of database formats. The use of OLE structured 
storage technology permits the UME application to embed OLE objects di
rectly into the modeling database, allowing the user to attach documents, 
spreadsheets, or other OLE-enabled applications' objects to the models. The 
use of ODBC technology allows users to share and reuse their integrated 
information base across various database management systems. 

The power of the common storage mechanism, the consistency mainte
nance and automatic change propagation provided by the inference engine, 
and the automatic translation of model elements make the UME an unpar
alleled integrated modeling framework. 

4.2 Providing for the Modeling Tool Developers 

Although providing for the end user is our primary objective in development 
of the UME, we also feel it necessary to allow developers and end-users to fur
ther extend the capabilities of the environment in a way that allows them to 
take part in the integrated features of the system. To this end, the UME pro
vides the interfaces necessary to allow customization of existing functionality 
and the further addition of modelers and plug-in applications. 



www.manaraa.com

An Integrated Enterprise Modeling Environment 503 

4.2.1 Extensible Component-Based Architecture 

One of the primary requirements for the system was to make it easy for de
velopers to extend without laborious re-design and re-programming cycles. 
The design of the system had to allow the developers to use and reuse compo
nents and, through this reuse, extend the environment without unnecessarily 
disturbing the existing code base or the structure of the database. To this 
end, the system is partitioned so that the various modeling methods are en
capsulated yet can be completely integrated through the database with both 
model data and meta information shared among the modules. 

At the foundation is the information manager, which all modeling mod
ules use to access relational databases via ODBC and OLE structured stor
age, and the generic user interface, which provides the core functionality 
for interacting with the environment. The database schema is designed to 
accommodate the seamless integration of new model types and new informa
tion. The underlying database is relational; however, the design allows the 
modeling tool developers to treat it as if it were an object-oriented database. 
This database design gives developers the ability to add new information, re
lationships, meta information, and meta relationships without restructuring 
the database or changing the application to adapt to the new information. 
Another important benefit of this design is that it allows developers to use an 
object-oriented approach without being chained to the underlying database 
representation. 

4.2.2 Inter-Operability 

An extensible component architecture is just the first requirement to sup
port the tool developer. Another is the ability of those components to inter
operate with other applications and tools. The UME supports the integration 
of external applications as well as internal modeler and plug-in applications. 
The Microsoft™ COM architecture allows the use of OLE servers, OLE 
clients, and OLE automation. This technology allows the UME to be in
voked from within other applications such as Word™ for Windows™ or 
Excei™. It allows the use and storage of objects, documents, and spread
sheets from other applications inside the UME database. OLE automation 
permits access to internal functionality by providing an interface that can be 
used by external applications, such as analysis and simulation tools. This is 
a critical innovation that will greatly simplify the design and development 
of enterprise model compilers and the use of enterprise model to generate 
executable models that can then be run by specialized analysis tools. 

4.2.3 Open Architecture 

The UME provides an open architecture that facilitates the addition of new 
modelers, plug-ins, and customizations by the end user or third party de
velopers. This open architecture is supported by the extensible, centralized 



www.manaraa.com

504 Florence Tissot, Wes Crump 

storage mechanism based on ODBC and OLE structured storage. The use 
of OLE automation provides external access to UME functionality as well 
as support for automatic model translation via translators and translation 
rules. 

4.2.3.1 Extensible Centralized Storage Mechanism The core com
ponent provides a simple programming interface used by all other components 
to store information in the integrated relational database. Each component 
using the interface must describe the objects that are to be stored in the 
database. The database manager uses this description to create the neces
sary tables in the database and to store and retrieve data as needed. As 
new components are added to the environment, their data can be integrated 
seamlessly into the existing database. The new component's objects are eas
ily linked to the other model elements through the use of explicitly defined 
objectified relations that are stored together with the objects in the database. 
The addition of a new component to the UME thereby expands the environ
ment to include more information and functionality with little extra effort on 
the part of the developer. New components added to the framework are not 
required to use their own particular storage mechanism but rather rely on 
the one provided by UME. When a component needs an object, the compo
nent requests the object through the database interface. The database uses 
its registered description for the object to find it in the relational database. 
This registration of object descriptions ensures that the information created 
using one of the UME components is accessible by the other components or 
plug-in applications. 

This feature is critical to support major advances in enterprise modeling 
technology. In particular, it provides the means to extend and customize 
the environment to support domain-specific information types. Using this 
feature, each enterprise can customize the environment to support their par
ticular modeling and analysis needs. 

4.2.3.2 OLE Automation Support OLE Automation is a technology 
that allows the system to reveal features and functionality to other applica
tions. Using OLE Automation, developers can create and manipulate model 
objects within the UME from another application. With this capability, de
velopers can easily create tools that access and manipulate model elements. 
These modeling tools can include embedded macro languages, external pro
gramming tools, object browsers, analysis tools, simulators, and compilers. 
Using OLE Automation to expose internal UME objects provides a way for 
the developer or end user to manipulate the models and model elements 
programmatically. 

This feature is critical to ensure the ultimate use of enterprise models to 
facilitate and accelerate system analysis efforts. Through the UME's open 
architecture and the use of OLE Automation, powerful and flexible enterprise 



www.manaraa.com

An Integrated Enterprise Modeling Environment 505 

model compilers can be built that take full advantage of the UME's integrated 
information base. Since all compilers rely on the same data to generate 
executable analysis models, all generated executable models are guaranteed 
to be consistent and can be traced back to a single source of information. This 
unique feature provides domain experts with an extremely powerful tool to 
analyze their enterprise while staying in control of the analysis effort. 

4.2.3.3 Translators While the UME provides unprecedented levels of 
integration for modeling tools, there still exists the need for translation func
tionality. Translation modules furnish this functionality in the UME for the 
various model types and by the rules of translation in the knowledge base. 
These two elements work together to provide the interoperability of the mod
eling components with one another. For the developer, this makes the burden 
of creating a modeling tool that will operate in theUME much simpler. To 
integrate a new modeling tool, the developer can simply map the new tool's 
model elements to the existing elements. Using the mapping, the transla
tors and translation rules can be built and registered with the environment, 
completely integrating the new tool into the system. 

5 Conclusion 

In this contribution, we have provided an analysis of the challenges facing 
a broader use of enterprise modeling and analysis techniques and presented 
an approach that addresses these challenges. Some of the most significant of 
these challenges are: 

1. The proliferation of stand-alone enterprise modeling support applica
tions that makes it difficult for domain experts to reuse existing models 
and to obtain a comprehensive view of the entire enterprise. 

2. The lack of automated support to integrate in a meaningful way the 
various models that constitute an enterprise model set and, conse
quently, the lack of support for maintaining consistency and propa
gating changes across these models. 

3. The lack of support for capturing information that falls outside the 
scope of enterprise modeling methods and for linking that information 
to knowledge captured in the various enterprise models. 

4. The relative immaturity of enterprise model compiling technology, which 
renders using enterprise models to generate executable analysis models 
a cumbersome and time-consuming endeavor. 

Our proposed approach to overcoming these critical challenges is to provide 
an integrated modeling environment that supports (1) the development of all 
types of models needed to capture the various aspects of an enterprise, (2) the 



www.manaraa.com

506 Florence Tissot, Wes Crump 

seamless integration of these models and the use of inter-model relationships 
to automate consistency maintenance across models, and (3) information and 
functionality extensions to the environment. This approach has served as 
the foundation for the development of a the Uniform Modeling Environment 
(UME), a commercial software application developed at KBSI. 

The UME satisfies two main objectives: (1) provide an intuitive, easy-to
use, but powerful environment to domain experts to create and manage enter
prise model sets, and (2) facilitate information and functionality extensions 
to the environment. The first objective is attained by using state-of-the-art 
user interface techniques, automating the process of building and integrating 
models, and using an underlying integrated information base that provides a 
comprehensive and coherent view of the enterprise. The second objective is 
attained by providing a flexible framework using a component-based system 
development architecture, which enables developers to extend, enhance, and 
evolve the environment. 

Acknowledgments: We gratefully acknowledge the technical contribution and 
guidance of the following people. Without them, none of this work would have been 
possible: Dr. Richard Mayer, Dr. Christopher Menzel, Richard Henderson, Sridevi 
Subramanian, Thomas Blinn, David Hart, Tom Landrum, Michael Biggerstaff, and 
Dr. Perakath Benjamin. We also extend our thanks and appreciation to Kathryn 
Alexander for her help in editing this contribution. 

References 

[BMS84] 

[Co095] 

[FMM95] 

[Fox91] 

[Gig91] 

[GM92] 

Brodie, M. L., Mylopoulos, J., Schmidt, J.W. (eds.), On Conceptual 
Modeling, Springer Verlag, New York, 1984 

Cooper, A., ABOUT FACE, The Essentials of User Interface Design, 
IDG Books Worldwide, Inc., California, 1995 

Fillion, F., Menzel C., Mayer, R. J., Blinn, T., An Ontology-Based 
Environment for Enterprise Model Integration, Presented at the 
Workshop on Basic Ontological Issues in Knowledge Sharing at IJ
CAI95, Montreal, Canada, November 1995 

Fox, M. S., The TOVE Project: Towards a Common-Sense Model 
of the Enterprise, published in [PET91], 1991 

Gigh, J. P. van, System Design Modeling and Metamodeling, Plenum 
Press, New York, 1991 

Grosof, B., Morgenstern, L., Applications of Logicist Knowledge 



www.manaraa.com

An Integrated Enterprise Modeling Environment 507 

Representation to Enterprise Modelling, Workshop on Artificial In
telligence in Enterprise Integration, AAAI-92, July 1992 

[HJKSMC91] Huhns, M. N., Jacobs, N., Ksiezyk, T., Shen, W.-M., Singh, M. P., 
Cannata, P. E., Enterprise Information Modeling and Model Inte
gration in Carnot, published in [PET91], 1991 

[Kos92] 

[MSJ91] 

[PET91] 

[Que91] 

[SBMM91] 

[Ver91] 

[Ver96] 

[Zac86] 

[Zuk79] 

Kosanke, K, CIMOSA - A European Development for Enterprise 
Integration. Part 1: An Overview, published in [PET91], 1991 

Mertins, K, Sussenguth, W., Jochem, R., An Object-Oriented 
Method for Integrated Enterprise Modeling as a Basis for Enterprise 
Coordination, published in [PET91], 1991 

Petrie, C. J. (ed.), Enterprise Integration Modeling Proceedings of 
the First International Conference, The MIT Press, Cambridge, 1991 

Querenet, B., CIMOSA - A European Development for Enterprise 
Integration, Part 3: Enterprise Integrating Infrastructure, published 
in [PET91]' 1991 

Sanders, L. K, Browne, D., Menzel, C., Mayer, R. J., Container 
Objects: A Description Based Knowledge Representation Scheme, 
Proceedings of Autfact'91, 1991 

Vernadat, F. B., CIMOSA - A European Development for Enterprise 
Integration, Part 2: Enterprise Modeling, published in [PET91]' 1991 

Vernadat, F. B., Enterprise Modeling and Integration, Chapman & 
Hall, London, 1996 

Zachman, J., A Framework for Information Systems Architectures, 
Report No. G320-2785, IBM Los Angeles Scientific Center, March 
1986 

Zukav, G., The Dancing of Wu Li Masters: An overview of the New 
Physics, William Morrow, New York, 1979 



www.manaraa.com

CHAPTER 22 

WorkParty 

Walter Rupietta 

Workflow management is concerned with the execution of business processes, sup
porting division of labor between participants and partial automation of individual 
tasks. Currently, workflow management systems are primarily employed in the ser
vice business, e.g. banks, insurance companies, and public authorities. However, 
the objectives of introducing workflow applications - improved productivity, faster 
and more reliable processing of workflows, immediate availability of information in 
response to customer inquiries - are equally important in industrial business pro
cesses. Workflow management systems can serve as a platform for process design 
in areas like purchasing, sales, order processing, human resources management, 
and quality management for industrial processes. Workflows are well-defined work 
processes that are repeatedly carried out according to predetermined rules. Labor 
may be divided between multiple participants. Rules determine which work steps 
are carried out, in which sequence, and who is responsible. Workflow management 
systems like WorkParty from Siemens Nixdorf comprise tools for the definition of 
business case templates and workflows and support their execution in the corre
sponding runtime environment. This contribution describes the concepts and tools 
of the scaleable workflow product family WorkParty. It concludes by presenting 
the idea that the architecture of future application systems will rely on a workflow 
management infrastructure. 

1 Introduction 

This section presents a framework for workflow management by defining basic 
terms, standards and procedures for implementing workflow applications. In 
this section, the term organization refers to the result, not to the process of 
organizing. 

1.1 Organization, Processes, and Workflow 
Management 

The aim of organization is to set a suitable structure for work in a company. 
Organization can be decomposed into static and dynamic aspects. Static as
pects are referred to as structuml organization dynamic aspects as workflow 



www.manaraa.com

510 Walter Rupietta 

organization. Structural organization comprises the entities and persons in
volved, tasks and authorities, resources, structures and relationships. These 
are limiting conditions for work processes. The regulation of work processes 
is termed workflow organization and defines work steps, the timing and se
quence of the steps, division of labor, participants, work objects and results, 
and dependencies. The workflow organization defines how work is done in an 
enterprise or public authority. Every enterprise or public authority is orga
nized in one way or another and can thus be called an organization. Business 
processes are well-defined work processes within an organization, character
ized by division of labor between multiple participants working at different 
times and different places. Basically, they come in two different varieties: 

• Organization-directed business processes are continuously repeated in 
the same or a similar way. They are carried out according to predeter
mined, permanently valid rules. 

• User-directed business processes show only few similarities or repeti
tions. They are carried out according to permanently changing rules or 
with no predetermined rules at all. 

These define the extreme ends of a continuum of business processes. Real
world examples are neither completely organization controlled nor completely 
user controlled. An organization-directed business process needs some degree 
of flexibility to cope with unforeseen situations. User-directed business pro
cesses take place within a company or public authority and have to comply 
with its regulations. They are user-directed only as far as the organization 
permits. Business processes are characterized by attributes, e.g. customer 
number, order number, related documents and data, workflows, persons and 
organizational entities involved. Workflow management systems support the 
definition and developmen of process types or templates to make use of the 
similarity of organization-controlled work processes. Repetition is handled 
by (partial) automation of the execution of process instances in a runtime 
environment. Rules are transformed into workflow specifications. Each pro
cess instance belongs to a corresponding process type or template. Basically, 
all workflow management systems exhibit this distinction between workflow 
template development and workflow execution (see for example [Jab95]). 
However, different workflow management systems use different solutions for 
workflow definition, different tools and interfaces (see [KRK95], for example). 

1.2 Standards and Procedures 

The Workflow Management Coalition (WfMC) is an international organi
zation whose aim is to develop specifications for software that will allow 
different workflow management products to interoperate in various key areas 
[WfMC94]. For this purpose, the WfMC developed a reference model that 



www.manaraa.com

Admini!ilnllioo 

'" Monitoring ToolJ 

WorkParty 

P'OCC$$ 
Definition Tool 

~ 
In~t 

Woridlow Ena_ Serv;c< 

Worldlow 
CHan 

Applications 

Invok.ed 
Applications 

Figure 1: Workflow reference model developed by the WfMC 

511 

describes an architecture for workflow management systems arid interfaces 
between the different entities of the model (Figure 1). 

In the context of the WfMC model, a workflow enactment service consists 
of one or more workflow engines and is used to process instances. Workflow 
templates are developed using process definition tools and then managed 
with the help of administration & monitoring tools. Users interact with 
the workflow enactment service using workflow client applications (e.g. a 
worklist handler). The workflow enactment service invokes other applications 
while executing workflows and possibly interoperates with other workflow 
enactment services. 

As of today, the interface definitions have not been finally released. Exist
ing products like WorkParty adhere to the reference model and consequently 
provide comparable interfaces. This implies, of course, that interoperation 
requires conversions and individual adaptations. 

The topic of workflow management applications is frequently introduced 
in the context of business process reengineering projects. Optimizing busi
ness processes implies corresponding organizational changes and appropriate 
redesign of the information processing infrastructure. This is where workflow 
management systems are brought into play. 

Workflow management is often seen as a means to implement the results 
of business process reengineering. On the other hand, workflow management 
should not be introduced without prior consideration of business processes 
and their optimization. This is why the deployment of workflow applications 



www.manaraa.com

512 

Pro<ess 
selection! 
identification 

Walter Rupietta 

................................ -.... -_ .... -_ .. --_ .. -_ .... -_ .. , 
Pr<><ess 

'==f==~ modeling 1t;:::===~-1 IL--_~ (exisling pr<><ess) 

,==!==;;!I Pro<ess 
: analysis, 
:- .... - - - - .. simulation Process 

'=====!.==::!I opttmization 
. 

: ______ • (fururepro<ess) 

• ___________________________ • ..L-I-I~ ::r~~mcn. 
Prcce,<o;s 

'=9[==;;!I producuve 
L--I~ u.'iC 

Figure 2: Procedure for introducing workflow applications. 

should follow the procedure sketched in Figure 2. The shaded areas repre
sent workflow-related phases, the earlier phases correspond to reengineering 
tasks. In the process optimization phase both aspects overlap. Dotted lines 
represent alternatives and shortcuts. 

After identifying and selecting a business process, it must be modeled ei
ther in its existing form or in its future, optimized form. An existing process 
will then be analyzed and possibly simulated resulting in an optimized pro
cess. The latter is modeled in terms required by the workflow management 
system and subsequently deployed. The final stage is productive execution 
of the resulting workflow application. This procedure has been adopted in 
several WorkParty projects (see for example [Jor94, RH97]) . 

This arrangement neither prevents the use of a workflow management 
system like WorkParty for reengineering tasks nor does it imply that the 
workflow-phases necessarily require the use of a workflow management sys
tem. The procedure is independent of any specific technology. 

2 WorkParty - The Business Case Manager 

The reason for calling WorkParty a business case manager is given in the next 
paragraph. The business case model is the foundation for WorkParty's ar
chitecture and operations. The following paragraph introduces the scaleable 
workflow product family from Siemens Nixdorf and demonstrates the role of 
WorkParty in this context. The rest of this section is devoted to a detailed 
description of the WorkParty architecture, tools, and interfaces. 

2.1 The WorkParty Business Case Model 

WorkParty considers a business process as a self-contained pattern of organi
zational behavior devoted to a specific business purpose. Workflow processes 



www.manaraa.com

WorkParty 513 

Figure 3: The WorkParty business case model 

are concerned with those portions of business processes that are supported 
by information systems. WorkParty uses the term business case to refer to 
computer-represented portions of a corresponding business process (Figure 
3). A workflow is regarded as a specific work process in the context of a 
business case. 

A business case is represented as a case file collecting all items pertaining 
to that particular business process. Each business case has a set of attributes 
(e.g. customer number, account number, order number, interest rate, credit 
limit, loan amount) that characterize a specific case. It can have one or more 
workflows which in turn contain several activities. An activity is defined by 
being an atomic portion of work that is completely carried out by a single 
employee at his workplace. Each activity may be connected to an application. 
Enclosures are case-related documents or references to such documents or 
data. The case logbook collects data concerning the life cycle of a business 
case (e.g. start and end times of activities, the employee who performed an 
activity ... ). The applications are usually not considered part of the business 
case, but part of the system infrastructure. This is partly due to technical 
reasons: most applications are complex software packages that need to be 
installed and not simply programs that can be moved around and used in 
any place. 

An example of such a business case is the opening of a loan account in 
Table 1. In this example, the business case exists for several years. After 
an initial phase of activity (workflows related to the establishment of the 
credit) it remains inactive as long as regular payments are received. Then 
conditions for the credit (e.g. the interest rate) change and new work pro
cesses (workflows for condition changes) are carried out. Finally, the business 
case is closed when the credit has been paid back. This may again require a 
workflow to be executed. This example shows the advantages of distinguish
ing between workflows and business cases: during the lifetime of a business 
case several related workflows may be executed at different times. The busi-



www.manaraa.com

514 

Business case 
Attributes 

Workflows 

Activities 

Applications 
Enclosures 

Walter Rupietta 

Loan case file "Jones" 
Start date, customer name & address, phone number, 
subject matter, interest rate, amount of credit, ... 
Apply for loan, raise mortgage, 
change conditions, ... 
Fill in application form, 
calculate financing, ... 
Spreadsheet application, customer accounts access, ... 
Loan application form, mortgage documents, 
letter of consent, ... 

Table 1: Example of a Loan Account 

ness case is still alive during phases without active workflows. There is no 
workflow overhead during phases of inactivity. 

2.2 WorkParty - The Workflow Product Family 

Business cases are handled at different levels, depending on the size of the 
organization: at the desk of an individual, within a small team or company, 
within units of a large enterprise. Workflows for routine tasks at the desk of 
an individual are certainly user-directed. Workflows at team level tend to be 
user-directed, but this is not necessarily so. Workflow at the enterprise level 
is normally organization-directed. These differing requirements led Siemens 
Nixdorf to the introduction of a scalable family of workflow products for 
different purposes (Table 2). Scaleability includes the option to upgrade to 
a more complex workflow product without losing the time and work already 
invested. 

SmartAssist workflows are sequences of actions (simple branching fea
tures are available) executed under user control. Activities can be chosen 
from an extensible set of predefined building blocks. Team Edition extends 
SmartAssist by integration with the business case manager, worklist handler 
and limited use of the Organization & Resources management component of 
WorkParty. Enterprise Edition replaces SmartAssist with the native Work
Party engine and its associated tools, the graphical workflow editor and the 
activity editor, which allow the definition and execution of more complex 
workflows. The rest of this section will focus on the Enterprise Edition, its 
architecture, tools, and interfaces. 

2.3 WorkParty Architecture and Tools 

WorkParty is designed in accordance with the reference model of the WfMC. 
The operation of WorkParty is best comprehended by examining the ar
chitecture of workflow applications based on WorkParty. Such a workflow 
application is an ensemble of one or more business case templates, one or 



www.manaraa.com

WorkParty 515 

SmartAssist WorkParty WorkParty 
Team Edition Enterprise 

Edition 

Personal User-directed Organization-
productivity business case directed 
tool, automation management business case 
of routine tasks management 

Business case WorkParty WorkParty 
manager business case business case 

manager manager 

Workflow and SmartAssist SmartAssist Graphical 
activity definition tools definition tools workflow editor 
definition and activity 

editor 

Workflow SmartAssist Smart Assist WorkParty 
execution engine engine engine 

Worklist WorkParty WorkParty 
handler worklist handler worklist handler 

Organization Organization Organization 
management and Resources and Resources 

Manager Manager 
(limited use) 

Table 2: The WorkParty product family 

more libraries containing workflows and activities, the application programs 
and functions invoked by the activities, and an organizational model. Work
Party provides a set of tools that enable a workflow designer to produce 
these entities (at development time). Application programs may be existing 
applications that are unaware of the workflow environment or specifically 
integrated applications with interfaces to the underlying WorkParty environ
ment. The latter can be developed using common programming environments 
(e.g. C++, Microsoft Visual Basic). The execution of workflow applications 
(at runtime) is supported by the WorkParty runtime system, which executes 
and controls workflows designed with the development tools. Activities are 
processed in the order determined by the workflow, and associated applica
tions are subsequently executed (Figure 4). 

WorkParty uses a relational database and a central file store located on 
a server system for coordination and information exchange between work
stations of a workgroup; its software components reside on the users' PC 
workstations. The file store houses executable workflow specifications (com-



www.manaraa.com

516 Walter Rupietta 

~ 
Workflow 

Business Case Manager 
Organization 

development 

& Resources 
environment 

Workflow Activity Manager 

Editor Editor 
Co-- Workstation 

7 
Business case templates, business cases, Workflow 

attributes, work flows, activities, - .Organization application 

enclosures, activity programs 
model components 

Server 

~ - Workflow 

Workflow Engine Organization 
runtime 

& Resources 
environment 

,~-~ 

Manager 

Business Case Manager 

-~ - ._- - Workstation 

Figure 4: WorkParty development and untime architecture 

piled from the graphical representation of the workflow editor), activities, 
and enclosures. The database contains administration data about these en
tities and business case attributes. Business case templates and libraries of 
workflows and activities have to be released before they can be used in the 
runtime environment. Enclosures can also be references to documents stored 
in other locations, e.g. in a document management system. Users cooper
ating across different WorkParty locations can exchange business cases via 
electronic mail. 

2.3.1 Business Case Manager and Worklist Handler 

The business case manager is the control center of WorkParty. In terms of 
the WfMC reference model it is a workflow client application as well as an 
administration and monitoring tool. At development time the business case 
manager controls business case templates, libraries of workflows and activ
ities. At runtime, it manages business case instances and worklists. The 
business case manager is a uniform interface for viewing, editing, and admin
istering different entities of workflow applications. It also controls access to 
business case entities (Figure 5). Each user has to enter his or her ID and 
password to log on to the business case manager. This data is passed on 



www.manaraa.com

Name . 
infopak.. ... i 
note ... ri 
oller ... r; 
onrequd.wri 

Close 

Changed . . 
14.05.97 08:47 
13.05.9713:55 
13.05.97 13:55 
14.05.9708:18 

WorkParty 

Use. Created 

Update 

Logbook 

Rename •• 

hOP)' ... 

Help 

Figure 5: WorkParty business case template editor showing enclosures 

517 

and checked by the Organization & Resources Manager. Access is granted 
if an employee with the ID and password given exists in the organizational 
model. The business case manager then retrieves the user's profile with re
spect to positions, roles, organizational units, and authorities. The profile 
is matched against privilege profiles defined for accessing individual business 
case entities. 

A business case template comprises basic properties, workflows, enclo
sures, attributes, privileges, and the logbook (see WorkParty business case 
model in section 2.1) . A template specifies the initial state of each instance 
of this business case. Its properties define name, initial case ID, version, 
and validity period of the template. Workflows reside in libraries also man
aged by the business case manager and are only referred to from within a 
case template. Enclosures and attributes may be added or removed at run
time. Privileges specify access rights for the case template. This topic will be 
discussed later. The logbook refers to the template, each business case (in
stance) possesses its own logbook. Creating a business case involves copying 
the template to be used and specifying individual properties. 

A library collects related workflows and activities. Activities are referred 
to from within workflows. Workflows are referred to from within business 
case templates. Workflows can be created and edited using the graphical 
workflow editor. Activities can be created and edited with the activity editor. 
Activities can be used in multiple workflows. Workflows can be used in 
multiple business case templates. 



www.manaraa.com

518 Walter Rupietta 

At any point in time, several workflows from different business cases can 
be executed simultaneously. Each of them is positioned at a specific activity 
executing or waiting its turn to execute. The worklist of a user collects 
all those current activities that can be processed by this particular user. 
Worklists are assembled at the very moment when the user opens his or her 
worklist. When a workflow is started, a so-called work folder is generated. 
For each activity, the work folder is prepared with the necessary environment, 
i.e. enclosures needed for this activity are automatically retrieved from the 
file store and copied into the folder. On activation of an activity from a 
worklist, the work folder is moved to the workstation where the activity is 
executed, and the corresponding application program is invoked. When the 
activity ends, enclosures in the file store are updated from the work folder as 
required by the particular activity. 

A user can simultaneously open multiple windows for the different types 
of business case entities, i.e. business case templates, business cases, libraries, 
worklists. Each window displays entities of the selected type in a list which 
can be configured with respect to order, filters to select subsets, information 
to be displayed. Such a configuration is called a view and can be stored for 
later reuse. A view can, for example, contain all worklist entries that newly 
arrived in the last half hour. 

2.3.2 Graphical Workflow Editor and Activity Editor 

The graphical editor is the main tool for workflow design in WorkParty (Fig
ure 6). Workflows are designed following a metaphor of visual programming. 
Starting with an empty workflow graph, flows are composed from graphical 
representations of activities, subworkflows, and control structures. These el
ements are entered by simply dragging them from a toolbox to the desired 
anchor point in the workflow graph. The construction process guarantees 
syntactical correctness of the workflow graphs. The editor does not allow 
syntactically illegal flows to be constructed. WorkParty's control structures 
comprise alternatives, loops, and parallel processing. Workflow graphs are 
directed graphs with a single start point, at least one end point, and possi
bly loops. The graphical representation of workflows has been proven to be 
rather intuitive. It is therefore well suited to communicate workflows and 
work regulations with users. In addition, workflow graphs are executable 
workflow specifications. 

The subworkflow element allows the modular development of workflows. 
The nodes of the resulting workflow graph refer to activities or subworkflows. 
Each workflow can serve as a subworkflow in another workflow definition. 
Thus, complex workflows can be developed either top-down, by hierarchi
cal decomposition into subworkflows, or bottom-up, by combining existing 
workflows. At runtime, the graphical editor can be used to view the work
flow graph of an active workflow. The current activity is then marked to 
trace the status of execution. 



www.manaraa.com

WorkParty 519 

. " : , . . 
Qptions ~ndow l:!elp 

~---

rc~;;~~ Activity 

~~~--LJt Subworkflow 

Loop

~;d~~-t Alternative

t:;::::t:::tE"l-t--l.... Tenni nate branch

Parallel processing

~=::=;:::I:~~~-----------+ Anchor point

Figure 6: Graphical workflow editor

From a top-down view, the final step in workflow design is the definition
of activities and their implementation via activity programs. Activities in
WorkParty are rather complex objects that provide for detailed control of
invoked applications. The activity editor is used for:

• User specification: The user for an activity can be specified in three
different ways. First, a reference to the workflow history may specify
the user of a previous activity as the user for the actual activity. Second,
a profile referencing the underlying organizational model can specify a
set of possible users (see below), and third, a program can be specified
that determines the user for the current activity.

• Specification of start conditions: Conditions can be specified that de
termine whether the current activity can be executed. Conditions may
require specific attribute values, the existence of documents or events
(see [Wor96]). At runtime, execution of the current activity will be de
ferred until its start conditions are satisfied. A current activity whose
execution is deferred - for example waiting for an event to occur - is
not displayed in any worklist. As part of this specification, attributes,
attribute values, and necessary documents can be defined. At runtime,
attributes and necessary documents will be attached to the correspond
ing work folder.

• Specification of execution conditions: Execution conditions encompass

www.manaraa.com

520 Walter Rupietta

the control of whether the activity is started or ended either automat
ically or at user request. These conditions control whether the user
can skip or repeat the activity at runtime, exchange it for an alter
nate activity or insert additional activities. It is also possible to specify
whether the current activity may be forwarded or delegated to other
users. Forwarding or delegation can be restricted to users of the same
organizational unit, role, or authority.

• Program and parameter specification: This part of an activity describes
which application is to be invoked when executing the activity. Param
eters or necessary documents can be specified. Invoked applications can
be arbitrary programs unaware of the WorkParty environment or inte
grated programs that use the WorkParty interface to retrieve workflow
related attributes or documents. For integrated programs, input and
output parameters can be specified.

• Specification of end conditions that have to be satisfied in order to con
clude the activity: In the same way that start conditions for an activity
can be defined, it is possible to define end conditions. An activity will
not reach the status "ended" unless it fulfills its end conditions.

A workflow graph together with all its activities provides an executable work
flow. If no activity programs are defined, all activities are carried out man
ually. In this case, WorkParty acts as a check list. The graphical workflow
editor and the activity editor are process definition tools in terms of the
WfMC reference model.

Flexibility in application development is enabled through re-use of ex
isting processes, activities and activity programs as building blocks for new
business case templates. Flexibility in application execution is controlled by
the workflow designer through the definition of appropriate execution con
ditions for activities. If specified, the user can at runtime skip, repeat, or
exchange an activity with another one, insert additional activities, and for
ward or delegate activities to other users. Thus, it is possible to design
workflows where some sections are strictly regulated and allow no deviation
while in other sections the user is given more control.

2.3.3 Organization and Resources Manager

The Organization & Resources Manager (ORM) serves to manage the struc
tural organization that defines the framework for business cases. Structural
organization is modeled in terms of organizational units (e.g. departments,
groups), positions (workplaces of an individual employee), employees, roles
(organizational roles, e.g. department manager), authorities (which may be
interpreted as authorization, responsibility or capability), resources (e.g. a
file server, a specific file system resource), and their mutual relationships as

www.manaraa.com

WorkParty 521

Position Employee

belongs to regular position

is
subordinate to Role assignment has as proxy

Authority assignment

access assignment Task assignment

Authority Task

Figure 1: Conceptual model of the ORM

shown in Figure 7. (Icons represent objects, i.e. terms; arrows represent re
lationships.) All entities of the organizational model are characterized by the
values of a set of predefined attributes. Additional attributes can be attached
according to the needs of applications.

In ORM a statement like "Sam Spade is the section lead of the Sales
section in the Household Appliances division" can be represented as follows:
The position LA belongs to the organizational unit Sales and is occupied by
the employee Sam Spade. The sales unit is subordinate to the organizational
unit Household Appliances and led by the position LA. LA is assigned the
role Section lead. The hierarchy level of Sales is section; the hierarchy level of
Household Appliances is division.

ORM was designed to reflect the fact that an employee's work is regu
lated by his or her placement in the organization and does not depend on
the individual person. This is why authorities assigned to abstract organiza
tional entities like organizational units, positions, or roles will be inherited by
employees via their assignment to positions according to configurable rules.
Thus, if an employee gets moved to a different position, his authorities will
be adapted automatically.

Depending on the organization involved in individual application environ
ments, not all of these entities and relationships are needed. This is provided
for in the user interface of ORM, which is configurable to hide entities and
relationships not needed. ORM provides a generic framework that makes it
possible to model different types of organizations.

ORM can be used independently from WorkParty to serve as "electronic
organization manual" or extended user management for applications. In con
trast to pure analysis and design tools, the information stored in an ORM

www.manaraa.com

522 Walter Rupietta

model can be used at runtime by arbitrary applications to adapt to orga
nizational structures or to manage access rights for application resources.
Using authorities instead of individual users to specify access rights results
in more flexible and organization-directed management of access control for
applications.

2.4 Roles and Authorizations

The connection between the organizational model and a workflow process is
established via the concept of a process-related role (see [Rup97]). A process
related role is a placeholder whose purpose is to provide an abstraction for
the person assigned to a workflow process activity or any other task related
to a workflow process. However, combining it with the organizational model,
causes it to be associated with organizational entities and relationships and
thus makes it a very powerful mechanism for defining generic workflow pro
cesses that can automatically adapt to specific organizational structures.

An activity is part of a workflow process. At execution time each work
flow process produces a series of logbook entries that constitute its history.
At development time, when a process template is developed, the history of its
instances does not yet exist. However, references to this history can specify
previous entries relative to an activity. In an activity definition, a process
related role is a placeholder for the performer of the workflow activity. This
process-related role is called "Workflow participant". At definition time, the
workflow participants for all activities of the workflow are defined. The def
inition refers to either the history of the workflow selecting the user of any
previous activity, or specifies a profile that selects, through a combination
of user, position, organizational unit, role, and authority, a set of candi
dates as potential performers who are responsible and authorized to perform
the corresponding activity during process execution. Finally, the definition
can specify a program that selects a user (possibly from the organizational
model according to application-specific criteria). This latter option provides
for great flexibility in controlling responsibilities for activity execution and
adapting to application-specific policies (Figure 8).

In this way, workflow processes can be tied to entities of the enterprise
organizational structure and do not depend on specific users. Workflow par
ticipants can be specified referring to employees, positions, organizational
units, (organizational) roles or authorities, for example, and not to specific
employees. If the assignments of employees to positions or assignments of
authorities change, the workflow definition remains unaffected as long as it
relies on abstract concepts rather than on concrete users.

The same kind of profile is used to specify access privileges for business
case templates, business cases, and libraries. For each of these object types,
three classes of privileges have been defined for editing, administration, and
information. Each privilege class is associated with a specific set of functions.
Its profile describes, through a combination of user, role, position, author-

www.manaraa.com

WorkParty 523

Workflow produces Logbook

process (History)

is part of refers to

is Organiza-
performed Workflow

Activity by participant refers to tional

(profile) model

Figure 8: Specification of workflow participants

ity, and organizational unit, a set of users who may execute the functions
pertaining to that particular privilege class.

For example, a business case has a profile for each of the three privilege
classes editing, administration, and information. Each of these profiles se
lects a set of users who are allowed to execute the functions pertaining to
that particular privilege class for the specific business case. The adminis
tration privilege class for business cases, for example, contains functions for
deactivating and activating a business process.

2.5 WorkParty Interfaces

Following the WfMC reference model, WorkParty incorporates equivalents
of interfaces 2 (workflow client application - workflow enactment service), 3
(invoked applications - workflow enactment service) and 5 (administration
& monitoring - workflow enactment service). Interface 3 corresponds to the
WorkParty interface for programming activities; interfaces 2 and 5 are com
bined in the WorkParty API.

When activity programs are called, WorkParty makes a standard set of
data available, the so-called folder instance attributes. These are in part
technical data required for using the WorkParty API (e.g. technical keys
for identifying business cases and workflows); to a greater extent it contains
information that describes the current environment of the activity (e.g. the
case ID, the name of the user), and finally it contains values that can be
returned (in modified form) to the WorkParty enactment service (e.g. the
results of an activity, data for a logging entry).

Besides the folder instance attributes, WorkParty supplies an additional
set of data, the so-called InPins, which can be defined individually for each
activity with the help of the activity description. These can be the contents of
attributes of the business case, the contents of local attributes of the workflow,

www.manaraa.com

524 Walter Rupietta

or simple strings. Programs can return data to WorkPartyj this is done with
the help of the so-called OutPins, the counterparts of the InPins.

The interface for programming activities consists of a collection of func
tions for connecting and disconnecting to WorkParty, retrieving and returning
folder instance attributes, InPins, and OutPins.

The WorkParty API contains a comprehensive set of functions for about
every task that is normally handled by the client tools, e.g. administering
business case templates, executing workflows, evaluating logbooks, admin
istering worklists, and more. [RSD97] describes an example of an applica
tion, that integrates worklist handling and application functions into new
workplace interfaces, so that users of this applications never use WorkParty
directly. They use their application interface and need not be aware of the
fact that it is driven by workflow technology. This appearance is achieved
through the WorkParty API which has been used to replace the business case
manager with application-specific user interfaces.

3 WorkParty - Case Study

The growing demand for healthcare is placing new pressures on hospitals and
the information systems which support them. At the same time, hospitals
and other healthcare providers are increasingly being held accountable for
both the quality and the cost of the patient care they offer. Meeting the
changing needs of hospitals and other healthcare providers requires open
healthcare systems which can be customized and adapted for all aspects of
administrative and clinical use. Workflow management appears to be well
suited for providing such a system. A case study was conducted to evaluate
the suitability of workflow systems in a university gynecological hospital. The
case study closely followed the procedure described in section 1.2 and focused
on clinical and not on administrative aspects (see [RSD97]).

The first step of the study was the identification of the relevant business
processes of the hospital. Four main processes and a couple of elementary
service processes were identified. The main processes were minimal-invasive
surgery, invasive surgery, in-patient chemotherapy, out-patient chemotherapy.
Examples of elementary service processes were diagnostics, ordering of drugs,
and laboratory analyses.

The four main processes were then analyzed in detail and modeled using
BONAPART (see [Ubis97]). Next, the minimal-invasive surgery process was
selected for optimization and implementation. Reasons for selecting this
process were its limited complexity and duration on the one hand and its
clear potential for improvement on the other hand.

The process model was optimized and then manually transformed into a
WorkParty business case. The manual transformation was necessary because
the previous analysis identified manual activities (e.g. transport of a patient
from a ward to an operating room) as well as computer-supported activities.

www.manaraa.com

WorkParty 525

Furthermore, the levels of detail in the analyzed processes and the resulting
WorkParty workflows sometimes differed significantly. In some parts, entire
subprocesses collapsed into a single WorkParty activity.

The minimal-invasive surgery process was successively decomposed into
smaller subprocesses in the WorkParty environment. The result was a hi
erarchy of (sub-)processes constituting a patient's complete stay, from her
registration, medical examinations and operation to her dismissal from the
hospital. The hospital's organizational structure was modeled using aRM.
To demonstrate the integrative capabilities of the workflow management ap
proach, legacy applications as well as newly developed applications were in
tegrated in the workflow as activity programs. The newly developed appli
cations used a relational database to store patient records and related data.

Another outcome of the process analysis was the requirement for applica
tion- and workplace-specific user interfaces. The normal WorkParty user
interface (i.e. business case manager, worklist handler) was designed with
typical office work in mind. The majority of hospital personnel is not as
familiar with computer use as, for example, bank personnel. Thus, differ
ent workplace interfaces were designed and implemented for the out-patient
department, the ward nurse, the ward physician, and the operating room
staff.

This case study proved that the business case approach is appropriate for
clinical environments and that workflow management is a suitable technique
for providing flexible, process-oriented healthcare systems. Especially the
ability to implement specifically adapted user interfaces for different types
of workplaces while maintaining the underlying workflow control mechanism
was very useful. The graphical representation of workflows was successfully
used to communicate ideas with hospital personnel.

4 Conclusion

WorkParty's graphical editor is well suited to modeling existing workflows
(regardless of whether they are carried out manually or supported by appli
cation programs) and to re-modeling them in order to optimize the processes.
An optimized model can then be implemented to execute in the WorkParty
runtime environment. In the same way, aRM can be used to model existing
organizational structures and re-model them according to the requirements
of optimized business processes. Our experience shows that the hierarchical
structure of organizational units, positions, employees, and their relation
ships are easily identified. On the one hand, the distribution of authorities
and roles is usually more difficult to define, on the other hand, it provides
great potential for optimization and adaptation to redesigned processes. As
organizational structures tend to flatten in the course of optimization, reg
ulations formerly contained implicitly in hierarchical structures must be ex
plicitly expressed using authorities.

www.manaraa.com

526 Walter Rupietta

WorkParty and the Organization & Resources Manager are specially cre
ated to design and implement workflow applications and have limited ca
pabilities for analysis and simulation of business processes. If the require
ments for analysis and simulation exceed the limits of WorkParty and ORM,
tools designed specifically for this task are used: for example ARIS-Toolset
(see [Sch91]), BONAPART (see [Ubis97]), or GRADE (see [lnf97]). Results
achieved with these tools are then transformed and, where appropriate, con
verted to a WorkParty implementation. WorkParty's domain is the efficient
implementation and execution of workflow applications.

Workflow management systems like WorkParty provide an infrastructure
for process-oriented applications (see [Den94, Rup95]). Conventional appli
cations mainly consist of programs and rely on the underlying operating
system and, for example, a database management system as infrastructure.
Workflow applications replace part of the programs with models, e.g. graph
ical workflows and an organizational model. Programming is restricted to
well-defined components with clearly defined interfaces (activities). Mod
els are easier to comprehend and easier to adapt to changing requirements.
Workflow applications require the workflow runtime system as an additional
infrastructure component which provides for workflow control, integrity and
audit trails. Consequently, these aspects need not be handled within the
application.

An initial learning process and the requirement for business process (re-)
design as well as the initial overhead for implementing the first workflow ap
plication add to the costs of introducing workflow management to application
development. The benefits are

• Models used for workflow applications are more transparent for orga
nizers than programs.

• Increased flexibility for organizational structure and process adjust
ments.

• Well-defined tasks and interfaces for application program modules en
able re-use.

• Immediate availability of information in response to customer inquiries.

This is the perspective represented in the Com Unity application architecture
from Siemens Nixdorf in which WorkParty figures as the workflow component
and ORM as the organization component.

As the improvement of workflow technology continues, monolithic appli
cations will become decomposed into self-contained components that are com
bined to process-oriented applications with the aid of a workflow management
system such as WorkParty. The functional view of conventional programs (a
set of functions made available via menus) will shift to a process-oriented
view (a process in which individual functions are used in a specific order).

www.manaraa.com

WorkParty 527

Fixed processes will evolve to flexible processes, and programs will partly be
replaced with models (e.g. graphical workflow models, organizational mod
els). Workflow technology will become as natural a part of the infrastructure
required for applications as database systems are today.

References

[Den94]

[Jab95]

[Inf97]

[Jor94)

[KRK95)

[RH97)

[RSD97)

[Rup95]

[Rup97)

[Sch91]

Denning, P. J., The Fifteenth Level, Proc. of ACM SIGMETRICS
Conference on Measurement & Modeling of Computer Systems, May
1994

Jablonski, S., Workflow-Management-Systeme, Modellierung und Ar
chitektur, Thomson, Bonn, 1995

GRADE Graphical Re-engineering Analysis & Design Environment
(Product brochure), Infologistik GmbH, Munchen, 1997

Jordan, B., Praxisbericht: Einfiihrung einer ganzheitlichen Kre
ditbearbeitung, in: U. Hasenkamp (ed.), Einfiihrung von CSCW
Systemen in Organisationen, Vieweg, Braunschweig, 1994, 11-124

Kock, T., Rehiiuser, J., Krcmar, H., Ein Vergleich ausgewahlter
Workflow-Systeme, Information Management 1, 1995, 36-43

Reinhold, M., Hachinger, H., Einfiihrung von Workflow: Schnelligkeit
wird zum entscheidenden Wettbewerbsfaktor, INFOdoc 3,1997, 16-24

Reichert, M., Schultheifi, B., Dadam, P., Erfahrungen bei der Entwick
lung vorgangsorientierter, klinischer Anwendungssysteme auf Basis
prozefiorientierter Workflow-Technologie, Proc. 42. Jahrestagung der
GMDS, 1997

Rupietta, W., Flexible Geschaftsprozesse mit Workflow-Anwendungen
in: Rundbrief Informationssystem~Architekturen of GI FA 5.2, No
2, December 1995, Proceedings of the conference 'Geschiiftsprozesse
und Workflow-Systeme in der evolutionaren Unternehmung', Bam
berg, Oktober 1995, 79-81

Rupietta, W., Organization and Role Models for Workflow Processes,
in: P. Lawrence (ed.), Workflow Handbook 1997, Wiley & Sons, Chich
ester, 1997, 165-172

Scheer, A.-W., Architektur integrierter Informationssysteme,
Springer, Berlin, Heidelberg, 1991

[Ubis97) BONAPART home page: http://www.ubis.de/

[WfMC94] Workflow Management Coalition Members, Glossary, Brussels,
November 1994

[Wor96) WorkParty Enterprise Edition, Benutzerhandbuch, Siemens Nixdorf
Informationssysteme AG, 1996

www.manaraa.com

CHAPTER 23

PROPLAN

Gunther Schuh, Thomas Siepmann, Volker Levering

With PROPLAN any business process can be analyzed, depicted, documented and
described by a standardized language. Hence it is an instrument to provide a high
transparency of business processes and activities. Furthermore it supports strate
gic management tasks by improving the overall department information flow from
sales to delivery. The examined process is depicted as a sequence of symbols fol
lowing the applied modeling language. Therefore, weak points are revealed for
optimizing the process. The implemented middleware concept PRAGMA enables
PROPLAN's mobile computing ability used in combined locations. Combined with
Inter-/Intranet browsers in WWW formats PROPLAN can easily be integrated in
an existing LAN or WAN environment.

1 Introduction

"Everything is in a flow." European industry found some truth in a philo
sophical statement. Dropping market prices - due to an increasing number
of new arriving competitors - forces industrial companies to radical changes.
During the last 5 years Europe's industry applied a variety of different meth
ods and concepts for reorganization. Business Process Reengineering (BPR)
[HC93] represents one of them as it can lead to significant lead-time improve
ments in manufacturing processes. Figure 1 shows the results of an empiric
study conducted by the Aachen University of Technology's Laboratory for
Machine Tools (WZL).

Still the good concept is a source but not a guarantee for successful re
struction. Even Mike Hammer and James Champy, the two BPR protag
onists admitted frequent problems during implementation. Some 70 % of
major Business Process Reengineering projects turned out to be ineffective,
about 40 % of the process owners showed dissatisfaction with the results of
BPR projects.

In 1995, European Community set up the project MOTION to exam
ine problems during change management like BPR. The project's aim is to

www.manaraa.com

530

leael-tlme

100%

.....

Gunther Schuh, Thomas Siepmann, Volker Levering

As-ls

Results of process-oriented

reorganization

Trucks,
Automobll ..

Intlgrated
Circuits.

Transport
Technol oQY

complex
Pumps:

Toxlil Optical
Maschln... Equlpments

st •• ltubes Hydraulic
Compon.nts

Figure 1: Results of process-oriented reorganization

identify critical success factors for the successful implementation of corporate
change management. About 30 important industrial companies, consulting
and software firms as well as scientific institutes took part in the project.
The MOTION team identified 10 main critical success factors for change
management as Figure 2 shows.

As an overall result the examination reveals team orientation to he the
precondition for successful implementation. The team approach is valid for
all 10 factors. It takes place on two different level: First, external team
participation of all employees involved in the process is a prerequisite for
successful BPR projects. Second, the team-oriented internal cooperation in
project teams is equally important for BPR implementation.

Successful BPR projects lead to process organization within the company.
The problem remains that process organization itself is unable to detect weak
points in the process. It takes additional efforts to model the entire process
for an intense analysis. First, the project team examines entire processes.
On the basis of the intense analysis the team member are able to reorganize
the process with the aim for efficiency improvements (of the process).

The question remains: "How do I support my BPR project?" The obvi
ous need for continuous improvements of business processes caused serious
problems in many companies as the methodical projection as well as an appro
priate IT support were absent. The software and consulting firm GPS Prof.
Schuh Komplexitatsmanagement GmbH together with the Aachen University

www.manaraa.com

PROPLAN

Success Factors in Change Management
G) Top Management Commitment

CD Motivation and Acceptance

o clearly defined Aims

o Tight Project Management

o Customer-oriented Processes

o Set up of Project Teams

CD Project Marketing

o Sufficient Resources

o Conflict Management

® Motivation for Implementation

Figure 2: Critical Success factors as result of EC-MOTION project

531

of Technology's Laboratory for Machine Tools (WZL) (both joined the MO
TION project) developed a method for process-oriented enterprise modeling
and process optimization.

The model's tenet is the consideration of all necessary aspects for a suc
cessful reorganization. It includes procedures for implementing customer
oriented organizational structures and process-control. The method forms
the basis for the software PROPLAN, developed by GPS. PROPLAN sup
ports an integrated optimization of business objectives like cost and lead-time
reduction as well as quality improvements. It is used in BPR projects as well
as for ISO 9000 certification.

2 Application of the Model in PROPLAN

The PROPLAN method defines 14 process elements as symbols for an overall
process depiction. They are employed by the modeling language and visu
alize corporate processes as an entire sequence, e.g. from order placement
to delivery. They are divided into direct and indirect elements. Indirect
elements such as linkage, decide, communication, etc. are characterized by
their indirect contribution to the added value of order processing. Direct
elements on the other hand symbolize activities directly specified for the ex
amined process, e.g. designing, process planing and manufacturing as Figure

www.manaraa.com

532 Gunther Schuh, Thomas Siepmann, Volker Levering

~G.n.r.1
~SCh.dul.

-$ Te.1 resOurce

~communlcale ~ Reglstar

-$-Transport -$-SPIII

Figure 3: Elements of modeling language

3 shows.

Ordar
Clarillcation

""""":m

With PROPLAN, process plans can easily be drawn to visualize business
processes by applying the elements proposed by the modeling language. The
symbols are assembled to a sequence as the depicted process is proceeded. All
elements show an entry on their left side and outlets on top, bottom and/or
right hand side of the symbol. The outlet on the right hand side represents
the normal outcome for a trouble-free executed process. The bottom outlet
shows an interrupted process in case of an interrupted process execution. For
instance, it could be a design process with all test data available and required
essential market information provided by sales department. A process will
take the top outlet of an element, if the following process remains undefined.
An entire process is visualized in the above mentioned process sequence plan
shown in Figure 4.

The method of Business Process Reengineering represents a general ap
proach forming the theoretical basis for the use of PROPLAN symbols in
practice. Weak points such as lack of information, critical resources and un
necessary idle time are revealed in discussions between all employees involved
in the process. Besides PROPLAN offers the possibility to determine the pro
cess' cost and lead-time. Additionally benchmarks allow users to measure and
compare different processes in the company. The underlying method for the
program system PROPLAN "Method for Process Oriented Reorganization
in Technical Order Transaction" follows four steps:

1. Building up the process-oriented model of order processing: The exam
ined business process is depicted as a sequence of process symbols and
interconnecting lines. As every element has several outlets for different
process' outcomes, failures or ramifications are depicted clearly.

2. Quantification of relevant process parameters: The average lead-time
and/or cost for each process element is determined. After the quan
tification PROPLAN calculates the overall lead-time and cost for the

www.manaraa.com

PROPLAN

Order Processing
- Example-

533

Oral
L--<il-liU!2l.---- CI.rifl""tlon

Wrftt.n
Clorifleotlon

Figure 4: PROPLAN IT-Tool for Business Process Reengineering

entire process or parts of process.

3. Problem identification in the sequence: Problems are detected in cor
porate areas directly or indirectly involved in the process (Figure 5).
Most frequently weak points concern lead time, frequency of failures
and lay days.

4. Evaluate measures to be taken: The process team develops plans for
improvements on the basis of previous steps. Before implementation
the plans are projected in the business process sequence plan in order
to evaluate their impact on the process. The results serve as an aim for
the examined main business process plans.

The process analysis starts with selecting a team documenting corporate
processes on the basis of interviews. Operative worker (process owner) are
questioned to give detailed information about particular process chains. The
process owners report how the incoming orders are proceeded. According to
their descriptions process elements are assembled to a process plan. Then
the involved employees have to verify "their" processes by a further ques
tioning. Due to the elements' high transparency the process owners identify
themselves rapidly with the depicted process and will indicate potential im
provements, which remain unconsidered by the first questioning.

www.manaraa.com

534 Gunther Schuh, Thomas Siepmann, Volker Levering

WeOlk Point
Lead-ttm ..

Tolal Leal!-tirre
/

/Feal!-tirre
Process 1
= 50'1>

• Proce-m 11ms Dfl (Nfl ~

",opOlllomli <:OI.,Ib .. lon
to Totall_·t81,.

Derivation of Weak Points
In Order Processing

W.ak Point J
Fr.qu'II¢Y or Fallur.

Informatim

~2n G?
80 ..

·In<:onlplele DIs<rlption
019:1110 ofilll o,de",

Figure 5: Problem Identification

WeOlk Point
Lay-dilys

3 MontlS --$-
• long 1a9l1ng Idle TIme
• C..,"aIloclaJp
• T ornllead Tine

The software PROPLAN was initially developed to support the above
defined approach and make it easy to handle. Even a non-trained user can
easily record all important information about the examined process. The
software was brought to market maturity by a cooperation formed by GPS
and WZL as well as ten industrial companies. PROPLAN was introduced
into the market in 1994 and has supported various successful BPR projects
in many companies during the last years. The software is operative on IBM
compatible PCs under WINDOWS.

Some developments with a long lasting impact on information technology
become visible already today. Thanks to Internet and technologies based
thereon, a closely knit global network will play an important role in future.
Combined locations, cooperation among different companies and branched
corporate structures require solutions on the basis of IT-networks. Often
mixed teams are working at different sites with shared databases. The fol
lowing requirements for commonly used databases are essential: Multi-user
abilities, guarantee of always up-to-date data and the capability to provide
data for mobile users without permanent connection. It requires high stan
dards regarding data consistence, information security and software services.

On the basis of PROPLAN version 2.1, GPS developed version 3.0 to
meet rising demand for team-oriented and mobile data sharing. It is built on
the GPS software PRAGMA (Professional Application's Generic Middleware

www.manaraa.com

PROPLAN 535

Architecture) for middleware architectures. Version 3.0 extends PROPLAN
version 2.1 as it enables several users to share a common database.

The middleware is a software layer on the basis of standardized inter
faces and protocols. It provides services for transparent communication and
shared applications. It consequently represents an infrastructure to integrate
applications in a heterogeneous environment. The middleware might include
Internet as well, while using standardized TCP lIP protocols.

Data transmission plays the key role in mobile computing, even if speed
of data exchange is normally uncritical in LAN. In WAN, however, slow data
transfer may jeopardize the useful employment of the whole software. The
middleware minimizes data exchange by transmitting data only if commonly
used data is changed. Additionally an optimized timing for data exchange
allows mobile users to work independently as long as possible. Even slow
9600 baud connections can then provide a service comparable to LAN.

The concept of data replication helps minimizing time and cost for data
exchange. For mobile users the software keeps a copy (or replicate) of orig
inal data. The user applications are then allowed to work with copies only.
In order to preserve data consistence a comparison is needed between cen
tralized original data and the various copies. Problems may arise by two
different users changing identical data fields simultaneously. In this case the
comparison between data would provoke an error. Implementing priorities of
possible changes could avoid this situation. However a manual test of con
sistence will be necessary if two different applications with an equal priority
change identical data at the same time. A more severe solution is the exclu
sive use of certain data fields (or areas) by only one user and consequently
locked for others. This is favorable for mobile computing, as transmission of
changed data is reduced to minimum. PROPLAN 's version 3.0 includes the
software module PRAGMA as middleware. So PROPLAN uses the above
described advantages of data replication with lockable data. The generic ar
chitecture provides a maximum of compatibility to already existing databases
via SQL or ODBC. Therefore it simplifies administration and data backup.
The concept defines different layers as shown in Figure 6.

The important layers are:

• application layer

• transport layer

• database layer.

The structure offers extensions to alternative database modules. The model's
upper layer defines the exchange with the application software. This appli
cation uses data description language (DDL) to transmit to the system its
data structure. It is registered as new user and has access to other databases
as well. Data exchange between different users uses commands like "get
data, which is more actual than mine" or "get all information about deleted

www.manaraa.com

536 Gunther Schuh, Thomas Siepmann, Volker Levering

application layer

transport layer TCP lIP

Internet
Intranet I LAN

Figure 6: Generic Model with different layers

data". Synchronization between different databases is arranged by times
tamps. Changes in databases will be indicated to the user by transport and
application layer.

The combination of PROPLAN with PRAGMA adds to a software tool
supporting Business Process Reengineering the possibilities of a Middleware
architecture with multiple databases. Users have then access to up-to-date
information, mobile computing becomes effective.

3 PROPLAN Implementation with Intranet

ISO 9000 certification has internal and external effects on a company. It
should not only focus on quality definitions for customers and competitors
but increase employees' level of information and acceptance about order pro
cessing as well. Documentation of business processes serves as an instrument
for staff members to ensure defined quality standards. A GPS customer
in Germany (1600 employees, Sales: US$ 270 Mill) intended to introduce
a software tool in order to minimize the costly documentary period during
the certification. Requirements for the tool were defined as easy handling,
a comprehensive modeling language and, as result, an explicit readability of
the documentation. The company chose PROPLAN to support ISO 9000

www.manaraa.com

PROPLAN 537

certification as documentation was defined as key factor for business process
certification.

The documentation was focused on:

• Optimization of existing processes regarding Quality Management (QM),
for instance feedback of quality control test results to R&D.

• Introduction of new business processes to complete company-wide au
tomatic closed control loops, for instance feedback of QM-relevant cus
tomer information to the sales department.

• Integration of QM in order processing, for instance in regard of the
interface between order control and quality test management.

Flow Charts, as normally employed within the ISO 9000 certification were
replaced by PROPLAN documents. Additionally, process descriptions by
PROPLAN offer the possibility to detect hidden potential for reorganiza
tion. After fixing the specific lead-time and probability for each process
result, PROPLAN shows the difference between the actual process and its
determined target. In some cases the potential for reorganization can sum
up to 90% (Figure 7).

An Intranet service [SWS97) was available at the GPS customer and suited
well for the company-wide distribution of the quality manual. The document
was defined in HTML description language employed in the WWW. While
integrated in company's Intranet, PROPLAN offered:

• the description of PROPLAN documents with all necessary HTML pa
rameters.

• an identical graphic surface maintaining the variable zoom function.
With already installed Internet browsers the user can navigate through
all different process plans.

• easy handling, even for non IT -experts.

The representation of WWW's formats GIF, JPEG and PNG caused conflicts
with process plans documents described by PROPLAN , as the conversion
in WWW formats leads to increased data volume, with the result of a slow
software application. The solution consists of transforming the document into
a vector oriented format, which is linked to selected Intranet pages with usual
HTML code. A free, worldwide available extension to the browser displays
the converted document. This solution ensures a comfortable handling as a
profound knowledge of Internet tools by the user is not required. He simply
starts his usual browser, which is able to handle both, Internet and Intranet.
His PROPLAN environment on the screen does not change. An example of
a possible screen shows the Figure 8.

By using digital media the GPS customer established a state-of-the-art
solution for its guideline to business processes. In comparison to former

www.manaraa.com

538 Gunther Schuh, Thomas Siepmann, Volker Levering

Flow Chart for
ISO 9000

Comparison of different
Process Visualizations

Business Process Plan
for Order Processing Reorganization

(Potential for ROO'llanlzaUon

~l 1 Time
34T

ca. 90% ..
3T • Today Una.r

~
SOLJl'et m,

Figure 7: Target orientation of different process presentations

quality manuals printed on paper, the Intranet application can be noticed by
many more employees. The higher availability of actual documents together
with an easy and comfortable handling led to a significant higher acceptance
in the company.

Before certification the provision, copying, distribution and review of
paper-printed quality manuals were expensive and inefficient. Other incon
veniences were missing indices and a poor availability. Company's former
organizational manual contained 150 valid guidelines and instructions, being
updated and revised more than 250 times until today. The effort was drasti
cally reduced by employing the Intranet-based organizational manual. Still
the main advantage consists in the possibility to get all staff members im
mediately informed by the actual manual. Quality in information provision
within the company was improved significantly, nearly without any financial
effort.

The realization and successful ISO 9000 certification of the GPS customer
can be summarized as follows:

• Low cost of implementation and minimized time for user training. Also
time for PROPLAN -implementation is reduced due to already existing
Internet applications .

• According to ISO 9000 certification, documents' provision and distribu-

www.manaraa.com

:: 6 W""_
NnIIard onStr: aI
tIocummls c.ampId.C?

PROPLAN 539

r=,-------:"]0%

-----I 0 ~? f-----------------,----,~

• Hr. 10%

W"" 1 W""
L ya :"
1 DO : 60%

1----- --1 -E 1'-----
"---'--~.

Shin

1
ForHelp.pl'1!uA

Figure 8: Presentation of PROPLAN documents in Internet or Intranet

tion is now under the responsibility of a certain designated office. It is
equally accountable for the manual's update and review. It guarantees
a direct access to the actual version of the quality manual by everyone
in the company as there is only one actual version of the manual.

• A process depiction in the organizational manual can now be updated
and reviewed by minimized cost. After the certification all adjustments
in manuals are carried out by a central office and there is only one
change needed. These measures decrease IT-cost significantly .

• An up-to-date level of information leads to increased QM-acceptance
by staff members. Due to the fact that employees have access to actual
descriptions of business processes, frustration and confusion owing to a
lack of information can be diminished.

4 Conclusion

The standard software tool PROPLAN developed by GPS allows the visu
alization and depiction of corporate processes. PROPLAN offers 3 major
advantages:

www.manaraa.com

540 Gunther Schuh, Thomas Siepmann, Volker Levering

1. First it represents a very efficient tool for enterprise modeling. Efforts
just take some 5-10% in comparison to most other modeling tools.

2. Second PROPLAN follows the team-oriented approach. All team mem
bers get the chance to work with an easy to understand tool. Discus
sions among team members concentrate on the process and not on the
tool.

3. Finally PROPLAN delivers objective results. It clearly reveals "as-is"
defaults and not "should-be" situations.

The modeling language employs a limited number of 14 process elements.
After visualization even non-experts can examine the depicted process in
order to reveal weak points. The process is compared to different processes,
where PROPLAN simulates and calculates respectively lead-time and cost.
An optimized solution is finally discussed by all participants and implanted
with high acceptance.

To meet rising demand for team-oriented and mobile computing with
commonly used database, PROPLAN was combined to the middleware ar
chitecture PRAGMA. Now multiple users have access to up-to date infor
mation without internal conflicts. Mobile computing is supported by mini
mized data transmission, as PROPLAN can work effectively on a notebook
and a mobile phone without permanent connection to the server. Users will
notice PRAGMA only by the system's multi-user ability, as ordinary Inter
net/Intranet browsers ensure the software's integration in company's In
tranet. The system allows several users to work simultaneously on different
processes handling a common database.

References

[Eve95] Eversheim, W., ProzeBorientierte Unternehmensorganisation, Sprin
ger-Verlag, Berlin Heidelberg New York, 1995

[HC93] Hammer, M., Champy, J, Reengineering the Corporation, Harper
Collins Pubisher, New York, 1993

[PEKW94] Pfeifer, T., Eversheim, W., Konig, W., Week, M., Manufacturing Ex
cellence, The competitive Edge, Chapman & Hall, London Glasgow
New York Madras, 1994, 3-34

[SSJ97j Schuh, G., Siepmann, T., Jansen, T., Durch Middleware Standorte
vernetzen, Zeitschrift fUr wirtschaftlichen Fabrikbetrieb 3/97, 119-121

[SWS97] Schuh, G., Webersberger, P., Siepmann, T., Qualitatshandbuch und
ProzeBpliine im INTRANET, Industrie Management 3/97, 47-49

www.manaraa.com

CHAPTER 24

ARIS

August- Wilhelm Scheer

In this article a general business process architecture is presented, which is based
on the Architecture of Integrated Information Systems (ARlS) and which is com
posed of the four levels of process optimization, process management, workflow and
application. The ARIS-House of Business Engineering encompasses the whole life
cycle range: from business process design to information technology deployment,
leading to a completely new process-oriented software concept. At the same time,
the architecture bridges the gap between business process modeling and workflow
driven applications, from Business Process Reengineering to Continuous Process
Improvement.

1 Introduction

Despite an abundance of various reengineering concepts in recent years, busi
ness processes have emerged as the focal point of business reengineering
[Dav93, Gai83, Har91]. Business processes in manufacturing have been gov
erned by clear methods for quite some time [Sch94, Sch92, DCVF93]. This
is not the case, however, for processes in the indirect areas within manufac
turing, the service industry or public services [Sch96, SNZ96].

In this article, the 'ARlS-House of Business Engineering', a general archi
tecture of business processes consisting of the following four levels: Process
Design, Process Management, Process Workflow and Process Application is
introduced. This architecture is applicable for every type of business process:
in manufacturing, in the service industry and in the public services. Constant
feedback between these levels guarantees Continuous Process Improvement
(CPI).

2 Business Process Design and Control

At a business breakfast. Two executives are sitting across from each other
and are discussing the current situation in their respective departments. The

www.manaraa.com

542 August- Wilhelm Scheer

Plant Manager is complaining to the sales manager that in the previous
month the machine load factor in his department had dropped by 3%. Yet
the lead time of processed manufacturing orders had risen by 2%, while the
gap between planned costs of an important order and actual costs had leaped
to over $350,000. On the other hand, the production scheduling system had
helped him squeeze in an unexpected high priority order, without having
to compromise the delivery dates of other orders. Then he asks the sales
manager how things are going over at sales. His peer is only able to make
general comments regarding the order book. He is, however, not capable
of determining the precise load factor of his employees, the lead times of
order processing, their respective costs or obtaining precise information on
the dispatch of high priority orders.

This tiny example demonstrates that methods for controlling manufac
turing processes are far more perfected than for the control of procedures
in other operational areas. It raises the question as to why these methods
are not customary beyond the area of manufacturing and whether the basic
principles of controlling manufacturing processes can also be applied to other
areas. Various operational buzz words, such as CIM (Computer Integrated
Manufacturing), lean management and BPR (Business Process Reengineer
ing) have cropped up in the past few years and have been a constant source
of discussion in management circles. Today, the business community seems
to unanimously agree that designing and controlling business processes is one
of the premier organizational tasks in enterprises.

The term "business process" is defined universally. A business process is
described as a procedure relevant for adding value to an organization. It is
viewed in its entirety, from beginning to end. Figure 2 illustrates the business
process of order entry processing. The initial requirements of the customer
lead to order acceptance by the manufacturer's sales department. Sales then
relays information to purchasing, in order for them to supply bought-in parts.
Finally, production plans and executes the work-order.

Figure 2 illustrates this procedure by a series of events triggering func
tions. The initial event of the process is the customer requirement. The final
event is the completion of the product in Manufacturing. Events not only
trigger functions, they are themselves the results of functions. Processes can
be split into sub-processes. Conversely, sub-processes can be joined together.
By introducing logical operators, the control structure with its event-driven
process chain (EPC) can be expanded to accommodate variously complex
procedures [Sch92, KNS92, Sch94J.

Besides describing the procedural structure of events and functions, there
must also be a focus on describing the organizational units assigned to the
functions. Many reengineering projects are actually directed at re-allocating
functions to organizational units.

A business process consists of two function classes. The first function
class describes how processing rules transform input data into output data.

www.manaraa.com

ARIS 543

Figure 1: Modeling of a business process, using event-driven process Chains

Functions of this kind are executed in the "office area". For example, cus
tomer order data is supplemented by data pertaining to the article (e.g.
inventory) or the customer (e.g. credit worthiness), respectively. It is then
transformed into result data (accepted order, reserved warehouse stock, in
creased customer order balance). Thus, input and output data both belong
to the description of a business process. In addition to the transformation
of data, a second type of transformation can be carried out in a business
process: the transformation from input material to output material. This
process is called manufacturing. Material transformation comprises physical
change, but can also involve a change in location, that is the function of
material handling.

For many years now, the process of material transformation in indus
trial enterprises has been mastered quite well. This process can be described
minutely and is usually controlled precisely regarding its scheduling and costs.
On the other hand, management's knowledge regarding administrative pro
cesses is usually quite scant. Whereas the process of a production order is
described minutely by the routing, descriptions regarding the business pro
cess in sales, purchasing or accounting are rare. Finally, to make matters
even worse, in many industrial enterprises, scheduling and cost shortcom
ings are more frequently found in administrative rather than in production
departments. Therefore it seems appropriate to examine whether and how
procedures, which have proven to be most successful in controlling manu
facturing processes, might also be applicable in the back office. The back

www.manaraa.com

544 August- Wilhelm Scheer

office usually feeds into production. The same concept would then apply to
service providers, such as banks, insurance companies and even government
agencies.

Considering how many industrial enterprises augment their products with
various services such as 'engineering' or 'after sales service', it becomes appar
ent that industrial enterprises and service providers are reaching out toward
each other. By the same token, due to a continuing rise in automation, ser
vices providers, software houses for instance, are beginning to assume the
shape of industrial structures [Niit95].

The basic concept of ARIS will now be briefly outlined and then the
fundamental architecture of controlling business processes (ARIS-House of
Business Engineering) will be introduced. This leads to a new kind of software
architecture, supporting these processes. While analyzing the processes, we
will stress the analogies between production and services in the various steps.

3 ARIS - The Basic Concept

Aligning the enterprise along its processes offers the possibility to hit several
business targets. But a process-oriented business management not only re
quires a concept for the systematic· design and organization of the business
processes themselves (by means of so-called Information System Architec
tures). Process-oriented business management also calls for tools and con
cepts to design the information systems supporting these processes. The aim
is to design and control the organizational structures in a very flexible way
so they can rapidly adapt to changing conditions (of the market, competitors
etc.) [SNZ95].

The Architecture of Information Systems (ARIS) can be used as a key
stone for Business Process Reengineering and Business Process Management
[Sch92]. With ARIS the business processes of an enterprise can be described
in order to represent the underlying business problems.

The components and their interrelationships to be described in a computer
supported business process include processes, activities, events, conditions
and organizational units. Considering all the effects on all the elements of
the process when reengineering it would severely complicate the design pro
cess.

In order to reduce this complexity, the model is divided into individual
views that represent discrete design aspects and can be handled (largely)
independently, which simplifies the task. Events such as "order", "order re
ception" or "production release" are information objects that are represented
by data. Reference field conditions such as "customer status" and "article
status" are also represented by data. Conditions and events thus form the
data view. The functions to be performed and their relationships form a sec
ond view, the function view. The structure and relationships between staff
members and organizational units constitute the organization view.

www.manaraa.com

ARIS 545

Dividing the initial problem into individual views does reduce its com
plexity, albeit at the expense of the description of the relationships between
the views as expressed by the arrows in the process model. For this reason, a
"control view" is used to restore the relationships between the components.
The control view is an essential ARIS component that distinguishes it from
other proposed architectures.

By introducing the control view into the architecture, it is ,possible to
retain the relationships between the views, although previously the views
were isolated and could therefore be treated in a more simplified form. The
subsequent explicit input of the relationships between the views makes it
possible to systematically enter all the relationships. This process results in
the four ARIS views shown in Figure 2.

Emty
ReI~_p

Moo" (EFlM)

Data

~ho'dQJ'''''' ~
~atd O~

plamirgle.<elS a\Jilrlz«lo/131CII<I!

Control

organizatIon

JIOCesi· .. _~1
F1
F2
F3",

Function

ERM ;;;: Ert/ty Reliiltmshlp Model
Fn • FuntllCft n
E = eY~r1
o • [Qta
o = Orgamatlonal unit
R :;;; Read
W = WlIW
C • C)late
pro = Procfill, etaln Di~r.llm
EPC • Ev.,.·(t''',n Proct1:S Ctlaln
000 = ObJeti Ortanl.d D.~n

Figure 2: Views and methods used on requirements definition level

The term "tool" is employed here in the sense of computerized aids used to
support the use of the methods in the software development process. Their
use can apply to the creation of designs within the individual ARIS fields
or to the transformation of a design result to superordinate or subordinate
levels. In addition to the design support provided by descriptions, tools can
also help navigate within and between the design results. Furthermore they
should offer support for analyzing, evaluating or simulating the models.

The "ARIS-Toolset" , a product of the IDS Prof. Scheer GmbH, provides
developers and consultants with a product that meets these requirements. It
provides user-friendly tools for the modeling, analysis and navigation of busi
ness processes, thus ensuring the productive translation of the methodology
[IDS94j.

On top of that the evolution of ARIS in research and development leads

www.manaraa.com

546 August- Wilhelm Scheer

to new concepts and products for optimized business processes based on
the ARIS-Architecture. The latest developments were integrated into a new
framework called the "ARIS-House of Business Engineering", which will be
described in the next sections.

4 The Architecture of the ARIS-House

When analyzing the methods used for process control in manufacturing, we
deduce the following four main tasks:

1. Describing and optimizing the process structure, based on routings.

2. Optimization planning of current business processes with regard to ca
pacity, time and costs (production scheduling control).

3. Controlling the execution of individual processes (material flow con
trol).

4. Supporting the function execution, that is, material or data transfor
mation rules.

On the whole, these tasks can also be translated to processes in the service
sector, where data transformation has a high priority.

These four tasks can be allotted to the 4 Level Model. This model is
called the 'ARIS-House of Business Engineering' and is the focal point of
the subsequent discussion. Figure 3 sums up the individual Levels of the
'ARIS-House of Business Engineering' and depicts their correlation.

• Level I: Process Design

Level I describes business processes according to the routing. There
fore, the ARIS Concept provides a method to cover every aspect of the
business process. Methods for optimizing and guaranteeing the quality
of processes are also available.

• Level II: Process Management

Level II plans and monitors every current business process from the
"business process owner's" point of view. Various methods of schedul
ing and capacity control and cost analysis are available. By monitoring
the process, the process manager is aware of the status of each process
instance.

• Level III: Process Workflow

Level III transports the objects to be processed, such as customer orders
with the corresponding documents or insurance claims in insurance
companies, from one workplace to the next. The documents are then
stored in "folders". Workflow systems carry out the material handling
in electronically stored documents.

www.manaraa.com

ARIS 547

• Level IV: Process Application

Level IV processes the documents transported to the individual work
places, that is where the functions of the business process are executed.
Computer-aided application systems - from simple word processing pro
grams to complex standard software modules and Internet applets - are
used at this Level.

Figure 3: The 'ARIS-House of Business Engineering' Architecture

The four Levels of the 'ARIS-House of Business Engineering' are interde
pendently connected. Information at Level II regarding the profitability of
current processes, is the point of departure for continuous adjustment and
improvement of the business processes at Level I. We call this Continuous
Process Improvement (CPI). Process Workflow is linked to Level I, because
Process Workflow at Level III requires the description of business processes.
At the same time, Process Workflow reports actual data regarding the pro
cesses to be executed (amounts, times, organizational allocation) back to
Level II. Applications at Level IV are executed from the workflow system at
Level III and configured according to the business process models at Level I.
Up to now, only the 'ARIS-House of Business Engineering' in Figure 3 has
been outlined. We will now describe each Level in detail. For illustration
purposes, we will present typical screens from systems developed by the IDS
Prof. Scheer GmbH. In Section 5, we will focus on future developments and
show what is in store for the concept and the software solutions based upon
it.

www.manaraa.com

548 August- Wilhelm Scheer

4.1 Process Design - Level I

ARIS consolidates various views into one business process as mentioned
above. The Control View records the relationships between the other Views;
it also utilizes the event-driven process chain (EPC) method, as illustrated in
Figure 2. The ARIS-Toolset is based on the ARIS Concept and supports the
user in modeling, analyzing and navigating through its business processes.
Figure 4 depicts the user interface of the ARIS-Toolset [IDS94].

1)U~ bar
fr i6NJ bl;tr ~lt:Y!.i

I;vol h-lf

Figure 4: ARIS-Toolset - User's interface

In order to demonstrate that process representation can be utilized uni
versally, in Figure 5 we offer an example of application processing in a gov
ernmental agency. Figure 6 shows a work schedule, including the material
flow, modeled as an EPC. On the one hand, both figures show that the ARIS
Toolset can be employed as a front end for managing manufacturing routings
and material flows. This offers more variations for representing alternate
procedures. Obviously, presenting the manufacturing methods in a graphical
form is much more user-friendly than listing routings in tables. By including
the material flow in the ARIS Concept, relationships between product and
business process models can also be addressed. On the other hand, concepts
designed to manage different versions of manufacturing routings (even expert
systems) are well suited for describing business processes in the service sector.

Thus, Level I corresponds to the description of the master routing in
manufacturing. In the service sector, it is not customary to define each and
every object that is to be processed. This is done in a more general way, by
object groups. For example, in purchasing, this would involve a purchasing
process for spare parts, standard purchasing, just in time processing and

www.manaraa.com

ARIS 549

Legend ODD D o -
Figure 5: Administration process as an event-driven process chain

other similar groups as a whole, not a process for individual products. In
production, however, routings for every single part are maintained.

Figure 6: Routing and material flow as event-driven process chain

Using ARIS-Analysis, processes can be evaluated and compared according
to their time and costs (see Figure 7). Using ARIS-Simulation, bottlenecks in
business processes can be analyzed. They are then removed by restructuring
the processes (see Figure 8) . ISO 9000 definitions include criteria for the
quality definition of business processes. These descriptions and forms can be
generated directly from the ARIS business process description (see Figure 9).

This summary shows the comprehensive methods and tools available from

www.manaraa.com

550

• ;

August- Wilhelm Scheer

I ,ur

.-.umll:
~CNt;
,. .. .-ICMt :
.,..,.... anl :
-.y_t:
g.t"'~t'"'~tJ- :
~. InN •• :
YMtMt -nw..I om :

.....
LeI .Imq
... 1'..lZIIq , ,
.... l'.eq

lAM In.5Jq

.... fI,Ilo.lw.1

Figure 1: Evaluating business processes: user interface of ARlS-Analysis

ARIS for optimizing business processes.

-

As an aid to modeling business processes, existing information on use
ful structures of the business processes can be included in the basic solu
tion. These reference models, derived empirically from Best Practice cases
or theoretical considerations, lead to substantial time savings in designing
optimal procedures [Har94]. Reference models can be described according
to the ARIS Concept and stored in the ARIS-Toolset. When structuring
processes, every function, e.g. analysis, comparison, model adjustment and
model changes, can be used.

In reference models, we initially differentiate between procedure models
and industry-specific models. Procedure models describe project processes,
such as the execution of an ISO 9000 certification or the implementation
of standard software. Special reference models, developed by IDS and in
cluded in ARIS, are available for the above tasks or the implementation of
workflow systems. Figure 10 shows the reference model part for SAP R/3
implementation.

Industry-specific models refer to typical operational business processes,
such as logistics, product development or finance. In ARIS, they are avail
able, among others, for the following vertical markets: Paper, Chemical,
Mechanical Engineering, Plant Engineering as well as Construction and Util
ities. They are continually supplemented and enhanced.

Furthermore, models contained in financial standard applications are also
documented in ARIS. For users who have not yet decided upon a particular

www.manaraa.com

ARIS 551

.......................... - -~~~-~-~:=

Figure 8: Analyzing bottlenecks and testing alternatives: user interface of ARIS
Simulation

software package, these models can be adopted as an additional information
source for designing business processes. When selecting and implementing
software, they are also ideal for comparing the requirements or functionality
of various packages and for customizing.

4.2 Process Management - Level II

In order to control the scheduling and capacity of business processes, func
tions are allocated to the individual workplaces or organizational units. Thus,
scheduling- and location-related processes as well as the load of the individ
ual capacity units is known. This information also leads to a consolidated
view of the capacity situation in the individual work groups. In project pro
cedures, such as the execution of a BPR project or the implementation of
standard software, project process chains and resource definitions compat
ible with MS Project can be generated automatically. They can then be
displayed and managed in Gantt charts or networks. Changes in MS Project

www.manaraa.com

552 August- Wilhelm Scheer

report

through

database

Figure 9: ISO gOOD-report generated from AIDS models

are automatically reflected in the ARIS reference model.
In operational processes, it may be necessary to employ more powerful

control systems than are available at Level II. The FI-2 production schedul
ing system [IDS90], initially developed by IDS to control manufacturing pro
cesses, is now being used to control software development processes. It is also
under review as a tool to control administration processes and even medical
operations.

Project and production scheduling systems also provide information on
"to-be" and "as-is" deviations from the schedule and costs of the business
processes that are to be executed. This, as well as other information, is
utilized to continuously improve business processes. This creates a closed
loop between Level I (Process Design) and Level II (Process Management),
leading to Continuous Process Improvement (CPI).

Every method used in describing Level I, such as process analysis, model
comparison, ISO 9000 certification or simulation, can be employed for CP!.
BPR and CPI should be regarded in the same vein. When a certain situa
tion arises, causing a company to reflect on its structures, this in turn can
lead to a BPR project. However, even after resolving the problem, processes
still change. New organizational concepts can arise. New Best Practice cases
become available as reference models. New technologies are invented. New
knowledge is obtained from processes, which have just been implemented,
leading to an adjustment of the process. Hence, Process Design is a con
tinuous process. Frequently, conflicts of interest lead to apparent disparities

www.manaraa.com

, , ,
: , ,
: , , , ----: , , ,

ARIS 553

Figure 10: ARIS procedure reference model for the implementation of SAP R/3

between BPR and CPI: applications vendors are sometimes blamed for the
lengthy procedure occasionally necessary to implement their software. They
are concerned that their product could be held responsible for any additional
delay if they are connected with a BPR project. Therefore, they oppose BPR
strategies and recommend rapid installation of their software and subsequent
CPI. Due to their interest in selling consulting services, consulting compa
nies, on the other hand, recommend the opposite approach: first, develop a
new engineering (organizational) concept and then support it with the new
software. This prevents unnecessary and awkward procedures from being
carried over into the new software concept. The contradictions of these two
approaches are resolved in the' ARIS-House of Business Engineering' because
BPR and CPI are so closely intertwined.

The integration of a process costing component within ARIS is impor
tant for implementing a permanent Improvement Process. With their focus
on cost center accounting, current financial cost accounting systems mainly
provide a functional view. For example, the objective of standard product
costing is to cost-optimize cost centers according to their functions. Con
versely, the costs of business processes are not known. The ARIS-Promt
module, developed jointly by Plaut AG and IDS Prof. Scheer, provides the
concept and tool for process costing. The cost rates of traditional cost ac
counting systems are linked with the business processes modeled in ARIS.
This determines the cost per process (see Figure 11).

The intense debates in business administration circles in recent years re
garding process costing generally dissipate if one adheres to this basic view
of business processes [JK87, CK88] . Process costing has always been around,

www.manaraa.com

554 August- Wilhelm Scheer

however, only in areas in which process descriptions are available, such as in
calculating manufacturing processes. That is why we use terms like concur
rent calculation, where as-is costs of a manufacturing order, and thus of a
manufacturing process, are determined in parallel with an ongoing process.

Business process owners are also interested in the processing status of pro
cesses currently being executed. Using ARIS-Monitoring , they can display
each individual process during its execution and can highlight the functions
that have already been concluded.

Figure 11: Supporting process costing with ARIS-Promt

process cost
rate (PAl) process cost

rate (total)

In addition to the cost point of view, business process owners are thus
kept up to date on the various states of the processes regarding scheduling,
capacity and organization. The IDS production scheduling system, initially
developed for manufacturing control, can also be used to control business
processes in public services. Process data can also be summarized in an
executive information system (EIS) or data warehouse, supporting process
management. When turning the concept of an enterprise-wide business pro
cess control into reality, the following guideline must be kept in mind:

"A process is a process is a process," regardless of whether it is in produc
tion, purchasing or in sales. Going back to the example at the very beginning
of this article, we can see that this concept will guarantee that the sales man
ager can actually communicate with his peer in production, having the same
reference numbers at his disposal.

www.manaraa.com

ARIS 555

4.3 Process Workflow - Level III

Thirty years ago, a software application used to be comprised of a function
description (program statements), procedure control (defined by the sequence
of statements) and data. Because data does not belong to an individual
function, but rather is processed by several functions, it was stripped of the
individual function programs and defined as an enterprise-wide organization
object.

We can observe a similar development as with data when controlling in
dividual function commands [Don94]. The entire business process procedure
(see Figure 2) is generally not handled by a single software application sys
tem. Moreover, several function-oriented systems are usually used by sales,
purchasing, production or finance. None of these systems is capable of pro
viding information on the entire process, such as the processing state of an
order. Therefore, is seems obvious that we should not hand over the respon
sibility for the whole process control to a single function, but rather to a
separate system level. This level is known as workflow.

Workflow systems transport the objects to be processed (documents) from
one workplace to the next. Better yet, they send them from the computer
system at one workplace to the computer system at the next work step.
Therefore, the procedure must be described in detail and must include each
individual type of process or business user, respectively [GS95].

In Figure 3 the document flow is illustrated by a "folder" , which is trans
ported from one workplace to the next. This folder contains electronic ref
erences regarding the data required for processing and the function elements
that need to be called up. Figure 12 illustrates how a specific process in the
execution level is derived from the procedure defined in LevelL Instead of
the general attributes of the organizational unit, we now find actual business
users. Instead of the general term, we find an order that is linked to an actual
customer.

After the conclusion of a workstep, the workflow system retrieves the doc
ument from the electronic out-bin of the business user and transports it into
the electronic in-bin of the next business user. If several business users are
involved in processing, the procedure can be placed in several in-bins. As
soon as a business user has begun with the process, the procedure is deleted
in the other in-bins. The workflow system is informed of the process status,
execution time and the appropriate business user of every business process.
Thus, the workflow procedure is also the foundation for Process Manage
ment in Level II. It reports the data for cost and scheduling evaluations and
provides process information for process monitoring. An agreement by the
Workflow Management Coalition, a group of workflow vendors, has stan
dardized interfaces. Now, various workflow systems can be linked with one
another [HoI95].

The process representation of workflow systems can also be used to guide
business users. This increases their knowledge of the interrelationship of

www.manaraa.com

556

scanned

letter

August- Wilhelm Scheer

order acceptance

purchasing

_
-,. fulfilment ------'

Figure 12: An as-is procedure is derived from a business process model

organizational business processes.
The specific procedure in Figure 13 (right box) follows from the general

business process procedure. You create a specific procedure by giving infor
mation on particular business users and by selecting a certain path outlined
in the general business process description. Thus, business users can always
see how their activity is embedded in the process, who will precede and who
will succeed them within the process. For example, they can also see that
only the left branch of a business process is relevant for them; the control
flow of the right branch might be deleted. Since a particular process has not
been created for the business user of the succeeding activity, only the depart
ment name, "Warehouse", is listed. Depending on the capacity situation at
that time, the business user of the next workstep is not determined until the
conclusion of the task. During Process Workflow, processes with precisely
defined procedural structures can be differentiated from processes with only
roughly defined procedural steps.

In many operational or repetitive procedures (such as order or loan pro
cessing), functions, their procedural branches and organizational units are
determined from the start. Thus, the process is well-structured and can be
described with the EPe method. On the other hand, other processes can only
be described partially since functions become apparent during the process.
This is also the case when the sequence of the process steps is determined ad
hoc or the organizational units to be processed become apparent on an ad
hoc basis. In these cases, we define the process as being poorly structured. It

www.manaraa.com

ARIS 557

Figure 13: The workflow component guides users according to processes

can only be modeled in an imperfect way. For example, functions can only be
presented in a "TO DO" list; the sequence will be determined by the project
team during the process. It is at this time that the person to whom the task
has been assigned, is also determined.

Workflow systems seem to be more suitable for controlling well-structured
processes. Likewise, less structured processes are supported by groupware
systems, which only offer tools such as electronic mail, video conferencing,
shared conferencing etc., but which do not require logical knowledge of the
processes. In real-life situations, we will always find a mix of these two struc
ture forms. Thus, workflow systems are capable of "exception handling",
that is, procedure control can be changed ad hoc during processing. This
functionality can be linked with groupware tools, complementing workflow
and groupware. In the future, these two systems will even grow together.
In Figure 14, a process is first depicted as a structured procedure and sec
ondly, after a team organization has been implemented, as a less structured
procedure.

4.4 Process Application - Level IV

Current vendors of integrated software systems are splitting their systems into
smaller modules. Many of them are now just loosely coupled. This makes it
possible to release upgrades for each individual module and not across-the
board for the entire system. On the whole, there is a strong tendency today
towards splitting application software into individual components (compo
nentware). These modules are re-assembled into complete solutions according
to process models. The operational data in these applications are managed

www.manaraa.com

558 August- Wilhelm Scheer

cuatomer
order

process structure process structure
without team concept having a team concept

conventional proal ..

reotganlution
II

Figure 14: Process structure before and after implementing a team concept

by database systems [KN96] .
In the object-oriented approach, data and functions are encapsulated and

communicate via a messaging system, which performs material handling for
the workflow system. The objects correspond to the "folder" and provide
references to data and functions. It is important to note that Level III is
responsible for the entire process of the operation. It calls up objects to be
processed, such as electronic forms for filing insurance claims, loan application
forms for loan processing operations or customer orders for customer order
processing. It then passes them on to the appropriate processing station and
calls up the program modules.

This separation of the control flow of programs and function execution
is bringing about tremendous changes in the software market. Vendors of
conventional application software will have to decide whether they want to
be brokers' at Level IV and just provide "componentware" with some editing
functionality - or if they want to move up to the rapidly growing workflow
systems market. Conversely, software manufacturers without much experi
ence in applications are reaching a new point of departure, now that workflow
systems are being developed. Particularly in service applications, the pro
cessing rules in Level IV can be so simple that they only involve data entry
or document editing. Many functions could therefore be executed at this
level, such as calling up a spreadsheet or a word processing program. This
makes workflow systems that control the coherence of a procedure all the
more important.

What this means for users is that a new architecture for application soft
ware is on its way (see Figure 15). Service providers, such as banks and
insurance companies, do not have a large selection of standard applications
at their disposal to support their operational procedures. Now they can
document (model) their business procedures in Level I and can control their
procedures by implementing a workflow system in Level III. In Level IV, they
can still use their existing software to support the processing rules. Neverthe
less, today it is necessary to split software in Level IV and make it accessible

www.manaraa.com

ARIS 559

to workflow control. By separating procedure control from function execution
statements, information systems are split into data management, procedure
control and function execution.

Figure 15: Process-oriented, workflow-supporting application software

4.5 Interaction between the Levels (Customizing)

When supporting business processes in their entirety, it is not sufficient to
simply split the whole process into the four parts intellectually or as a physical
system, as described above. We must also separate their links with one
another. We have already noted that the individual business events in the
Process Workflow Level are generated by copying the business process design
in Level I. The generating of this business design is thus a link between the
business process modeling tool and the workflow system. In the Workflow
Management Coalition, experts are working on creating accepted standards
for this link [HoI95]. The same goes for delivering workflow results to Level II,
for example, by delivering details regarding as-is schedules or as-is amounts
to Level II for evaluation purposes.

These two links make it possible to immediately update a business process
procedure, even in execution and evaluation levels. This occurs without
having to manipulate any computer programs. Thus, organizational Design
Level I plays a tremendous role within the whole architecture.

From an organizational point of view, the link between Level I and Level
IV is equally important. Thus, the modeling level not only generates proce
dure control, but also processing rules and data transformation. After start
ing with a group of processing rules that are only very roughly defined, for
example, it is possible to filter and adapt only those that are really important
for the business procedures.

ARIS-Applications is consistent in carrying through this concept of model
driven customizing:

www.manaraa.com

560 August- Wilhelm Scheer

ARIS Model:
attribute allocation diagram:

master data ITEM

M..J_

'-.... --... -.. - ..

screen:
master data ITEM

r---m .-
I\!l ,--
r---m
I\!l

Figure 16: Model-based customizing with ARIS-Applications

Changing the attributes of the data model in Level I alters the data ta
bles in Level IV. Modifying process models, in turn, varies the sequence of
function procedures. Changing function models either switches off or acti
vates functions . Finally, employing the organizational model allocates func
tions to certain organizational units and determines the screen sequence.
ARIS-Applications are derived directly from industry-specific market refer
ence models described according to the ARIS Method. Using the ARIS
Toolset, they can then be developed into company-specific "to-be" models.

In order to transfer the model into application software, a build-time
system, class library and configuration model are at your disposal. The build
time-system converts the company-specific ARIS model, based on object
oriented programming, into an operational application system (run-time sys
tem) . The build-time system utilizes a class library consisting of predefined
business administration and data processing classes. The processing rules
for this conversion are comprised in the configuration model. Here is an
example: Processing rules guarantee the DP-conversion of the ARIS mod
els into database objects. They further govern the description of database
objects and links between external and internal identifiers (e.g. for tables
and columns). Besides modifying procedure rules, model-based customizing
enables the adjustment or expansion of data models, dialogue masks and pro
cess organization. Thus, the application is derived directly from the process
model of the enterprise and then configured from business-objects.

www.manaraa.com

ARIS 561

."
po t<ll !{ Ii. ~-. II'*'" Q< __ ~O\>

Bod< I f- I • ..;;dT· I ()poo T ~T': ... lj;J

fisc he .. Dowel G

~------------------.~~~-~~

Figure 17: Internet user interface of WODAN

5 Outlook - Further Developments

The 'ARIS-House of Business Engineering' is designed to make it easily
adaptable for further development. Currently, work is being done on the
following approaches:

• Distributed Modeling and Model-Warehouses,

• Internet-Enabled Business Process Control and

• Business Process Control in Virtual Enterprises (only selected examples
!).

Some of these approaches are still in the R&D stage. Others will soon be in
production.

5.1 Distributed Modeling and Model-Warehouse

Due to the fact that multiple organization units are involved in business
processes, they must also take part in their respective definition (modeling).
This can take place in a cooperative way across multiple locations, even
across national borders. In a cooperative effort involving IDS and IBM,
the IWi at Saarbriicken, Germany, have developed a prototype, ContAct, to
control asynchronous modeling projects. This prototype contains groupware

www.manaraa.com

562 August- Wilhelm Scheer

techniques for modeling as well as procedures for consistent query and reply
processing within the modeling process [GHS95] .

Another step to global accessibility and usability of business process mod
els is done with the project SETCOM (Semantically rich thesaurus for concur
rent modeling). Models of different business processes, modeled with different
tools could be placed in a database with an Internet-F'rontend. With an ex
tensive search-engine using ontologies, examples and descriptions a common
understanding and easy accessibility to business process models is available.

5.2 Internet-Enabled Business Process Control

As follows from Figure 2, business processes can range from several company
locations for sales and production - to external partners of the enterprise
(suppliers and customers). Thus, tracking the status and active control of
business processes beyond the enterprise is becoming increasingly important.
Internet standards are distinguishing themselves as a key networking concept.
ARIS-Workflow system and ARIS-Applications are generic by design. This

. makes them ideal for world-wide business processes conducted in the Internet.
Due to the fact that Internet standards are becoming increasingly common in
enterprises, these products also support corporate applications (Intranets).

~ GOICI.IHIIp.J~df!
\i,.hattNi!W? 'WtwI1 tan De*wiQ'W Hoi s..ch ~ SdIt,.,w:*

Yo""
V"UW4I
Wi'!lHI:!I!C#
CIru..,.,.
~
PiVJ/«6tt.

Fq,,,,,,,,iMDnnaJi91L
«"'WI II tp4q
PA.o •• +J9611 SU'-IJ.
F",,~6BJ sum1
E-Mdil: ..., .. t«!@iaddr

"
I(iesel>

(Wh e -. WIIIJ._O~. _ ... r,. ..
FbUI wtar .. _ta

f<N!'I'nw..-tn.-....
~.~.

Whatdl¥er>
AsIL_ _~,W • .m
cl.allJa .. ,. ht,....,.,lI'IMI.
~~JtdIc.vu·"' •• r
.,.rds~.

pnf"tl.,; ... ;,~,H<tiJr"" ",Environmental Protection

Figure 18: KIESEL: Virtual competence center for Enviromental Issues on WWW

A prototype for logistic applications has been developed, using the WO-

www.manaraa.com

ARIS 563

DAN system [LKSS96j. A (private) customer logs into a manufacturer's
multimedia catalog (in this example, of a manufacturer of dowels). They
select the items they want to purchase, fill out the order and send it to the
manufacturer via the Internet. The manufacturer loads the order into an
internal logistics system and actually enables the customer to monitor the
status of the order during the entire order process. WODAN is a compo
nent of ARlS-Applications. That is, the application is generated employing
reference models, and is workflow-driven. Figure 17 illustrates the system's
interactive form and the multimedia product catalog.

5.3 Business Process Control in Virtual Enterprises

Information technology is especially significant when it leads to new organiza
tional concepts. So-called virtual enterprises are profiting from new network
ing technology, enabling distributed work on teamworking projects. Virtual
enterprises operate like any other traditional company, but without their legal
properties. They are common in joint ventures in the construction industry.
What makes this topic so special, is the fact that partners can be located
through an electronic cooperation network. All their joint activities, from
e-mail and video conferencing to shared applications, are supported.

The IWi is targeting its KIESEL project at designing a virtual enterprise
for medium- sized firms in the environmental industry. The processes for de
signing the organization and managing the processes are controlled by ARIS.
In all probability, more and more virtual enterprises will appear in the future
- culminating in "mini enterprises" that consist of one person offering his or
her services via networks from a home office. The more these organizational
forms become "softer", the more it is important to assign responsibilities
to the individual persons involved in the processes - the more important is
process modeling [KMNSS95, SK96j.

References

[CK88] Cooper, R., Kaplan, R. F., Measure costs right: Make the right deci
sions, in: Harvard Business Review, 66 (1988) 5, 96-103

[Dav93] Davenport, T. H., Process Innovation - Reengineering Work through
Information Technology, Boston, 1993

[Don94] Donovan, J. J., Business Reengineering with Information Technology,
Englewood Cliffs, 1994

[DCVF93] Doumeingts, G., Chen, D., Vallespir, B., Fenie, P., GIM - GRAI In
tegrated Methodology and its Evolutions - A Methodology to De
sign and Specify Advanced Manufacturing Systems, in: H. Yoshikawa,
J. Goossenaerts (eds.) , Proceedings of the JSPE/IFIP TC5/WG5.3,

www.manaraa.com

564 August- Wilhelm Scheer

Workshop on the Design of Information Infrastructure Systems for
Manufacturing, Tokyo, Japan, 8. - 10. November 1993, 101-120

[Gai83] Gaitanides, M., Prozefiorganisation: Entwicklung, Ansatze und Pro
gramme prozefiorientierter Organisationsgestaltung, Miinchen, 1983

[GS95] Galler, J., Scheer, A.-W., Workflow-Projekte: Vom Geschaftspro
zessmodell zur unternehmensspezifischen Workflow-Anwendung, In
formation Management 1/95, 20-27

[GHS95] Galler, J., Hagemeyer, J., Scheer, A.-W., ContAct - Coordination of
Cooperative Information Modeling Activities, in: Conference Supple
ment to the European Conference on Computer Supported Coopera
tive Work, Stockholm, Sweden, 1995, 25-26

[Har91] Harrington, H. J., Business Process Improvement: The Breakthrough
Strategy for Total Quality, Productivity and Competitiveness, New
York, 1991

[Har94] Hars, A., Referenzdatenmodelle - Grundlagen eflizienter Datenmodel
lierung, Wiesbaden, 1994

[HoI95] Hollingsworth, D., The Workflow Reference Model, in: Workflow Man
agement Coalition (ed.), Document TCOO-1003, Draft 1.1, 1995

[IDS90] IDS Prof. Scheer GmbH (ed.), Dezentrale Fertigungssteuerung: Der
Intelligente Leitstand FI-2, Systembeschreibung, Saarbriicken, 1990

[IDS94] IDS Prof. Scheer GmbH (ed.), ARIS-Toolset - Business Reengineering
mit dem ARIS-Toolset, Saarbriicken, 1994

[JK87] Johnson, H. P., Kaplan, R. F., Relevance lost: The rise and fall of
management accounting, Boston, 1987

[KMNSS95] Kocian, C., Milius, F., Niittgens, M., Sander, J., Scheer, A.-W., Ko
operationsmodelle fUr vernetzte KMU-Strukturen, in: A.-W. Scheer
(ed.), Veroffentlichungen des Instituts fUr Wirtschaftsinformatik, Nr.
120, Saarbriicken, 1995

[KN96] Kruppke, H., Nelles, Ch., Modellbasierte Standardsoftware: Ein Weg
zur Kundenorientierung, in: A.-W. Scheer (ed.), Rechnungswesen und
EDV, 17. Saarbriicker Arbeitstagung, Heidelberg, 1996, 439-453

[KNS92] Keller, G., Niittgens, M., Scheer, A.-W., Semantische Prozef3-
modellierung auf der Grundlage "Ereignisgesteuerter Prozefiketten
(EPK)", in: A.-W. Scheer (ed.), Veroffentlichungen des Instituts fUr
Wirtschaftsinformatik, Nr. 89, Saarbriicken, 1992

[LS95] Loos, P., Scheer, A.-W., Vom Informationsmodell zum Anwendungs
system - Nutzenpotentiale fUr den eflizienten Einsatz von Informa
tionssystemen, in: W. Konig (ed.), Wettbewerbsfahigkeit, Innovation,
Wirtschaftlichkeit, Wirtschaftsinformatik 95, Heidelberg, 1995, 185-
201

www.manaraa.com

[LKSS96]

[Niit95]

[Sch91]

[Sch92]

[Sch94]

[SNZ95]

[SK96]

[Sch96]

[SNZ96]

ARIS 565

Loos, P., Krier, 0., Schimmel, P., Scheer, A.-W., WWW-gestiitzte
iiberbetriebliche Logistik - Konzeption des Prototypen WODAN
zur unternehmensiibergreifenden Kopplung von Beschaffungs- und
Vetriebssystemen, in: A.-W. Scheer (ed.), Veroffentlichungen des In
stituts fiir Wirtschaftsinformatik Nr. 126, Saarbriicken, 1996

Niittgens, M., Koordiniert-dezentrales Informationsmanagement:
Rahmenkonzept - Koordinationsmodelle und Werkzeug-Shell, Wies
baden, 1995

Scheer, A.-W., Principles of Efficient Information Management,
Berlin, 1991

Scheer, A.-W., Architecture ofIntegrated Information Systems: Prin
ciples of Enterprise-Modeling, Berlin, 1992

Scheer, A.-W., Business Process Engineering - Reference Models for
Industrial Enterprises, Berlin, 1994

Scheer, A.-W., Niittgens, M., Zimmermann, V., Rahmenkonzept fur
ein integriertes Geschiiftsprozefimanagement, in: Wirtschaftsinfor
matik, 37 (1995) 5, 426-434

Scheer, A.-W., Kocian, C., Kiesel - Das Virtuelle Umweltkompe
tenzzentrum - Theorie und Praxis der virtuellen Unternehmung, m&c
Management & Computer 4/96, 221 - 228

Scheer, A.-W., Industrialisierung der Dienstleistung, in: A.-W. Scheer
(ed.), Veroffentlichungen des Instituts fur Wirtschaftsinformatik, Nr.
122, Saarbriicken, 1996

Scheer, A.-W., Niittgens, M., Zimmermann, V., Business Pro
cess Reengineering in der Verwaltung, in: A.-W. Scheer, J.
Friedrichs (eds.), Innovative Verwaltungen 2000, Schriften zur Un
ternehmensfiihrung (SzU57), Wiesbaden, 1996, 11-30

www.manaraa.com

CHAPTER 25

Bonapart

Herrmann Krallmann, Gay Wood

Bonapart is a general use modeling, simulation and dynamic analysis tool designed
to support both experts and non-experts in organizational decision making and
strategic planning. Bonapart's 00 (object-oriented) design supports most key or
ganizational and IS (information system) methodologies so it can be effectively used
in organizational design, restructuring (e.g. BPR), communication, organizational
memory management, IT design and implementation, cost control (e.g. activity
based costing) and documentation (e.g. ISO 9000 standards). Tailored interfaces
to other critical work-related and IS applications maximize the usefulness of Bona
part data when implementing workflow, CASE technologies, data warehouse and
enterprise-wide (e.g. SAP) applications. Since both process and actor-oriented
views are modeled, information processing is considered from both the technologi
cal and the organizational perspectives allowing information within an organization
to be more visible and controllable.

1 Development History

Bonapart is an outgrowth of expert system research performed at the Tech
nical University in Berlin during the 1980's. Its earliest predecessor, KSA
(Kommunikationsstrukturanalyse), was a SQL-based relational database
which collected information regarding organizational structures, proc~sses,
jobs, individuals, information flows and the implementation of technologies
and resources. The goal of this system was to support the definition and
analysis of critical success factors as measured by key performance measures
and existing or proposed information structures [Kra90].

In 1988, an university spin-off company, UBIS GmbH (Unternehmens
beratung fur integrierte Systeme), was grounded to continue research, de
velopment and consulting in the application of KSA and KSA-based tech
nologies within commercial and public organizations. In 1990, UBIS' first
PC non-commercial product, ODESSA (OrganisationsDEsign durch Struk
turierte SystemAnalyse), was available for use by UBIS consultants and uni
versity researchers. ODESSA expanded the relational database capabilities

www.manaraa.com

568 Herrmann Krallmann, Gay Wood

of KSA and added a dynamic index, import/export capabilities, enhanced
graphic presentation features and a user-friendly MS-Windows, pop-up menu
GUI (graphical user interface). In spite of attempts to make ODESSA user
friendly, its rigid relational structure limited its use to Expert System experts.

The development of ODESSA corresponded to the gaining popularity of
BPR (Business Process Reengineering) [Ham90j. BPR methodologies fit per
fectly with the capabilities of ODESSA. Consulting in this area rapidly ex
panded. In spite of the strong methodological ties to expert system research,
it was the multi-organizational consulting experience which determined new
system specifications.

In early 1992 UBIS made a strategic decision to develop a marketable
product which could be used by non-experts. After considering available ex
pert system shells and C++, it was decided to use new object-oriented tech
nologies. Object-oriented methodologies were expected to insure maximum
product flexibility, decrease development and maintenance costs, shorten de
velopment cycles and allow direct interfaces to CASE tools. IntelliCorp's
KAPPA-PC was chosen as the object-oriented development platform and
the KEE (IntelliCorp) expert system shell formed the basis of the simulation.
The integration of these two products made Bonapart one of the first avail
able object-oriented products with simulation and analysis capabilities. In
addition to object-orientation, built-in dynamic data exchange (DDE) links
allowed Bonapart analysis results to be directly available to Microsoft ap
plications (e.g. MS-EXCEL), SQLWindows and other predefined interfaces.
The new object-oriented modeling and simulation version of ODESSA was
renamed to BONAPART 1.0. To maximize modeling flexibility and ease-of
use without sacrificing the advantages gained from using embedded expert
system controls, Bonapart 1.0 controlled for inconsistencies in the following
ways:

• only previously defined objects are available for use in process and
organizational chart diagrams

• identical class names are not allowed

• a consistency analysis report is generated

Analysis was based on a query language with constructs for accessing ob
ject types, objects of an object type, and all subtypes etc. When making
associations, queries indirectly associated with objects were also accessible.
For example, the analyzer is able to select all employees which report to a
particular manager or a particular division. Set operations can be applied
to sub query results. In cases where numeric information is generated, usual
arithmetic operations are available. Bonapart queries are specified using
a graphical language. Therefore the results of queries can be exported to
spreadsheet programs for additional calculations or to presentation programs
to generate graphic images such as pie charts.

www.manaraa.com

Bonapart 569

The next generation of Bonapart 2.0 products was developed on a Win
dows platform with Kappa 3, an object-oriented expert system shell from
IntelliCorp Inc. The aU! (graphical user interface) was designed to function
with Microsoft Windows. Previous tool limitations, such as simulation and
model size constraints, were either eliminated or improved. New multiple re
finement capabilities allowed for subprocesses to have more than one parent
process.

Bonapart 2.1 added OLE automation and links to Microsoft EXCEL.
Interface enhancements allow full integration of user-defined attributes and
more sophisticated analysis capabilities. User-defined analysis capabilities
can also be defined using tools such as VisualBasic. In addition, a bottom
up modeling feature was included.

The current version Bonapart 2.2 is a 32 bit application with even more
seamless plug-in type interfaces. Further developments continue to maxi
mize user-friendliness and applicability in a wide range of modeling environ
ments. Bonapart interfaces to best-of-class applications such as Microsoft
Office products and other specialized interfaces such as LiveModel (Intel
liCorp) and Rational Rose (Rational).

2 Organizational Modeling

The main problem in successful IS or organizational design is not what an
alysts and managers know, it is what they do not know. This unknown in
formation is responsible for significant unanticipated costs during all phases
of analysis, design, implementation and maintenance. Tools which make un
known information known, especially early in the design cycle, save time, save
money and contribute to overall project success. Modeling, simulation and
dynamic analysis tools assist managers, information engineers, consultants
and other experts in their organizational planning by collecting and organiz
ing data about existing or proposed organizational and process structures so
that information flows, workflows and management control structures can be
optimized to maximally achieve organizational goals.

2.1 What are Models?

Since cavemen started drawing hunting scenes on cave walls, humans have
attempted to model their work in order to better coordinate their activities
and to inspire others with the elegance of their models. Models are repre
sentations of what we think is going on, what we would like to see going on
or, in some cases, models are merely elegant representations of information.
Because models are abstract pictures of activities, there are two basic per
spectives - the modeler's view of the modeled situation and the observer's
attempt to match the model with his or her own personal experience.

When viewing pictorial information, each person has his or her own focus.

www.manaraa.com

570 Herrmann Krallmann, Gay Wood

Model observers do not only focus on content, they focus on colors, forms,
historical relevance and syntactical clarity. What is seen is often unrelated to
the intent of the modeler. Appreciation and understanding of models requires
more than just clear and concise models, it requires training, experience and
effective bi-directional communication between modelers and observers.

Success modeling projects require:

• skilled modelers and observers,

• top level management support,

• sufficient project resources,

• openness within the organization, and

• a tool which concretely presents relevant information in a way which
optimizes communication.

If models do not communicate structure and flow information in ways ob
servers understand, observers are unable to give the feed-back necessary to
create accurate and useful models. Communication is often inhibited if tools
and/or modeling teams are overly influenced by a particular professional
group-specific language and/or notational system. Professional languages
and notational systems are useful in that they communicate complicated in
formation efficiently but they are also used to maintain professional autonomy
and power. For example, system analysts communicate with one another us
ing dataflow diagrams, managers communicate with graphs and pie charts
and line workers develop specific informal communication strategies. The
ease and effectiveness of communication increases the more homogenous the
participants. Communication problems do not begin until a computer spe
cialist shows his dataflow diagram to the sales manager, or until a manager
presents her econometric study of departmental efficiency to her secretary or
until the billing clerk calls data processing to request an additional change
to the material management program.

Organizations also have formal and informal information sharing strate
gies. Organizational power structures determine the success of individual
participants. Individuals who effectively present information using accepted
organizational standards are more successful than those who do not. This
success is not necessarily correlated to information relevancy or accuracy.
Because information flows are often more politically determined, than strate
gically or rationally decided, tools which selectively support one particular
group's information sharing strategy, maintain that group's existing political
position within the organization. Tools which are designed to support com
munication between all members of the organization, threaten existing power
structures. The successful implementation of a modeling tool is only possible
if upper management clearly supports the modeling tools representation of
information and is ready to make decisions based on modeled information.

www.manaraa.com

Bonapart 571

The ability of a product to support communication is not only one of the
most basic uses of modeling and simulations tools, it is also the basis for ma
jor product differences. If managers, computer specialists, billing clerks and
secretaries are all essential participants in the processes under consideration,
representatives from each group should be able to understand and correct
models, or in some cases, directly model their group's activities. When con
sidering different tools, it is important to involve all likely participants in
tool selection in order to assess model clarity and ease of use. Table 1 is
a list of tool characteristics which help both modelers and observers in the
preparation and review of models.

2.2 Selection of a Modeling Tool

Most potential tool users have particular modeling goal or they are looking for
optimization opportunities which require additional process or organizational
information. The more defined the project's goals, the easier it is to assess the
advantages and disadvantages of different tools. Problem orientation helps to
narrow down the tool choice to those products which concretely provide the
means for answering the questions at hand. From the management perspec
tive, tools need to be able to identify areas in need of optimization and to
compare various alternative optimization strategies so that minimal resource
allocation achieves maximal gain.

Tool manufacturers, recognizing this need, often combine solution com
ponents in their tools. Typical associated solutions include reference libraries
(with or without benchmarks); specialized niche modeling tools to aid in the
design of production systems; specific interfaces to existing applications; or
consulting service packages in areas such as Total Quality Management or
ISO 9000. Therefore, after ease-of-use, the next major choice in tool selection
is to decide if the current project fits an existing solution provided by a tool
manufacturer. If the solution fits, and if there are no other associated ex
ternal organizational process interfaces of importance, and if models can be
understood by everyone on the project team, it makes sense to take advan
tage of the expertise of specialized tools and services. If, on the other hand,
process information is not clear, or if there are many complicated interactions
between processes and/or organizational entities which are not described, or
if the tool language does not fit the existing organizational language, it is
dangerous to try to fit the organization to an existing reference model or to
a pre-defined alternative structure. Reference model libraries have the ten
dency to become static business recipes instead of dynamic organizational
information repositories. Also, system-defined process terms must be trans
lated into organizational terminology in order to be understood. Because
reference models rarely have enough specific details about the organization,
model observers also have difficulty in correcting misconceptions or in par
ticipating in finding viable alternatives.

The most important advantage in designing models from scratch is that

www.manaraa.com

572 Herrmann Krallmann, Gay Wood

• limited information in a single model

• integration of existing corporate terminology

• critical information can be selectively shown (e.g. costs,
time, user-definable attributes)

• same model data can be preseted in multiple formats

• graphical capabilities

• unique class and instance names

• familiar GUI (e.g. pull-down menus, on-line help, cut and
paste, click and drag)

• compatibility with other information types (e.g. bitmaps,
documents, videos, sound)

• minimal tool training requirements

• interfaces to other commonly used applications

• intuitive model file sharing strategy

• reusable model objects

• technical model limits (e.g. size limitations, refinements,
model directories)

• simulation factors (e.g. simulation run times, model size
restrictions, graphics)

• ease of merging multiple models

Table 1: User Clarity and Ease-of-Use Features

these models require the participation of everyone in the process chain. This
communication prepares the organization for change and identifies project
shortcomings early in the project. Unique organizational models are created
with general support tools. Since general tools support multiple organiza
tional and IS (information system) methodologies, an appropriate methodol
ogy must first be selected to maximize modeling productivity. Table 2 lists
some common modeling methodological paradigms used with modeling and
simulation tools.

Methodologies range in complexity from simple step-by-step instruction

www.manaraa.com

Bonapart 573

guides to highly complex theoretically-based research instruments. Complex
methods often require the support of specialized consultants. If consulting
services are required, consultants should be included in tool selection. How
ever caution should be used when involving consultants in the tool selection
process because the same risks associated with using pre-defined tool solu
tions may also apply to using consultants with overly structured methodolo
gies.

2.3 Methodologies

Methodologies are created to help to focus activities, offer a step-by-step
project guide, and to maximize the internal and external validity of project
results. Therefore modeling is most productive when guided by a method
ology which best fits the immediate needs of the organization. Additionally,
this methodology should fit the knowledge and experience of modeling team
members. If a new methodology is to be introduced, extra time must be
planned so that all team members are able to receive adequate training in
this methodology before the modeling project begins. This early training is
necessary because the input of all team members is needed to select the best
tool and to prepare a realistic tool implementation strategy.

A method should:

• fit the concreteness and complexity of the project goals (e.g. activity
based costing, ISO 9000, CASE tool data modeling interface)

• take advantage of previous organizational experience

• be more structured if organization success depends on the modeled
process knowledge or if this is part of an effort to create a cyber orga
nization

• be less structured if the goal is to identify opportunities or if it is an
isolated modeling project

• fit the level of trust in the ability of employees to represent their work

• match the level of procedural control desired from a tool

Even with a methodology in place, due to constant organizational change and
risk of getting lost in details, modeling projects are difficult to keep on track.
Project success and appropriate planning depends on limiting activities to
only those which directly impact project goals as defined by the organization.
The easiest way to stay focused is to prepare a list of concrete questions which
should be answered by the modeling project. Only those items of information
which directly relate to the question list or to the chosen methodology, should
be modeled.

www.manaraa.com

574 Herrmann Krallmann, Gay Wood

• Enterprise Modeling (e.g. TOVE [FCF93], PERA [Wil92])

• Process and Attribute Design

• BPR (Business Process Reengineering) [Ham90]

• Grammatical models [MCLP97])

• SSD (Structured System Design [You89])

• UML (Unified Modeling Language [Rum91])

• OOIE (Object-Oriented Information Engineering [Jac94,
Ode94])

• IDEF (Integrated Computer Aided Manufacturing Defini
tion)

• ISD (Instructional Systems Design)

• TQM/CPI (Total Quality Management/ Continuous Pro
cess Improvement)

Table 2: Examples of Modeling-Related Methodologies

Throughout the project design and project approval phases, expectations
need to be managed. If upper management is not satisfied with project
progress or project results, support is likely to be withdrawn. Both tools and
methodologies have inherent weaknesses. Models represent a specific period
of time and a unique constellation of resources. Models also continually
change as organizational units compete for limited resources. Because of
the risk of immediate obsolescence, care must be used when interpreting
all analysis and simulation results or when making decisions based on this
information. If limitations are clear from the beginning, project goals can be
better defined and managed. Methodologies and tools can be selected which
minimize the most relevant risks. The following is a list of common problems
associated with modeling projects:

• A methodology is not used, models are inconsistent and therefore sim
ulation results are not meaningful.

• The modeling methodology does not match project goals.

• Modeling projects are too large to be managed efficiently or they exceed
the technical limits of the simulation component.

• Too much information is modeled on a single screen.

www.manaraa.com

Bonapart 575

• Attribute information for the same object type is entered multiple
times.

• Modeling projects are limited to only parts of the organization and they
fail to identify critical destructive and synergistic interactions.

• Workers perceive that sharing information will have negative conse
quences such as job loss or loss of power, and they intentional or unin
tentional sabotage model accuracy.

• In the desire to create functionally manageable models, models are over
simplified to the point where they no longer provide useful information.

• Modelers do not have adequate modeling skills or modelers are unable
to collect or to coordinate the collection of appropriate organizational
information.

• The wrong core processes are chosen.

• In restructuring projects good, functional processes are weeded out with
bad, dysfunctional processes because of there is no baseline assessment
or because of faulty communication.

• Parts of the organization cannot be modeled because they are unique
limited structures or events, or because processes are dependent on
organizational responses which are made at gut level due to professional
experience.

• Tools are so complex that no one in the organization is able to use
them.

• Models are so technical that only specialists can understand them or
check them for accuracy.

Tools are associated with different characteristics (please refer to Table 3).
Of these characteristics, object-orientation is especially useful because it sup
ports reusability through use of class hierarchies and inheritance and poly
morphism. Class hierarchies and inheritance allow information to be defined
once and polymorphism allows this same object information to be applied
in a number of different scenarios. Because modelers do not have to keep
defining general object information, they can focus on the specific details of
how an object behaves within a process.

3 How does Bonapart work?

Bonapart collects information within diagrams which function as libraries of
organizational object classes (please refer to Figure 1). Bonapart reference
object classes are categorized as tasks, job titles, people, business entities,

www.manaraa.com

576 Herrmann Krallmann, Gay Wood

32-bit Object-Oriented
User-Defined Objects and Associations
Model Type
Info dependent modeling
Associated Databases
Support of Multiple Methodologies
Support for Multiple Users

Network-wide model viewing
Ease of merging multiple models

Process View
Organizational View
Simulation Capabilities

Discrete Event
Animation
Petri Net
Hierarchial
Timed
Graphic,Time Series Data Presentation

Speed
Sophisticated Data Analysis
Interfaces to:

Workflow Products
SAP Interfaces (e.g. Live Model)
Databases
CASE Tools
Office Software (e.g. MS-Excel, MS-Word)
OLE
VisualBasic

Meta Model Access
Reference Model Applications
Graphic Capabilities (inc!. Bitmaps integration)
WEB Model viewer
Flexibility of Information Layout
Integration of attribute data:

Cost factors
Time factors
Employee qualifications
Processing strategies (e.g. FIFO, FILO)
User-defined attributes
Information-dependent outputs
00 Methods

Model consistency checks
Automated process documentation and report
generator
Ease-of-Use

Limited information in a single model
Integration of existing corporate terminology
Selection of critical object information
Presentation of data in multiple formats
Familiar GUI
Compatibility with other information types

Training Requirements

Table 3: Characteristics of BPR Tools

Bonapart
..;
..;

complex system
..;

uses 00 repositories
..;

++
..;
..;
..;
..;

+++
..;
..;

level 3
..;
..;
..;

+++
+++
+++

..;

..;

..;

..;

..;

..;

..;

..;

..;

..;

..;

..;
+++

..;

..;

..;

..;

..;

..;

..;

..;

..;
+++

..;

..;

..;

..;

..;

..;
3 days

www.manaraa.com

Bonapart 577

managers, resources, info containers and information types. Subclasses are
created by assigning "is a" relationships between two classes. Refinements
to class objects are created using "consists of" associations.

Reference diagrams are the repository for organizational knowledge. Each
object in a diagram is associated with attribute information (e.g. costs,
process times), simulation characteristics and processing rules. Each item
of information is described only once. Once described, needed information
is available for various lines of retrospective inquiry. If changes need to be
made to an object, changes are made within class libraries. Process diagrams
using these classes change automatically.

Once object knowledge is defined, objects .can be combined in unlimited
number of ways within the two integrative process and organizational chart
diagrams (please refer to Figures 2 and 3). Process and organizational chart
diagrams are scenarios of what is currently happening in the organization
or projections of what might happen after optimization. They represent the
complex interrelationships between objects and they are used as the basis for
analysis and simulation.

_ If x

fie E<Ii D;.o"", F",~ ~~ ~,;, EJIb... '>!{rodow lielp

llE:~Ja s l Ell 8, .1 :::J ~7.jo '1" -:I • n ~
JI~L~ 4:\ €l. an <t .. ~ i,t f" "P. f; f, K Brli Of:

i: ~'Bid ladtllfTadt thuctUid _______________ I!!I_[!]_E.!

Pt."" ..
II I BockoOUld PI""

I I B- 2Bid
I 8- 2.1R: BidptOC

I I - 2.1 .SV: P,
I 2.1.6R: Pt
r.I
e- T """""'.

Bid toJIu
R :Pt_. 1Ianda<

ObjocU
. fo,k

O dr.ce
P.,fortnbackgr...,
Pfepare bid

Preu F1 , .. H.-,

Owdandsigr
a..i)I
Carr9oo. bid ..
I dcnt/~ Plod.<:
Pt_.fCIbl;

Pt_. speQ<if.' .
r Oadv s ...

•

_dol ..

~! n Plcpnll~ !llendmd bid IT ask ~trucllJJl'J I!!I~EJ

Eorway pricel
pecidl!' whether 10 prapal9 a new calculation I

p e'ermine del""ll do'e!

Prepare new calculation I

Figure 1: Example of a Bonapart Class Library (Task Diagramm)

In Process and organizational chart diagrams, only instance names and
associations between objects need to be assigned, object class choices are
made from a list of allowable, previously defined objects. For example, in
Figure 1, the task "prepare standard bid" has a number of subtasks. If a

www.manaraa.com

578 Herrmann Krallmann, Gay Wood

process refinement is created for "prepare standard bid", only the subtasks
which were defined in the reference diagram are available for insertion. When
inserting human and physical resources, instance names must also be assigned
by the user. If a "telephone" is created within a process diagram it must be
given an instance name, such as "X4178", to indicate that the telephone
being modeled has the extension number "4178".

Bonapart's object-oriented modeling

• supports model consistency,

• creates specialized controlled vocabulary specific to the organization

• allows extension of all system types and

• functions as a general repository for attribute information.

Information is presented in ways people normally view organizations, there
fore diagrams are easy to create, refine and modify.

OioiJ'"
. Bumesserdies

Infocont""'"
Irlo bond .. dev<:e.
IrlOIJIIOIion
Joblilo.

Figure 2: Bonapart Process Diagramm

...
:n.. ~ .. ,.~.~._ .

.......-... -.......... 1)'110.,.)

How do Bonapart models collect and process information?

_ 19'><

Figure 2 is a top-level model of a. Bid Processing process. The primary
components of this process model are:

• Associations

www.manaraa.com

Bonapart

gj [10 [~ Dlo!J_ FOImaj j~ ~ E~.. ~ndow !!.-,

' D~'" Q El it,l,81 3 l ~? ~.j>""4
~El.®.®. Ifi.. l' >." !19'fi,'" <"l2"

III • $ptdIf lim nqwy from 0UJ1111'TW1"

/"
sptdII M.n'y....,. tn

t----------jiiF! '"r-~------=:..

bid

"U.
bid

e--''''''7~ -- r

i ... :'-'
(1510)

~. I'WNdc (85'1)

fMTlo ,,> ~jIII';."._ .

Figure 3: Organizational Chart Diagrams

• Attributes

• Information Flows

• Layout Characteristics

• Instances of Objects

• Operative Person or Group

• Refined Activities

579

,..

Associations: Associations define object relationship rules, In the above ex
ample" uses" and" saves" are associations which define how the activity uses
the resource or info container. The" sends info" association is represented in
this model with information flow details (e.g. "sends standard bid inquiry
with letter").

Attributes: An attribute is a property or characteristic associated with an
object class or an instance (e,g. "time to process a task", "cost of a resource
per usage").

Icons: Icons are freely definable bitmap pictures which can be imbedded
into all Bonapart objects. Based on layout settings, icons can be either
supplemental information, as in the above example, or an entire model can
be created using only pictures. A typical example would be to use both

www.manaraa.com

580 Herrmann Krallmann, Gay Wood

the employee's name and picture when creating models which will be used
as training manuals. Bitmap data, like all other attribute information, is
inherited and only needs to be entered into the system once.

Information Flows: The coupling of activities within process diagrams
and refinements represents a particular flow of information. Connection lines
which represent this flow can be labeled to show both the specific information
being transferred and the info transfer device being used. Activities are also
given special tags to identify which parts of processes are computerized and
to identify when media breaks occur.

Inputs: Inputs are either external event triggers (e.g. customer inquiries,
deliveries), internal event triggers (e.g. requests from other departments
which are not part of the modeling project) or inherited inputs from parent
processes. In the above example, the parent processes are signified by name
and identifying number.

Instances of Objects: Classes are a general object descriptions of business
objects (e.g. PC, telephone, file). Instances of objects are specific PCs, such
as the PC in accounting or the phone on Mary Forbes desk. In the above
example object instances include the activities "take inquiries", "give price
info", "prepare bid"; resource "price list" list; info container "calculation
PC "; operative people "Forbes" and "Heinrich "; info transfer devices "letter"
and "original copy"; and information "price inquiry","standard bid inquiry"
and "special bid inquiry".

Layout Characteristics: Layout determines what information is shown
and in which format. Bonapart allows all nodes and relationships to be
color-coded. Bitmap information can be integrated (see Icons). Connections
can be labeled generically or with specific information and transfer device
information. Each node can present up to 12 associated characteristics. In
put/outputs can be labeled as to their origin (inputs) or targets (outputs).

Operative Person or Group: An operative person or group is an employee
or group of people (e.g. from above "sales ") assigned to perform an activ
ity within a process. Operator assignment is not required as activities may
be automatic (e.g. computer performed activities). As with other resources
operators have assigned attributes such as associated costs, capacities, un
availability times and processing strategies.

Outputs: Outputs are either outflows of data from a process to an exter
nal targets (e.g. customers or another organizational units), outflows to a
non-modeled internal organizational unit or outflows to another process (e.g.
process refinements). Process refinements automatically inherit the outputs
of their parent process.

Refined Activity: A refined activity is further described in other process
models. This feature is the functional essence of models. Refined activities
are easily recognized because they have a darker frame than the other activ
ities shown. Refinement capabilities allow modelers to zoom in on important
processes. In this example the Bid Processing Department has three general

www.manaraa.com

Bonapart 581

activities "take inquiries", "give price info" and "prepare bid". While "take
inquiries" and "give price info" were important considerations when simulat
ing the activities of the department, they were straightforward enough that
they did not require any additional process descriptions. "Prepare bid", on
the other hand, was know to be a problem area. Therefore it was more exten
sively modeled and further refined to "prepare standard bid" and "prepare
special bid". Further and further refinements are possible until the process
is represented to the desired level of detail. Refinements keep information
manageable without losing the ability to study complex interactions across
the organization.

A refinement automatically inherits all related process information from
its parent. When modeling a new process refinement, the newly opened dia
gram already contains inputs, outputs and any resources previously attached
to the activity. In the above example, "prepare bid" receives information from
input parameters "take inquiries", therefore "take inquiries" automatically
inherits the associated objects linked to its parent. All information flows and
info transfer devices are also automatically assigned. All the modeler needs
to do is to create the new activities and connect them to the appropriate
resources or info containers.

Organizational information is combined within Organizational Chart di
agrams. Organizational objects (e.g. "job titles", "business entities", "man
agers" and "operative people or groups ") are combined to represent compli
cated human resources and management control structures. Within object
reference libraries, job groupings can be represented and further sub-divided
into job titles which are associated with specific tasks. Tasks are then clas
sified according to how they are executed. Job profiles are generated so that
rules can be applied regarding the minimum qualifications required to per
form a task.

4 Simulation

The most important reason for using both modeling and simulation tools
is to show complex, dynamic organizational interactions which cannot be
identified or properly understood using other methods. Simulation makes it
possible to animate, analyze and validate these complex relationships. This
information can then be used to create new alternatives or it can be used
to compare multiple alternatives until an optimal solution is found. Most
importantly, simulation takes information which was traditionally collected in
static reports, and makes this information dynamic. Repository information
contained within models grows and changes in tandem with organizational
changes.

Bonapart is classified as a "timed, hierarchical, object-related, Level 3
Petri net variant, discrete-event simulation tool with color-coded stochas
tic graphic flow representation". This definition, which is explained below,

www.manaraa.com

582 Herrmann Krallmann, Gay Wood

contains the technical description which separates Bonapart from other sim
ulation tools.

4.1 What do Simulation Characteristics mean and why
are they important?

"Timed" means that all time variables and time distributions are taken into
account during simulation. "Hierarchical" integrates process refinements into
the simulation. "Object-related" simulates output-dependent information
(e.g. sums greater than $100 flow to activity "A" and sums less than $100
flow to activity "B ") automatically instead of having to independently de
fine tokens for each variant. A "Petri net" is a formal, graphical language
which is designed to study concurrent events. "Level three Petri Nets" con
tain the most complex token level (level one tokens are boolean and level
two tokens are integer) because they allow multiple inputs to enter the same
node. "Discrete-event" simulation is event-driven simulation (as opposed to
time-driven simulation). "Color-coded stochastic graphic flow representa
tion" allows the flow of events to be graphically observed during simulation.

If models are to be simulated, data needs to be consistent or inconsisten
cies need to be documented so that they can be taken into account during
evaluation. Bonapart maintains model consistency through the use of rules,
controlled vocabularies and consistency checks.

Simulators vary in the following ways:

• model and analysis complexity,

• the size of models (in bytes) which can be simulated

• amount, type and format of information which must be defined before
each simulation,

• the ability to establish user-defined parameters,

• ability to analytically compare two or more simulation runs (including
the use of random number generators for multiple simulation runs),

• the ability to independently visualize different problem areas (e.g. re
source competition over 24 hours or over a period of days) and

• the type of graphic data available (please refer to Figure 4).

Some of these differentiating features, such as the use of continuous or discrete
simulation, are presented as both an advantage and a disadvantage. Since
most organizational situations are event-driven (e.g. a customer arrives with
an order), discrete simulation is appropriate for most organizational uses.
Also, since time variables are included in the analysis, discrete analysis results
appear similar to those of continuous simulations.

www.manaraa.com

Bonapart 583

,. Uonolpalt /.. J (JI'r1l0 ox

121.10:.00

I ifl
------~--------------~l~=t=,~=oo==:i =_~~~~ A

Figure 4: Graphic Simulation Data

One of the most important and most common uses of simulation data is
to validate models. It is important to use markers to test model accuracy.
This marker should be a variable where there is general agreement among
modeling team members. Examples include, the average time it takes to
complete a series of related tasks or the costs associated with a particular
resource, or a time of day when a department is known to have problems
with back-orders. Simulation data should correspond to marker values. For
models to be accurate, they must be either consistent or inconsistencies must
be documented in such a way so that results can be appropriately qualified.

4.2 How does Bonapart represent an Event?

A Bonapart event is represented by the execution of an activity which is
then coordinated using a scheduler and an agenda for each resource. Re
sources (both physical and human resources) select tasks for execution from
their work list using strategies such as FIFO or LIFO. Distribution gener
ators allow users to specify variations in the execution duration, transport
duration and in the arrival of external inputs. A post-mortem analysis based
on the complete trace of the execution, helps to locate bottlenecks and other
weaknesses.

Dynamically updated protocol probes can be created for each involved

www.manaraa.com

584 Herrmann Krallmann, Gay Wood

Time simulation

-transportation times
-waiting times
-processing times
-throughput time
Simulation of functional entities

-utilization
-efficiency
-execution strategy
Simulation of resources

-processing resources
-transportation resources (charge of communications channels)

Table 4: Simulation Variables

actor, activity, resource or process. These protocols log any event that is
related to the watched object. Users then trace the path of a process during
simulation so that they can immediately validate whether the process flow is
accurate. For example, in an order processing process a user can directly see
which actors are involved, which new information is created and where the
order gets delayed. In a similar fashion graphical probes visualize workload
and work list lengths for the simulated objects. Graphical probes give direct
hints on where to detect bottlenecks in the modeled process. Because all
probes can be attached or reattached while the simulation is running, the
optimization of a business process can be accomplished with Bonapart much
faster, and in most cases much better, than is possible with conventional
simulation tools.

Because of the high likelihood that models are incomplete or because they
may include inaccurate estimations, caution should be used when interpreting
simulation results. Whenever simulation data is counter to expected results,
check key variables in the model against information obtained from multiple
organizational sources. The value of simulation results is only as good as the
quality and completeness of the model.

Simulation output and export capabilities vary between products. Bona
part, for example, offers both histographic representation of simulation data
(please refer to Figure 4) and a direct OLE to Microsoft EXCEL. Each type
of simulator is associated with technical limitations regarding the allowable
model size. Due to the technical limitations and because of the need to
easily edit and manage models, it is generally better to divide models into
sub-models which can be independently tested. These smaller models can
then be recombined into larger enterprise models which contain aggregate
values of key attribute information. When choosing a simulator it is impor
tant to consider the technical capacity of the simulator, the accuracy of the

www.manaraa.com

Bonapart 585

simulation analysis results, the interfaces to necessary analysis tools and the
general ease-of-use of the simulator.

5 Analysis

After an organization has been systematically modeled, the depicted corpo
rate model can be examined with the help of the analyzer (statistical analysis
component). Using different model views the corporate models are evaluated
with regard to particular processes, activities or information flows. Inquiry
arguments are graphically selected and freely defined. Examples of task
related analyses include questions related to task structure, function-carrying
characteristics, technical and physical resources, costs, process run-times,
methodological definitions as well as analyses related to the identification
of relevant information and associated information flows. Results can be
reported as a list or they can be stored to be processed further.

The goal of the analysis, regardless of whether it is related to a process,
functional entity or piece of information, is to attempt to make existing orga
nizational structures transparent so that they can be optimized by eliminating
any discovered weaknesses.

6 Conclusion

Modeling and simulation tools offer invaluable process and organizational
design support but their ultimate usefulness depends on finding the right
project, the right people, the right tool and the right implementation strategy.

When organizational transparency is desired, there are few tools on the
market that have Bonapart's ease of use, deeper underlying object-oriented
power and its ability to directly incorporate or to interface with critical new
technologies. Model observers are also not confronted with more informa
tion than desired. Large complex models are easy to selectively view and to
organizationally distribute. Because models are easy to create and easy to
understand, organizational information can be productively shared between
those responsible at the process level and those who must make difficult de
cisions regarding resource allocation. Organizational potential is continually
maximized, customers and employees are more satisfied and resulting flexi
ble organizational structures are better able to respond to changing market
conditions.

Bonapart is a registered trademark of the UBIS GmbH.
EXCEL is a registered trademark of the Microsoft Corp.

www.manaraa.com

586 Herrmann Krallmann, Gay Wood

References

[And96] Andrews, D., Choose the Right Recipe for Success Enter
prise Reengineering, http://www.reengineering.com/articlesfjun96/
nutsbolt.htm, June, 1996

[AF88] Ashforth, B. E., Fried, Y., The Mindlessness of Organizational Be
haviors, Human Relations 41, 1988, 305-329

[Bar96] Barrett, R., Chasing the BPR Tool Market Enterprise Reengineering,
http://www.reengineering.com/articles/mar96/ March, 1996

[BDMQ95] Bernstein, A., Dellarocas, C., Malone, T. W., Quimby, J., Software
tools for a Process Handbook, IEEE Bulletin on Data Engineering
18 (1), 1995, 41-47

[Boo93] Booch, G., Practical objects: Patterns, Object Magazine 3 (2), July
August, 1993

[Boo94] Booch, G., Object-Oriented Analysis and Design with Applications,
Addison-Wesley, 1994

[Dav93] Davenport, T. H., Process Innovation: Reengineering Work through
Information Technology, Harvard Business School Press, Boston, MA,
1993

[DB95] Davenport, T. H., Beers, M. C., Managing Information about Pro
cesses, Journal of Management Information Systems 12 (1), 1995,
57-80

[FCF93] Fox, M., Chionglo, J. F., Fadel, F. G., A Common Sense Model of the
Enterprise, Proceedings of the 2nd Industrial Engineering Research
Conference, Norcross GA: Institute for Industrial Engineers, 1993,
425-429

[Ham90] Hammer, M., Reengineering Work: Don't Automate, Obliterate,
Harvard Business Review, 1990

[Jac94) Jacobsen, I., et al, The Object Advantage Business Process Reengi
neering with Object Technology, Addison Wesley, 1995

[Kin95] King, W. R., Creating a Strategic Capabilities Architecture, Infor
mation Systems Management 12 (1), 1995, 67-69

[Kra90] Krallmann, H., et al, Die Kommunikationsstrukturanalyse (KSA)
zur Konzeption einer betriebswirtschaftlichen Kommunikations
struktur, Interaktive betriebswirtschaftlichen Informations- und
Steuerungssysteme, Berlin, 1990, 289-314

[LCKNCJ94] Levitt, R. E., Cohen, G., Kunz, J. C., Nass, C. I., Christiansen, T.,
Jin, Y., The Virtual Design, Team: Simulating how organizations
structure and information processing tools affect team performance,

www.manaraa.com

Bonapart 587

in: K. M. Caxley, M. J. Prietula (eds.), Computational Organization
Theory, Erlbaum: N. J. Hillsdale, 1994

[MCLP97] Malone, T. W., Crowston, K., Lee, J., Pentland, B. T., Tools for In
venting Organizations: Towaxds a Handbook of Organizational Pro
cesses, Proceedings of the 2nd IEEE Workshop on Enabling Tech
nologies Infrastructure for Collaborative Enterprises, Morgantown,
WV,1993

[New83] Newmeyer, F. J., Grammatical Theory: Its Limits and Its Possibili
ties, Chicago, University of Chicago Press, 1983

[Ode94] Odell, J., Six Different Kinds of Composition, Journal of Object
Oriented Programming 6:8, 1994, 10-15

[Pal96] Palmer, N., Business Process Simulation and Modeling, An Introduc
tion and Survey of Tools, Enterprise Reengineering Jan/Feb 1996,
http://www.reengineering.com/axtic1es/janfeb96/

[Pen98] Pentland, B. T., Grammatical Models of Organizational Processes,
Organization Science, http://ccs.mit.edu/CCSWP176.html, 1998

[Rum91] Rumbaugh, J., et al, Object-Oriented Modeling and Design, Prentice
Hall, 1991

[WiI92] Williams, T. J., The Purdue Enterprise Reference Architecture, Pur
due Laboratory for Applied Industrial Control, Purdue University,
West Lafayette, Indiana 47907, USA, Maxch, 1992

[You89] Yotirdon, E., Modern Structured Analysis, Englewood Cliffs, NJ,
1989

[Yu89] Yu, E. S. K., Modelling organizations for information systems re
quirements engineering, Proceedings of the IEEE, 1992

www.manaraa.com

CHAPTER 26

Kai Mertins, Roland Jochem

The planning of information systems requires discussions between different project
groups, within the respective project group, and between experts and managers
in the enterprise and the project members. Therefore, the modeling of business
processes and the related information systems is an essential step in the process
of reorganizing enterprises. The software tool M02GO (method of object oriented
business process optimization) supports the modeling process based on the IEM
method. Different analysis of a given model are available using the M02GO tool
like the planning of informations systems.

1 Introduction

All methods such as Lean Management, Simultaneous Engineering, Total
Quality Management and Continuous Improvement Processes aim at strength
ening the competitiveness and productivity of the company by improving
the product quality, reducing lead times and optimizing the marginal pricing
[AEM93, War92, CH94j.

To improve the competitiveness all efforts are traditionally concentrated
on optimizing single functions. The traditional way of managing an enter
prise is to subdivide it into a number of separate functions which are easier
to overview and control. This method results in numerous interface problems
regarding the organization and the informations system support at the ex
pense of the manufacturing process and the organization as a whole [JMS96j.
When approaching the mentioned targets companies start to concentrate

• on their main business processes,

• on improving the communication by widely sharing information within
the processes.

The integration of separated functions, the optimization of the main business
processes and the specification of a suitable information flow require a higher

www.manaraa.com

590 Kai Mertins, Roland Jochem

degree of transparency within the organization. In consideration of the com
plex relationships - looking at the manufacturing enterprise as a network of
functions - models or modeling methods have to be applied in order to sup
port, to ease and to systematize the planning and integration of functions
into business processes and to describe the related information system struc
ture. Such a concept ensures a common understanding of business processes
and an understandihg of how the required information and the organizational
structure needs to be organized [CH94j. In the following, a software sytem
called M02GO (method of object oriented business process optimization) is
described which was designed and developed by the Fraunhofer Institute for
Production Systems and Design Technology (IPK) Berlin [JMS96j. It sup
ports the modeling process based on the IEM method (Integrated Enterprise
Modeling). The description includes an example of a company whose business
processes were successfully reorganized with the application of M02GO. The
example shows the modeling, analysis and optimization features of M02GO.

2 The Tool M02GO

2.1 Concept and Architecure

Most modelling tools based on traditional approaches to enterprise model
ing such as SSA (Structured Systems Analysis), SADT (Structured Analysis
and Design Technique) and E/R (Entity/Relationship) complicate the design
of business processes. Often, they are dependent on the existing structure.
Data and functions can never or only rarely be integrated [BELPR91j. In the
course of the process modeling functions are often associated directly with
the existing organizational units. Process-organizational alternatives are dif
ficult to describe. The models are not easily accepted in the different depart
ments of the companies. The object-oriented approaCh including prestruc
tured model constructions facilitates the organization-overlapping analysis
and optimization of business processes. Functions are not related to organi
zational units anymore, but to those objects that are to be processed. Data
and Functions are integrated in one model. For example, the enterprise con
trol, resources, the information system support, the manufacturing process
as well as their connections may all be represented integrally in one model.
The easy to understand and transparent description of the business processes
leads to a higher degree of acceptance in the departments concerned.

The tool M02GO supports the object oriented modeling method of Inte
grated Enterprise Modeling (!EM). The universally usable tool to describe,
analyze and optimize operational structures and business processes enables
you to comfortably describe and purposively analyze products, resources, or
ders and the related business processes. Advantages of the use of the tool
include the systematization of the planning and optimization processes and
the reusability of the enterprise model for all projects and user views that

www.manaraa.com

591

concern corporate planning, such as information systems, controlling, quality
management and organizational development. Restructuring measures and
the introduction of new information systems are only sensible if you are fa
miliar with the existing or planned business processes. The tool's systematic
organization of corporate objects into the classes 'product', 'order' and 're
source' provides a transparent description of the business processes and their
connections. The description in an integrated model is also supported by
mechanisms for consistency checks, navigation and model modifications.

//
./

/

/
/

/

~----~./ ~~~~~~7 Ubrarv Function. I---

• Modolllbnlry

-Model parts

- R.r.,. nu models;

- Exampl. models

• Interface

Figure 1: Tool concept

Reengineering requires discussions between different project groups, within
the respective project group, and between experts and managers in the enter
prise and the project members. Graphic and text-based documents are pro
vided which can serve as basis for communication between the participants
of the project. The documents include directories of all modeled functions,
objects, their documentation and their graphic representation [JJM94). To
obtain immaculate printouts of the model different printing configurations
are supported.

To do justice to the multitude of relevant information and display require
ments of individual areas concerned different views on an integrated model of
the company may be selected. Business processes and the necessary informa
tion is described in a model core. The information and the model structure
is stored in the core of the tool (Figure 1) as object classes and instances
with their relations. Used views related to the model core include Busi
ness Process Description, Class Structures and Object Templates, Part-of
Relations and Function Hierarchies. These views are available in libraries of
class structures and models. They are supported by the evaluation functions
of the tool. Process-organizational alternatives and changes can described
with regard to their changes of control, quality, system support, organiza
tional structure and the qualification profiles of personnel. For example, the

www.manaraa.com

592

o

Kai Mertins, Roland Jochem

QM Manual

1. Maoagomonl ResponaibOlilies
2. OM Sylotom

2O.Slatlotlc:alMelhad.

Appendix:

_unolRuIH
Job instructions

Sample Doalmonta

Diae~_";"",~c:-",

1.J V lwortUcbblln

Ente rise Model

Figure 2: Automated generation of a QM Manual

I.S Abl •• tbuc-~rdbuq

V."..m(lU)

u. .. o.Hi III .w ~ x--.
"" .. ~ ~L JLny ...,. ..
~ ... Od,i,"'.,' ... 5.
v !kahII ."..wM ___

~ QN.VA Ism '<..,..ta

1,...,.. c.t~flU)

(>'o~I ... o.liW."""I_l.oI"'·f
~ .. ~ ,.,.... f_"thf. ,..
1Aao-LIl,_~iSUto'w'-I .. -

gradual transition from the actual state to the desired state was pointed
out to a medium-sized company of the automobile industry. The transition
from a central manufacturing control to a decentralized Kanban-controlled
production with immediate customer-supplier-relations was described. For
information system planning you require discussion processes, both among
the members of a project team and project-overlapping. For this purpose the
tool provides graphic and text-based documents as basis for the communica
tion among the participants. The documents contain structured directories
of all modeled functions, corporate objects, their documentation and graphic
descriptions. In correspondence with the information represented in the IEM
model within the tool, informations system specifications and quality man
uals, e.g. the structure of IS09000ff documents, can be generated. The
object-oriented approach enables the generation of these specifications and
manuals by including additional class sets in an existing model and linking
them with the process description. This is supported by the library function
ality of the M02GO tool. It reduces the time for the implementation process
of information systems and quality management systems significantly (Figure
2) [GHJM95j .

2.2 Functionality and Interfaces

The user interface of the tool enables the simple, interactive design of en
terprise models. Business processes and their connections are represented

www.manaraa.com

593

in appropriate windows where they can be refined (Figure 3). Mechanisms
to design the models bottom-up or top-down in any combination are imple
mented. Class editors allow the description of company-specific characteris
tics of products, orders and resources. The user is enabled to define his own
classes and descriptions of the characteristics. The description of the compo
nents of an object occurs at the appropriate classes as well, for example to
generate bills of material.

Working space of
IEM Class Editors

Representation of Tool headline
function hierarchy Ind. tool name and version number

and of open file

'~Ijjjiii~ili;~;;i~~~i Menu line ~ Button line

1 IktsInHs proC-es.s

Example for
a report generated
by the tool

1.1 Order proc:tlling
1.2 Pro~ fIIbrk.aon
1.3 Resoutu Supply

Working space orthe
'--l~-------llll Business Process Editor

~=~~~~~~===~~~~~E=~~~~~MeSSage linefor F user information

Figure 3: User interface of M02 GO

The object-oriented approach supports the continuous reusability of par
tial models as modules of new models and the development of corresponding
model libraries [BELPR91]. Reference models and exemplary models for
certain applications can be provided. An automatically generated model de
scription language enables the connection of different partial models and the
development of interfaces with other tools. Consistency checks support the
local consistency of the model.

In the modeling process within the tool it is only necessary to model those
things that are in the focus of interest. The user can employ the default
structures. For example, it is only necessary to design classes if the user
needs them in his approach. He can also use the generic classes product, order
and resource directly. During the modeling and analyzing process changes
occur every time for both the class and the process structure. The tool
supports these changes by navigation and changing functionalities as well as
by consistency checks.

IEM enables the modeling of product, order and resource processes within

www.manaraa.com

594 Kai Mertins, Roland Jochem

one model. Real models are typically large; the different process sequences
and the relations between them could make the model complex. To handle
this complexity the tool provides a functionality to fade-out model parts.
Therefore, the user can focus on the process sequence of his interest and is
also enabled to look at the entire model.

The analysis based on the model is supported by the evaluation function
ality of the tool, e.g. the generation of specific tables or the measuring of
an attribute such as process time within a process sequence. Examples for
specific tables include a resource, an order and a life phase table. The order
table describes the modeled orders and the processes which produce an order.
It also describes the processes which are to be controlled by an order. The
same table can be generated for resources. The life phase table describes the
values of the attributes of objects from a beginning state to their last state in
a modeled process sequence. Tables are shown to the user by using a inter
face of the Microsoft-Windows program EXCEL. There are further interfaces
with the MS WINDOWS application programs WINWORD and ACCESS.

For the implementation of the user interface a special commercial class set
is used which supports different platforms. The system core is implemented
in pure C++, which enables an easy and fast movement to other platforms
such as UNIX. The system architecture enables the availability of an external
programming interface. The training costs for the tool functionality should
be low because the user interface is oriented towards other MS-Windows soft
ware, e.g. Win Word. The next versions will focus on additional evaluation
mechanisms, interfaces to a simulator and a workflow system and an interface
to a data base system.

An interface to existing, actual enterprise data is being developed. It
should make the process model available to other tools which are used in the
entire enterprise. It could, for example, be used for operations scheduling.
The use of actual data would reduce the modeling time for analysis and
simulation. This would save time for the transfer of parameter values into
the model. The interface specification EXPRESS/STEP (ISO 10303) is used
to obtain a common interface to different enterprise data and tools. STEP
stands for Standard for the Exchange of Product Model Data [AGP93j.

The described method and tool is suitable for many planning and struc
turing tasks in companies (Figure 4). The application includes the design of
material flows and information flows. In projects, the systematic and trans
parent description of business processes as communication base between the
departments and between the different hierarchical levels proved to be suc
cessful. Among other things, time saving potentials were made clear. The
distribution of cO,sts was improved with regard to the respective initiators, the
deployment of personnel was improved with regard to qualifications. Method
and tool has been employed in various industrial projects of the IPK Berlin
and it is also used by customers.

www.manaraa.com

595

QM Manual EM Manual

- -C1J 1. Management Responsibilities § 1. Managemen' R_slbllitles
::l 2. OM System 2. Environment MBnagomem
s:: c: 5)'010'"

~ ~
20. Statnaical Methods

~ :is Appendix:
ZOo Stallolleol Mothods

Q
ProcedurallnlitrucUons

Appendix:

0 Job Ins.ructions 0 Procadural lnstruc:tigrrs
Semp~ Documents Job lostruc:ttons

Process
Organizational

Controllin - Manual Procft:I costs
§ 1. Principles

s:: 2. Company SIJuc1ure and

~
Targets

!
! ... com

~ 4. Process Organization

0 5. Organizational Structure

,"' ...
a Appendl.:

Ca.alog 01 PtOCM_
Catak>g of Documents

Figure 4: Application areas of M02GO

3 Example of Industrial Application

3.1 The Company

As an example, we selected a German machine tool manufacturer that has
already had realized significant restructuring measures. The product range
had been straightened out, the number of employees was adapted to the new
structure of the company and the corporate activities were reduced to core
competences. The mechanical production was abandoned. The company
now manufactures standard universal lathes and customized engineering and
systems analysis machines in small batch production. The objective of the
project to optimize the business processes was to improve the customer ori
entation especially by way of reducing throughput times and improving the
performance with regard to quality, compliance with deadlines and costs.

www.manaraa.com

596 Kai Mertins, Roland Jochem

Another goal was to train the employees in a way of thinking that could be
described as department-overlapping and customer-oriented. The process
describing models were to become the basis of the quality assurance system
that is to be certified.

3.2 Project Implementation and Results

The task of the project was to analyze and model the entire corporate order
handling. We deliberately avoided studying and modeling individual, delim
ited sections or departments. The task of realigning the process structures
along the business processes required us, due to the complex interactions be
tween business processes, corporate data, systems environment and organi
zation, to describe these aspects in one model. For this purpose we employed
the method that has been described above and the tool M02GO. Figure 5
illustrates the basic constructs of the method that was employed to develop
the model. At first, we combined the relevant products, orders and resources
of the company into classes and described these with characteristic features
[JM93, JMS92j .

IEMObject
Classes

Generic
Activity
Model

Connection
Elements

IEM Class "Product"

Inherited AIIrlOOles
IClertllcaion. SlrutIIJre. RelaJon •
fundions, SlaIUS

'Oqects th<l
s-e Processed'
(e.g. "Products'1

IEM Class · Order· I IIHi Class 'Resource"

Inl"e1led AltrlbUes
IClertnlcaion. S1IUdIlre. ReI<Micr1
Fundions, SlaIUS

Order-Sped lit AIInbtAes

Inl"e1led N1J1bUes
Ide01ilcallcn. SlrutllJre.Relakms.
Fundions, staus

Re9lUra-Spedlit AIIrbtAes

"Processed aJjects"

• Sequenlial • Parallel . Case Distinction • Conneclion

D-{] -iE -0:8

Figure 5: Basic constructs of the model development

The following object classes were studied:

• The orders 'customer inquiry and customer order for standard, engi
neering and systems analysis machines',

• the products 'entire machine, assembly and single part' and

www.manaraa.com

597

• the executing resources 'organizational units or departments'.

Considering this, the relevant business processes and their control as well as
the resources that are necessary to execute these processes were described.
In the course of the project the model was either detailed hierarchically or
modified to describe and discuss improvement measures. Supported by the
tool M02GO, the processes, beginning with the inquiry of a customer and
ending with the start of the machine, were analyzed. The core of the model
consisted of the description of the logical processing sequence of the tasks to
accept, schedule and trace the customer order and of the customized construc
tion and assembly of the machines. Supplementary to the process descrip
tions we also analyzed and modeled the times the execute the tasks as well
as their variances. The effective development of the model was guaranteed
by mechanisms for consistency checks, navigation and model modifications.
Application-oriented, predefined class structures and partial models as well as
sample models that were supplied in libraries supported the development and
the reusability of models. With regard to customer-oriented order handling
the analyses enabled us to identify improvement potentials in the following
areas:

• extravagant order scheduling processes, i.e. from the order intake to
the order load-in into the PPC system,

• non-participation of the marketing department when preparing an offer,

• delayed entry of customer orders,

• inaccurate schedules of the planned order handling,

• vague procurement cycles for supplied parts and components,

• delayed order release due to unrealistic release dates,

• failures to meet deadlines of special constructions, for example due to
unrealistic time allowances or unfavorable order priorities.

Figure 6 illustrates exemplary time and cost potentials. The processes 'de
sign and construction', that are separated in the actual state, determine with
a processing time of nine weeks the entire throughput time considerably. The
processing time of these processes amounts to 58% of the entire throughput
time. This leads to customer dissatisfaction as well as to substantial cost in
creases. The employment of an appliance construction set and the integration
of these processes into the entire production process reduces the throughput
time in this area by 50%. The higher investment costs for the construction
set pay already off after ten completed production units. Further measures
to optimize the process included for example:

• task integration of disposition and procurement

www.manaraa.com

598 Kai Mertins, Roland Jochem

Figure 6: Time and cost evaluation

• development of an order control station with people responsible for
product groups beginning with planning and ending with the delivery

• assignment of construction modification tasks to staff members of the
respective development team

• the vague replacement times for parts and subassemblies in the PPC
system were examined and updated

• orders are released immediately without considering procurement times
and release dates.

The measures were documented in a target model and were discussed in the
relevant departments with the people concerned. Along the way the tool
M02GO enabled us to create graphic and text-based documents as basis for
the discussion. The documents contain structured directories of all modeled
business processes and corporate objects. To develop the target model

• redundant and unnecessary processes were eliminated

• needed tasks were summarized within the meaning of functional inte
gration

• new resources were assigned if process responsibilities changed

www.manaraa.com

599

• processes were concatenated and parallelized with regard to customer
orientation.

These measures effected a considerable reduction of throughput times (by ca.
33%) and costs; departmental egotisms were reduced and the orientation of
staff members towards the use for the customer was intensified. Furthermore,
the QM documents that are necessary for certification were automatically
generated from the process models. The quality assurance system is now in
the certification phase.

4 Conclusion

The example clearly illustrates that restructuring measures of this scale and
with these effects require a methodical approach as well as models. The ap
plication of such a tool guarantees the common understanding of the business
processes in the company. It creates the prerequisite for assigning the use
of design processes as precise improvements of costs, quality or time to the
respective business processes and resources. It is therefore the basis for any
information system planning process. Based on the model and with the tool
support, the requirements specification of the information system support
for the business processes can be generated automatically. The company
succeeded in reducing the throughput times, improving the process quality,
reducing costs and therefore in improving the customer satisfaction and com
petitiveness decisively.

References

[AEM93]

[AGP93]

Albrecht, R., Edeler, H., Mertins, K., Manufacturing Philosophy for
the New European Factory, IFIP Conference, Athens, Advances in
Production Management Systems, Elsevier Science Publishers B. V.,
North Holland, 1993

Anderl, R., Grabowski, H., Polly, A., Integriertes Produktmodell,
Beuth Verlag Ltd., Berlin, Wien, Ziirich, 1993

[BELPR91] Blaha, M., Eddy, F., Lorensen, W., Premerlani, W., Rumbaugh, J.,
Object-Oriented Modeling and Design, New York, 1991

[CH94] Champy,· J., Hammer, M., Business Reengineering, Campus Verlag,
Frankfurt, New York, 1994

[GHJM95] Gembrys, S., Hermann, J., Jochem, R., Mertins, K., Modellbasierte
Erstellung eines Qualitatsmanagement-Handbuches, in: ZwF 90
(1995) 11, Carl Hanser Verlag, Miinchen, 1995, 540-543

[JJM94] Jakel, F.-W., Jochem, R., Mertins, K., Reengineering und Opti-

www.manaraa.com

600

[JM93]

[JMS92]

[JMS96]

[War92]

Kai Mertins, Roland Jochem

mierung von Geschiiftsprozessen, in: ZwF 89 (1994) 10, Carl Hanser
Verlag, Miinchen, 1994, 479-481

Jochem, R., Mertins, K, Enterprise Modelling: Base for Information
System Planning, IFIP Transaction, Elsevier Science Publishers B. V.
Amsterdam, London, New York, Tokyo, 1993, 67-76

Jochem, R., Mertins, K, Siissenguth, W., An Object Oriented Method
for Integrated Enterprise Modelling as a Basis for Enterprise Coordi
nation, in: C. J. Petrie Jr. (ed.), Enterprise Integration Modelling.
Proceedings of the First International Conference, MIT Press, Cam
bridge, Massachusetts, 1992, 249-258

Jochem, R., Mertins, K, Spur, G., Integrated Enterprise Modelling,
Beuth Verlag Ltd., Berlin, Wien, Ziirich, 1996

Warnecke, H.-J., Die Fraktale Fabrik. Revolution der Unternehmens
kultur, Springer-Verlag, Berlin, 1992

www.manaraa.com

CHAPTER 27

IBM VisualAge

Alois Hofinger

The following contribution describes the IBM VisualAge product family for object
oriented application development. The different offerings constitute an application
development environment for object oriented languages like C++, Smalltalk and
Java. VisualAge for Smalltalk will be used as an example to describe some of the
features of VisualAge in more detail.

1 Visual Programming

Visual programming tools have started to emerge in the market in response
to two major requirements:

1. Facilitate the building of advanced user interfaces.

2. Lower the programming skill necessary. to assemble and customize ap
plications.

These tools make intensive use of metaphors and icons for computing. Meta
phor in computing relates to the usage of visual respresentations that, for
implicit comparison or analogy, give the user an immediate understanding
of the entity, function, object, or computer processing. The term icon is
used to refer to a pictorial representation of an object or a selection choice.
Icons can represent objects that users want to work on or actions that users
want to perform. A visual programming tool can be defined as a tool that
provides users with a means to interactively specifiy programs in a highly
graphical fashion. For example, routines, programs, and data have graphical
representations, such as metaphors and icons. Relationships among these
components are depicted graphically as well. The construction of programs is
done graphically; that is, the programmer "writes" programs by manipulating
and articulating graphical representations of components in an application
(see Figure 1).

www.manaraa.com

602 Alois Hofinger

Visual programming tools differ significantly from those tools that pro
vide program visualization, in which case programs are still written with
traditional techniques and the tool is able to show a graphical view of them.
Program visualization tools use graphics only to illustrate either some as
pects of a program or its execution. These kinds of tools are commonly used
for debugging and teaching.

Visual programming lets individuals take advantage of a larger spectrum
of the capacities of the human brain than the one-dimensional textual form of
traditional programming. The visual representation of problems is considered
closer to people's mental representations of problems. In addition to the
graphical construction, visual programming tools usually provide scripts, as a
way to describe those functions that cannot be expressed graphically. Scripts
often are declared in fourth generation languages, and they come in different
varieties. Some of these tools use proprietary languages, while others make
use of, or are derived from, standard languages available in the market.

A sample script may look like the following:

currentPerson: aAAPerson
"Save the value of current person."
aAAPerson notNil if True: [currentlndex: =

people indexOf: aAAPerson].
signalEvent: ('current person' asSymbol).

This small sample coding is quite straightforward: if the object aAAPerson
is not Nil, it is used as an index to position into the people variable. The
result is assigned to the variable current Index. The fact that the current
person is now different is signaled in the last expression that uses the current
person changed event symbol.

Almost all the visual programming tools available in the market offer an
object-oriented interface to the user: programs, data, and routines are objects
that the user selects and connects. However, not all the tools are based on
object-oriented technology and not all of them integrate with an application
development platform.

Visual programming tools acquire an even more interesting flavor when
they, like VisualAge [IBMl], are based on object-oriented technology and
integrate with an object-oriented development environment. In this case,
the tools provide a comprehensive and consistent approach to application
development, in which everything (user interface, business and computing
entitites) at every stage is an object, thus avoiding the need to map from the
conceptual view of problems to procedural representations.

For example, if we have to implement an invoice and its function using a
traditional approach, we have to describe it, with a semantic gap between the
conceptual view of the invoice and the procedural way it is enabled by the
traditional language. With visual programming tools this gap is eliminated,
because the enabling procedures are embedded within the conceptual view.

www.manaraa.com

IBM VisualAge 603

Several of the visual programming tools available today mainly address
end users and focus only on helping them build graphical user interfaces.
Often they provide database access for building an interface to a query re
sult. Sometimes they help integrate local applications. Furthermore, the
typical development environment addresses single programmers. It is clear
from these observations that tools of this kind could hardly be used to im
plement complete applications that include business logic in a client/server
environment.

So the requirement is for client/server programming tools that let you
quickly write client/server applications with advanced graphical user inter
faces. They also must allow the building of complete, industrial-strength line
of business (LOB) applications.

Such a tool meets the requirements for rapidly building user interfaces,
customization and assembly of applications without the need of professional
programming skills. It also provides a professional-level application develop
ment environment with the ability to integrate business logic and client/server
kinds of applications and integrated support for team programming.

Characteristics of such a tool may include:

• Visual programming for the construction of the user interface and the
assembly of the application.

• Fourth generation scripting language.

• Support for implementing local business logic.

• Support for connecting to databases, preferably from multiple vendors.

• Support for the complete spectrum of client/server application models,
using multiple communication protocols.

• Team programming.

• Rapid application development by prototyping.

• Configuration management.

• Packaging.

2 Construction from Parts

Construction from parts is an application development paradigm in which the
applications are assembled from reusable and existing software components
(parts).

A part is a software object that has a number of external features that
allow it to be connected to other parts in order to implement application

www.manaraa.com

604 Alois Hofinger

Visua A'ogranming

DI_-+-~--L..----"'t
T •............... ,.tiOOlBr::--.-r====il

street

aty

Figure 1: Visual Programming

scenarios. A part is not just an elementary component; it can be composed
of multiple interacting subparts. This is refered to as a composite part.

The process of building the application consists of:

• Selecting predefined parts that are necessary.

• Using them unmodified or tailoring them for specific requirements.

• Establishing the connections among parts to create the application or
a new part.

The process could be performed by writing code; however, visual program
ming tools are much more suitable for supporting the phases of the construc
tion.

Even though these concepts are rather new to software development, they
are not new to the industry and are commonly used in manufacturing. One
can draw an analogy between the construction of a personal computer and
the construction of an application. For instance, parts correspond to chips,
composite parts to cards and the application to the complete personal com
puter.

Tobuild a new personal computer, who would ever design and construct
every singly component from scratch? Who would do so in software to build

www.manaraa.com

IBM VisualAge 605

a new application? Typically, only a few standard subroutines and system
services are likely to be reused. Most of the application is developed from
scratch and most of the effort is expended in re-writing code that already
exists somewhere, often within the same company.

The benefits of the construction from parts paradigm include:

• Reduction of application development costs
The assembly and the tailoring of parts does not require a professional
programmer. Programming will be done by exceptions and the skill
of professional programmers can be applied to build innovative compo
nents when necessary.

• Enhanced application quality
The reuse of existing parts reduces the chance of errors. Within a short
time, parts will become more and more solid, and almost error free.
Based on the obvious idea that if we do not write new code, then we
do not introduce new errors, we can conclude that the less new code we
have to write for a new application, the fewer errors we will encounter.

• Reduced cycle time with faster and better response to end users' needs
The rapid development of applications made possible by visual pro
gramming tools and existing parts is invaluable to quickly verify user
requirements and deliver applications in a short time.

The success of the paradigm in software development depends on various
factors. First, interactive tools for visual constructions must be available.
The tools must integrate with the development platform to design and build
parts and frameworks. Second, interfaces and messaging protocols must be
specified and supported by an architecture for interoperability of tools and
component parts. Finally, a set of standard parts must be available and the
software providers must move towards the building of components.

In VisualAge a part is a class with a well-defined public interface, which
supports a simple and architected messaging protocol. We use the term
subpart to refer to a part taken from the palette and used to build a composite
part.

Parts can be very simple or highly sophisticated to provide a wide range
of functions. Parts, for instance, can be as simple as a text-entry field or a
default window. Often, parts are composed of multiple interacting subparts.
Parts can also represent (wrap) programs written in COBOL or C language,
thus allowing the reuse of existing code in a construction from parts paradigm.

The public interface of parts refers to the features that are used to connect
parts among them. To specify the public interface of parts, the VisualAge
introduces three clearly defined features:

1. Attributes: Attributes are the logical properties of parts. They are ob
jects that the part can return or set upon request.

www.manaraa.com

606 Alois Hofinger

2. Actions: Actions are the behaviors of the parts, which means the services
or operations the part may be requested to perform.

3. Events: Events provide a notification mechanism. They are used to sig
nal that something has happened to the part.

Parts can be grouped into two major types: visual parts and nonvisual parts.
The major difference between them is the capability of visual parts to present
a graphical "view" to the end user at run time.

Visual parts: Have a run-time view, such as a list box, a window, a view
of an address or person, and so on.

Nonvisual parts: Usually do not have a run-time view. Examples are busi
ness logic objects, such as an address or a person.

There are parts that constitute the basic units from which the other parts
are constructed. We call these parts primitive parts. Examples are the ba
sic visual parts, such as the text-entry field, the default windows, the push
button, etc. When a new primitive part is required, it has to be fabricated
using a programming language, and its part interface defined.

In VisualAge a collection of parts that can be managed as a whole is
refered to as an application. Such an application can be packaged to produce
the run-time application that will be distributed to end users.

3 Visual Tools

The VisualAge product family provides three editors that are available within
the visual tools. They provide editing facilities to perform the three different
steps described previously in construction from parts:

1. Part Composition Editor, used to edit a part built with the Visual Tool.

2. Part Interface Editor, used to edit the interface of parts.

3. Script Editor, used to edit scripts, that are fragments of textual code.

When you edit a part that was built and composed with the visual tools,
VisualAge recognizes it and opens on the Composition Editor. If needed,
interface and script editors can then be activated with a simple selection. If
you edit a part not built with the Composition Editor, such as a primitive
part, the visual tools open on the Public Interface Editor. In this case, only
the script editor can be selected.

An important advantage is that application builder is also able to handle
parts that are not built with application builder itself, and lets you use them
to compose your new parts. In fact, any class can be used as a part, after
defining its public interface.

www.manaraa.com

IBM VisualAge 607

A member of the VisualAge product family is VisualAge for Smalltalk
[IBM2], which provides a pure object-oriented language. IBM Smalltalk can
be used to enhance and extend the applications that are generated through
visual programming.

VisualAge is a development environment that provides everything you
need to build the client portion of client/server applications in a pure object
oriented development environment:

Visual Tools: VisualAge provides a visual programming tool that allows
you to create complete applications non-linearly using construction
from parts.

Library of parts: Already-constructed parts that are delivered include sup
port for graphical user interfaces and generic parts for database queries,
transactions, remote and local functions.

Graphical User Interface support: The GUI support included in the li
brary of parts enables the development of applications according to the
Common User Access (CUA) specifications.

Multimedia exploitation: Multimedia is the construction of animation,
sound, video, and other media into interactive computer applications.
Multimedia for VisualAge is an addition to the VisualAge development
environment, to help developers build applications that will take ad
vantage of this technology.

Client/server and communication support: VisualAge provides compre
hensive support for client/server computing that is made possible over
multiple protocols and programming interfaces, such as:

• APPC (Advanced Program to Program Communications)

• TCP /IP (Transmission Control Protocol/Internet Protocol)

• NetBIOS (Network Basic Input Output Services)

• ECI (CICS External Call Interface)

• EHLLAPI (Emulator High-Level Language Application Program
ming Interface)

Relational database support: VisualAge framework includes support for
local relational database support and queries. Remote databases can
also be accessed transparently through this function. This support is
used by VisualAge to provide visual programming parts that enable
generic queries.

Enhanced DLL (Dynamic Link Library) support: This feature auto
mates the definitions that are needed to interface a local C or COBOL

www.manaraa.com

608 Alois Hofinger

DLL by building the necessary objects and behaviors for you. This fea
ture is used by VisualAge to provide the generic DLL visual program
ming part. The DLL enhancements also provide full multithreading
support.

Records to objects mapping: Whenever information must be exchanged
between an object-oriented application and an application written with
a traditional language, fiat record structures must be mapped to objects
and vice versa. Visual Age provides a tool that simplifies the buidling
of the objects that can provide the mapping.

Team programming: VisualAge provides advanced and comprehensive sup
port for team programming with a central library of parts and classes
in a networked development environment.

Configuration management: Besides team programming, VisualAge pro
vides support for version and release control with verification of pre
requisites.

VisualAge for Smalltalk enables a user to access a broad range of databases
created by IBM and other major database vendors.

• Native DB/2 Support
This includes support for DB2/2 and via the Distributed Database
Connection Services/2 (DDCS/2) access to host databases.

• Access to ORACLE
This feature provides native access to specific ORACLE functions.

• ODBC Support
The VisualAge Open Database Connectivity (ODBC) allows the cre
ation of applications, that connect to various data sources. ODBC per
mits maximum interoperability: a single application can access many
different database management systems. This enables an ODBC devel
oper to develop, compile, and ship an application without targeting a
specific type of data source. Users can then add the database drivers,
which link the application to the database management systems of their
choice.

4 Communications /Transactions

The VisualAge for Smalltalk, Communications/Transactions for OS/2, for
AIX, and for Windows, enables you to access remote applications across
platforms. Its capabilities enable you to:

• Establish communications with remote program logic using visual con
nections

www.manaraa.com

IBM VisualAge 609

• Visually define your own network connections

• Provide support for multiple protocols

• Extend your communications design to support protocols other than
those available or supported by VisualAge

• Build workstation-based graphical user interfaces (GUIs) that access
host applications designed for 3270 terminals.

VisualAge's Communications subsystem supports the following application
programming interfaces:

• APPC

• CICS

• CPI-C

• EHLLAPI

• MQSeries

• NetBIOS

• RPC

• TCPjIP

Technically, the communications subsystem is divided into three layers to
provide the needed flexibility to implement applications that use network
-protocol-independent interfaces for application programs.

The dialog layer provides application programmers with a network-protocol
independent API to communications. A dialog is an implementation of a
particular pattern of exchange of messages between two programs.

The system layer provides a complete object-oriented interface to the
underlying network subsystem. This interface is designed for application
programmers with special needs that cannot be met by existing dialog styles
and for implementers of new dialog styles. The system layer handles some of
the work necessary to access a network interface and provides a more natural
object-oriented view of the concepts of the network protocol.

The system interface layer is the lowest level of interface to an external
system such as a networking subsystem. It is composed of the basic Dynamic
Link Library (DLL) entry point declaration along with any record types and
constants the DLL may require.

The Emulator High-Level Language Application Programming Interface
(EHLLAPI) is an interface provided by a terminal emulator that allows a pro
gram to behave as an operator sitting at a terminal. You can use VisualAge
to build a workstation-based GUI interface that can access host applications

www.manaraa.com

610 Alois Hofinger

designed for 3270 terminals. Rather than requiring users to enter data in a
3270 terminal emulator session, a VisualAge application can interact directly
with the host application. EHLLAPI functions are effective for interfacing
with business-critical applications, automating repetitive tasks, and perform
ing low-volume transactions.

5 Object Distribution

Object distribution is normally accomplished using one of the Object Request
Brokers (ORB's) which are available in the marketplace. In the VisualAge
product family VisualAge for Smalltalk as an alternative, offers its own ob
ject distribution mechanism. This allows you to easily develop distributed
applications with true local/remote transparency across your system envi
ronment. You can quickly develop applications that span networks, without
having to learn the details of network communications, distributed appli
cation programming, or specialized interfaces. The familiar Smalltalk tools
such as browers, inspectors, debuggers and workspaces are available in a dis
tributed environment.

Using distributed technology, VisualAge allows you to optimize applica
tions by appropriately partitioning logic across client and server platforms.
Distributed objects help developers deal with the complexitiy of heterogenous
two and three tier client/server architectures. Letting function and data be
freely distributed within a system based on developer decisions enables a high
degree of scalability and robustness. Wrappering existing systems behind
distributed objects supports an evolution to objects. Developers can reuse
existing code stored in major databases on PCs, midrange, LAN, UNIX,
and mainframes. They can develop or reuse Online Transaction Process in
client/server applications that interface with ClCS and IMS.

Distributed objects can send standard Smalltalk messages to one another,
regardless of their physical location. They can also freely send other Smalltalk
objects as arguments, and receive objects as results. The different parts of
an application can be located on any computer in the network that is run
ning with the distributed feature. In addition, you can concurrently execute
multiple client requests within a single Smalltalk image.

Using the distributed feature, you can split your applications many ways,
to support both client/server and true peer-to-peer design, and dynamically
change the distribution throughout the development cycle. You can quickly
build portable applications which make the best use of your existing re
sources. In this way, you can "right-size" your systems to achieve the best use
of your existing resources to achieve your business performance, scalability,
security, and maintainability objectives.

The distributed feature includes:

• Tools to design, build, debug, optimize and configure distributed appli
cations from a single development environment

www.manaraa.com

IBM VisualAge 611

• Support for running concurrent client requests in a single image

• Use of industry-standard Generic Security Service API (GSS-API) and
currently supports the IBM NetSP Secured Logon Coordinator (SLC)
program. Used with NetSP SLC, it provides transparent support for
client authentication, message verification, and message encryption.

The distributed object space environment provides:

Messaging: Communication logic is provided, down to the low-level task of
passing Smalltalk objects across network.

Distributed garbage collection: Unused memory is freed when it is no
longer in use by other local or remote objects.

Activation support: Any remote Smalltalk image can be started as re
quired by the application.

Name server support: You can update object location information with
out having to change your Smalltalk code.

6 Legacy Integration

A legacy application is an application which exists and actively supports a
business in some capacity. Even as legacy applications have become very in
flexible over time, they are here to stay. One proven way to deal with legacy
systems in an object oriented application environment is the encapsulation of
these legacy systems into business objects. Business Objects are application
independent, persistent and focus on business rather than on programming.
They are abstractions of real-world business concepts, such as product, con
sumer, vendor, shipment or employee. VisualAge for Smalltalk ships with
a feature (CICS/IMS Connection), that allows the integration of existing
MVS IMS- or CICS Transactions into object oriented client/server applica
tion development without a need for rewrite or restructuring. The existing
transactions are "wrapped" into business objects. Business objects devel
oped with the CICS/IMS Connection feature are clearly shielded from any
knowledge about the underlying transactions; all the handling of the trans
actions is done by lower level objects, called the transaction objects. Thus
these business objects are protected from changes to the transactions and are
also easily adaptable to new requirements , e.g. database access rather than
transaction usage. The VisualAge for Smalltalk based CICS/IMS Connection
consists of a framework of classes and fully supports the visual programming
paradigm. It handles the mapping and navigation problem and is extendible
to support communication protocols other than APPC and LU2.

www.manaraa.com

612 Alois Hofinger

7 Two-Tier or Three-Tier Architecture

In Client/Server computing the basic logical structure of an application con
sists of presentation and user interaction, processing and access to data. By
distributing these components over clients and servers we will get a two-tier
model or a three-tier model.

In a two-tier model a client handles user presentation and interaction, as
well as the execution of the business logic, while one or more servers take
responsibility for data access.

This model has been implemented in most client/server projects in the
past and has typically required powerful client stations, also refered to as a
fat client.

Even as a two-tier model offers certain advantages, like simple implemen
tation and easy development, it does have some serious disadvantages. Be
sides the already mentioned resource requirements this architecture is not
very flexible. In many cases, evolution of the implemented architecture,
whether application or system-related, implies workstation updates and re
quires extensive administration work. Changes on the client stations have
to be validated, and tests have to be performed to determine whether the
changes function in the current hardware and software configuration.

These disadvantages lead to a requirement for a three-tier architecture,
where a client is responsible for the presentation, the interaction with the user
and some limited processing, which do not necessarily have to be executed
on servers. One or more servers take care of the logical processes and the
third tier constitute one or more data servers.

Business objects would typically be located on the middle-tier of a three
tier or multi-tier architecture, resulting in a lighter (thin) client, since process
ing code is resident on the servers and a decreased, or completely eliminated
technological dependency between clients and servers, increasing the range of
choice in terms of operation system and hardware and increasing evolution
capacity. Another good example of a three-tier model is the Internet model,
where a Web browser resides on the client stations, while data processing and
data access is occurring on multiple servers.

8 IBM VisualAge for Java

The latest addition to the IBM VisualAge family constitutes VisualAge for
Java [IBM3J. It extends the reach of applications that run in an enterprise
today to the web, without writing web applications from scratch.

IBM VisualAge for Java is a powerful suite of application development
tools, which builds complete Java-compatible applications, applets and Java
Bean components, using the VisualAge Construction from Parts program
ming paradigm .

. Java, a new programming language introduced by Sun Microsystems, is

www.manaraa.com

IBM VisualAge 613

used to create executable microprograms known as applets. A Java applet
is delivered over the Internet to a user's Java-enabled browser, where it then
runs locally. JavaBeans, by contrast, is the component model for Java. It
defines Java components, and how they fit together. By definition, a bean is
a reusable software component that can be visually manipulated in builder
tools.

VisualAge for Java simplifies the Java development process in four major
ways:

1. Simplifies client/server programming in Java through generation of
middleware code that connects the Java client to existing transaction,
data and application servers.

2. Provides an intelligent development environment that allows the en
terprise to build scaleable 100 % pure Java solutions that run on any
Virtual Machine or inside any Java enabled Browser.

3. Provides a fully integrated repository-based team environment that al
lows management of the development process on Java projects.

4. Provides an advanced project-based-development environment which
allows programmers to create Java applications / applets or J avaBean
components using the Construction from parts programming paradigm.

The Enterprise Access Builder within VisualAge for Java generates com
ponents that establish fast connections between the Java client and CICS
Transactions Servers, Application Servers and Data Servers. This allows
programmers to focus on application logic instead of low level comunications
code. VisualAge for Java generates JavaBean components that connect Java
Clients to the following server applications:

• CICS Transactions via External Call Interface (ECI)

• Java Servers via Remote Method Invocation (RMI)

• C/C++ Servers via Native Method Call (J2C++ & RMI)

• Relational Databases via JDBC (DB2, Sybase, Oracle)

VisualAge for Java enables enterprises to build more scaleable client/server
applications in Java. The components generated by the Enterprise Access
Builder allow Enterprise Transaction, Data and Application servers to con
nect to a thin Java client using faster middleware than current HTTP solu
tions on the market. The ability to generate Remote Method Invocation and
CICS External Call Interface to connect the client and the server, enables
data and transaction flow rates that cannot be matched by CGI scripts and
single HTTP servers.

www.manaraa.com

614 Alois Hofinger

VisualAge for Java seamlessly integrates a repository- based team devel
opment environment. This repository allows multiple developers to work on a
project at any given time while reducing the number of source code collisions
that arise when two developers are working on the same source code. As
Java development projects scale in size, VisualAge for Java assists in project
management by keeping both the client and server aspects of a Java project
synchronized. .

VisualAge for Java also provides the Visual Builder, which allows the pro
grammer to assemble Java Applets, Java Applications and JavaBeans from
pre-selected parts on the visual builder palette. Programmers can drag Java
Abstract Windowing Tool Kit (AWT) controls from the palette and visually
drop them on the canvas to generate user interface Java code. The program
mer then connects the user interface to the business logic JavaBean compo
nents generated by the Enterprise Access Builder using the construction from
parts programming paradigm.

While in the debug or test phase of a program, programmers often want
to add a class, add a method or change a method. VisualAge for Java allow
s you to modify the code while in the debug phase. The modified code
is compiled and inserted into the application, without the need to exit the
debugger and perform a complete compile. This allows programmers to focus
on the program logic, without dropping back and waiting for a compile.

References

[IBM1]

[IBM2]

[IBM3]

[IBM4]

IBM VisualAge: Concepts and Features, GG24-3946-00, 1994

http://www.software.ibm.com/ad/smalltalk/

http://www.software.ibm.com/ad/vajava/

http://www.software.ibm.com/ad/

www.manaraa.com

PART FOUR

Reference Models

The creation of information systems models is a tedious task, which involves
expertise and experience, and therefore expenditure. Modelling started from
scratch rarely produces high quality models, at least if the model is of appre
ciable size. It is therefore necessary for the end user, who wishes to produce a
model (for various uses in the life-cycle of the information system), from one
or another aspect of the enterprise's information system, to be able to use or
re-use models, or parts of models, which have been previously developed and
tested. An information system reference model is such a typical, or paradig
matic model, which describes the information system or a well identified part
of it. Reference models may be produced on various levels of genericity - they
can be relevant to any industry, business area or a typical company which
belongs to a type of industry.

Reference models can also be produced on various levels of abstraction,
and so it is possible to talk about policy level reference models (such as the
ISO 9000 series of standards), requirements level reference models (this is the
most prevalent type of models), and also design level reference models (often
found in industry specific standards).

Reference models also enable the information system developer to build
implementation models at a lower cost and time than building them from
scratch, and also facilitate the development of a marketplace of building
blocks, defining products and services typically utilised in information sys
tems. Reference models thus facilitate the classification, evaluation and com
parability of models by creating a standard terminology.

The reference model is a tool for an user-oriented configuration of a data
processing system or, strictly speaking, for the formal description of a prod
uct modelling system. According to the model view, or aspect used, reference
models may propose a typical functional model (irrespective of how the func
tions are implemented in products), a typical structural model (of software,
hardware and human resources), a typical data model, etc.

Reference models, if presented as exemplary overall solutions, are not
meant to be reused without any change because no enterprise resembles the
other exactly. For this reason it has to be possible to subdivide the model
into parts which may be individually utilised. The idea can be compared with

www.manaraa.com

616 Kai Mertins, Peter Bemus

construction in mechanical engineering: The "whole" consists of components
which consist of individual construction elements. E.g. in the area of product
modelling when a model of a new product has to be developed which product
partly resembles an existing one, whole groups of model components can be
reused. If the new product/model does not resemble an existing one, only
the "atomic" components (individual construction elements) can be reused,
e.g. such low level prefabricated model components of material flow elements
can be found in a standard simulator environment. The more complete the
catalogue of reference models and the more systematically it is structured
the more the construction of a new overall model will be efficient. As a
constructor one can use a catalogue of construction elements and components,
and if looking for a technical solution for a part-function of the "whole" the
model-builder can use a selection of reference models. These offer possible
part-models (e.g. running models of different sorter techniques or models of
different planning strategies) which can be combined into alternative overall
solutions.

This part presents reference models of a great variety. Each of these fit
the characterisation of reference model, but as alluded to above, they differ
in a number of aspects, such as genericity, level of abstraction, aspect of
modelling, and coverage (the whole or part of the information system).

IBM has developed an "Insurance Application Architecture (IAA)" as a
reference model for the development of application solutions for the insurance
industry. IAA is described in Chapter 28. It works as a reference model for
the typical business structures found in insurance companies worldwide.

A similar understanding of reference models is given in Chapter 29 pre
senting the FhG-Simprolog simulation reference models. Different reference
models for various simulation application fields within production and logis
tics are described together with their typical elements and structures. These
models are built on the experience from multiple simulation studies. In ad
dition, ready-to-run simulation building blocks and sample applications to
demonstrate aggregation and adoption of the provided constructs to a spe
cific application are given.

Chapter 30 describes a different approach. The reference model describes
the business processes which a specific software system (SAP R/3) supports.
This reference can be used to compare them to the business processes actually
used in an enterprise, before introducing the software. Adaptions have to be
made by parametrization of the software. The mechanisms of the event
driven process chain model ensure, that it is possible to make only such
selection decisions which are technically feasible in the R/3 system.

The reference model for the German Savings Banks Organization is pre
sented in Chapter 31. It is different from the models mentioned above, as it
describes the data entities and their relations in high detail and clear struc
ture, but the model does not refer to the processes. This data model, based
on the IBM Financial Services Data Model, provides a common terminology

www.manaraa.com

Reference Models 617

and high level data structure without enforcing a particular implementation.
As a joint effort of the international standards bodies ISO and ITU-T

(the former CCITT), a generic architecture for the standardization of open
distributed processing (ODP) was set up as a meta-model to be used as a
common architecture for different concrete models. In Chapter 32, there is a
description of ODP and the Object Management Architecture (OMA) devel
oped by the Object Management Group (OMG). The OMA is a framework
for a set of standards to support open object-oriented computing in hetero
genuous distributed environments. The most well known standard within the
OMA, that found a high number of implementations, is the specification of
the Common Object Request Broker Architecture (CORBA).

Kai Mertins, Peter Bemus

www.manaraa.com

CHAPTER 28

IAA
The IBM Insurance Application
Architecture

Norbert Dick, Jurgen Huschens

The IBM Insurance Application Architecture (IAA) provides an architectural frame
work for the development of application solutions for the insurance industry. It is
based on a general Insurance Business Architecture developed to provide common
structures capable of representing the various, different business requirements oc
curring in the worldwide insurance companies. We will focus on the concepts, the
contents and the positioning of the models representing this IAA Insurance Business
Architecture. That way the motivation for a Business Architecture as a prerequisite
for insurance specific business software components should become evident.

1 Introduction

The insurance industry naturally is very closely related to information pro
cessing, since their production process is dealing with an immaterial good,
security, that requires information in order to be established. Therefore many
application systems in the insurance companies have their origins in the early
days of computing and have to be rebuilt in order to follow the current
changes in the insurance markets. The challenge often is a fundamental
change in the emphasis of the application systems from coexisting, line-of
business-oriented transaction systems to integrated enterprise-wide, informa
tion-oriented systems. Moreover, new techniques and technologies (such as
workflow management, object technology, Internet) seem to be candidates to
realize new business opportunities and to increase competitiveness.

This results in a pressure for a new generation of application systems
for the insurance industry. Although there are many offerings for insurance
specific software packages available, insurance companies have difficulties in
finding insurance software packages that suite their business needs, but also

www.manaraa.com

620 Norbert Dick, Jurgen Huschens

fit into their interconnected application system environment. The insurance
industry express their need for a "mix-and-match" -software market, allowing
them to (see e.g. [Wal93, VAA97])

1. buy application software for areas with low competitive relevance

2. share and adopt application systems developed in joint efforts amongst
insurance companies or with software vendors

3. have the possibility for in-house developments in areas where either the
relevance for competition is high or the necessity of differentiation from
the rest of the market is required.

Clearly, such a component-based software market requires open standards
for all involved technical dimensions. But experiences in analyzing software
package offerings and in-house experiences regarding enterprise modeling led
some insurance companies to the conclusion that first of all a general Business
Architecture for the insurance industry is needed as a basic structure to
ensure that the business requirements and contents can be addressed. This
need for a general Insurance Business Architecture articulated by a group of
insurance companies to IBM was the beginning of the Insurance Application
Architecture (IAA) project by IBM in 1990.

In this paper we intend to discuss the concepts, the contents and the
positioning of the IAA Business Architecture. We intentionally exclude the
discussion of IAA-based application system models and application software,
i.e. the technical and software-infrastructural dimensions of an application
architecture, in order to keep a clean focus on the approach of an Insurance
Business Architecture.

It will turn out that a Business Architecture can only work out the general
structures needed to represent the business requirements, but will not give
the business requirements itself. Therefore the IAA Business Architecture
is not at the same level as semantically detailed reference models (like for
example the SAP-Reference models or project models carrying the business
requirements of the project). Only after the step of filling the business re
quirements into the Business Architecture, the resulting models will be at the
same level as usual reference models. By differentiating between the- busi
ness requirements, which will always be subject to changes introduced by
products, organizational decisions, market movements or the business focus
of an organization, and their underlying stable structures, i.e. the Business
Architecture, it is intended to identify the stable patterns as the basis for
development efforts.

This need for differentiating the structures from the requirements popu
lating the structure is crucial to allow various different business views on the
same topic as can easily be studied in the field of Party Management Systems
of various insurance companies [Hus95]. Recent efforts ofthe German Associ
ation of Insurance Companies (GDV) in establishing business models for spe
cific application areas suffer from neglecting this difference [VAA97, Dic96].

www.manaraa.com

fAA 621

Also in the first efforts of the Object Management Group to standardize
Business Objects (also for the insurance industry [OMG96]), there is yet no
indication of facing this difference, although the object-oriented modeling
approach provides genuine means to address this topic.

2 Overview of the Architecture

The IBM IAA Insurance Business Architecture [IBM95] consists of the fol
lowing components:

• IAA Data Model

• IAA Function Model

• IAA Function Flow Model

• IAA Business Modeling (IAA Meta Model)

• IAA Business Terms.

This basic structure of the Business Architecture has remained unchanged
throughout the publications of the three editions of IAA: Edition 1 in 1992
[IBM92], Edition 2 in 1993 [IBM93] and the Edition 3 in 1995 [IBM95].

While the names of the first four components should give good indica
tion of its contents (discussed later in this contribution), the notion of IAA
Business Terms needs some remarks. The "IAA Business Terms" represent a
collection of terms used in the insurance business language. These terms are
uniquely defined by associating the parts in the IAA Insurance Business Ar
chitecture representing the content of the term to the name of the term. This
provides a means of a precise definition of insurance business terms without
having the fussiness of purely verbal definitions accompanied by examples.

In this way the well-known problem of homonymic and synonym usage of
Business Terms occurring inside one insurance company, but also across the
whole industry, can be addressed. This provides the chance of establishing
a common terminology of Insurance Business Terms, a necessary step for
establishing progress in many areas (compare e.g. [IEEE94]). This leads
to the remark that the development of an Insurance Business Architecture
would have been the natural task of the academic disciplines treating the
economy and the business administration of the insurance industry. But
since there was no such effort in the academic area (maybe due to a lack of
familiarity with modeling techniques in the economic sciences), there was the
challenge of establishing an Insurance Business Architecture that should be
capable of representing the business requirements of any insurance company,
regardless of its market focus (e.g. Health insurance, Car insurance, Re
insurance, etc.) or its geographical market (e.g. US, Japan, Germany).
How was this work being done? IBM certainly has never been an insurance

www.manaraa.com

622 Norbert Dick, Jurgen Huschens

r····_· __ ·_·············_····················_··· __ ··-............... _._-_ .. _ .. _..... _. __ _._ -..... _ .. --_.

Direct Insurance Company Participation

IBM World-Wide Participation

· USA • France . Korea
• United Kingdom • Australia . Spain
• Germany • Canada • Austria
· Japan • Netherlands· Hong Kong
• Switzerland • Norway . S. Africa

• Denmark

Architecture Projects

Figure 1: IAA Development

IAA
Project
Group

(Belgium)

company. Therefore the development of IAA was a joint effort of insurance
companies (coming from Europe, the US. and Asia) expressing the need for
a common Insurance Business Architecture (compare Section 1) and IBM.
IBM provided the project organization, the methodological consultancy and
the financial resources for the IAA project, while the actively participating
insurance companies (in total about 30 over the project time) drove the
development process by sending their business analysts and their business
organization specialists into development teams and guided the project plans
ofIAA.

The development team has been located in La Hulpe, close to Brussels in
Belgium. The development was based on "residencies". In such a residency
one certain business topic, like Product development, Claims, Life Insurance,
Health Insurance, Re-Insurance, was addressed by a project group consisting
of the business representatives of the insurance companies (out of the vari
ous regions) and IBM. In each residency, the business essence of the chosen
topic was discussed and described. In a second phase this input was trans
formed into model structures (Data-, Function-, Function Flow-models) and
consolidated with the structures of the total model. The results have been
verified by the insurance business participants. By this iterative process, the
scope of the models have been enriched and the final models arose. After the
publication of Edition 1 in 1992, also the experiences gained in IAA-based
application development projects at specific insurance companies have been
fed back into the models.

www.manaraa.com

fAA 623

The step from IAA Edition 1 to Edition 2 was characterized by a gen
eral enlargement of the scope and contents, but also by the reworking of
the Function Model results in Edition 1, since project use revealed that the
Edition I-Functions really had the qualities of processes. The lesson learned
was that a standardization of functional content leads to very fine grid func
tionality. The step from Edition 2 to Edition 3 basically left the Data Model
parts unchanged, except some extensions and minor corrections, but brought
methodological enhancements in the Function Flow-area together with an
excellent integration with the Data- and Function-Model dimensions.

Interestingly, initial attempts to establish the IAA Insurance Business
Architecture by merging already existing models (either partial or enterprise
models) of the participating insurance companies failed, since in these mod
els, that have been well suited for their original purposes no distinction be
tween the Business Architecture constructs and the constructs representing
the business requirements could be found. This implied that the constructs
representing the business requirements (which due to their nature could not
be generally accepted) could also not be easily identified and removed. This
experience meant that models incorporating also these business requirements
could only be valuable in areas with very far reaching standardization of the
requirements. This is often the case in an area where the requirements are
posted by legal obligations, but diminishes in areas with competitive advan
tage and strategic interests. Indeed, the clear separation between a Business
Architecture level and a level representing the specific business views origi
nated in these experiences. Moreover, by confronting the models carrying the
contents with the different cultures of the insurance markets, it was possible
to understand, that an enterprise model developed in-house also carries the
- maybe retrospective - view of the business that has been correct for that
company and its market, but hardly has the chance to come down to the ar
chitectural structure, since it lacks the confrontation with different business
views on the same topics.

With the publication of IAA Edition 3 in 1995, the IAA Insurance Busi
ness Architecture has reached a high level of stability and has proven itself
in many application development projects. Since IBM has made an signif
icant investment in IAA, it is treated as licensed material available after
paying a license fee and protected as intellectual property of IBM. At the
end of 1996 the insurance industry world-wide signed more than 80 IAA
license agreements, resulting in a significant market penetration, since many
of these license agreements relate to big international insurance corporations
covering a net of associated insurance companies.

In order to visualize the connection of the IAA Insurance Business Archi
tecture to Application Development we want to refer to the "IAA Cube" in
Figure 2.

The IAA Insurance Business Architecture is symbolized by the first por
tion of the cube. It has the three dimensions of Data-, Function-, and Func-

www.manaraa.com

624 Norbert Dick, Jurgen Huschens

System r ~ System Operation
Model (L System Design

Business
Model

Common
Industry
Elements

// Business Requirements
r / - Business Map

c !
1 (J) o l e ./ += (J) -0 ,.' ca C ,' .-E 0 ,··/1 =:

~ ,:.... 1 "0
.E/~'~ , .. - «0 I' 05 ___ t::

Organisation ant ---~What) (How) I;:. (When) 1/ J J
Detail Specific ~
Elements Data

Model
Function Function
Model Flow

Model

Figure 2: IAA Cube

/
/

tion Flow Model. A line indicates how far the standardization of the Archi
tecture will reach in these three dimensions. The experience showed that the
scope of standardization in terms of the data structures can be significant,
while this deteriorates for the function and function flow dimensions. Before
a transformation of the business contents (the first half of the cube) into the
System Model for implementation can be done, the business requirements
layer has to be completed by the particular insurance organization. This
task of adding the specific business requirements of an organization to the
IAA Insurance Business Architecture is the point, where the architecture is
adopted to a specific company situation. In an IAA-based project all identi
fied business requirements of an insurance company have to be mapped onto
the architecture in order to achieve the business content of a model. This way
different views on business requirements arising from differences in the busi
ness strategies can be represented in the frame of the Business Architecture
populated by different "inputs" (compare Section' I).

The main characteristics of the System Model should be driven by the
structure in the Business Architecture layer, so that the implementation de
cisions are mainly dependent on the architectural layer. This results in a
degree of independence of the business requirements layer from the System
Model layer allowing a "mix and match" on the business contents side of an
application.

After the publication of IAA Edition 3 in 1995 the emphasis of the IAA
Project was shifted from the IAA Insurance Business Architecture to the

www.manaraa.com

fAA 625

IAA-System Model and to the development of IAA-based application soft
ware (see Section 5 for discussions on the Object-Oriented IAA path).

3 Constructs of the Architecture

Since the architecture should provide means to describe the general structures
needed to represent the business requirements of specific organizations, it
must be constructed accordingly.

3.1 Data Model Constructs

The IAA Insurance Business Architecture Data Model (in the following shortly:
IAA Data Model) is built up using an extended Entity-Relationship data
model and extensions to address Business Rules in 'form of data structures
("classification" construct).

Generally, the IAA Data Model represents a high level of abstraction (or
generalization). We will give an example to illustrate the level of abstraction.
In many insurance companies there is a need to capture the data representing
the ownership of a car by a person. In semantic E/R-modelling this could be
represented by defining the two entities PERSON and CAR together with the
ownership relationship between these two entities (that may be represented
by a Relationship Entity). It should be noted that in the following we denote
PERSON as entity, not as entity type, since the type notion will be used in
a different context. A specific person will be referenced as an occurrence or
instance of PERSON, and not as an entity person.

A Data Model with the above level of abstraction corresponds to the se
mantic models produced within development projects or is used as a reference
model. But the development work of IAA showed that a Data Model at this
level of abstraction could not serve as an architectural approach because of
the following reasons:

First of all, not every insurance company would be interested in these
example entities, since they strongly correspond to the business requirements
of an insurance organization dealing with car insurance. A health insurance
company would have to ignore or even to eliminate the corresponding portion
of the model. Moreover, any attempt to describe the insurance business
comprehensively at this level of detail would result in extremely large data
models that still will lack the possibility of supporting product innovations,
since in many cases this will result in additional new data structures. A
third observation is the fact, that the interest of the ownership of houses,
ships, animals etc. carry related structure and different treatment of same
structures has been a cause of difficulty with respect to maintenance effort.

Therefore in the IAA Data Model, an additional step of abstraction is
made by recognizing the fact that persons are a certain kind of partners, cars
are a certain kind of objects (here object is meant in its physical sense), and

www.manaraa.com

626 Norbert Dick, Jurgen Huschens

the ownership relationship is a certain kind of relationship between partners
and objects. The resulting entities PARTY (for partners), OBJECT and
PARTY-OBJECT RELATIONSHIP are contained in the model. So, in IAA
the modeling content of representing the car ownership of persons will not
be found explicitly in the Data Model, rather the general structure of this
specific business requirement is provided.

In order to provide the possibility of incorporating the business require
ments contents in the general structures, the TYPE-construct is used in IAA.
Hence, in addition to the entity PARTY, an entity PARTY TYPE is found in
IAA in order to represent the specific different kind of partners needed inside
an organization. Therefore by choosing Person as an instance (or occurrence)
of PARTY TYPE, Car as an instance of OBJECT TYPE, "is owner of" as
an instance of ROLE TYPE accompanied by appropriate specifications, the
semantic content of the business requirement "a person is owner of a car"
can be represented in the structures provided by the IAA Data Model.

Since the type-instances should align to the rules of mutual exclusivity
and completeness, the relation of this construct to the "CLASS" -idea in the
object oriented world is evident. The TYPE-construct provides a means to
enrich the data structures provided by IAA to incorporate the contents of
the specific business requirements. An initiative to standardize the type hi
erarchies developments by different insurance companies working with IAA,
clearly showed that different products and different business strategies re
sulted in different type settings. The other enrichments needed to represent
business requirements in the IAA Data Model consist of the additions of
attributes and specifications of relationships. Moreover, this way of mod
eling "meta-data" inside the data model, proved to be necessary in order
to represent the content of insurance products via data structures. Conse
quently, the IAA Data Model has the quality of a meta-schema, whereas the
IAA-based Data Model of a specific insurance company is an instance of the
meta-schema.

There are three possibilities to represent business contents in the IAA
Data Model. This set of possibilities reflects a very general pattern that
corresponds to the way modeling is done. If we take the example of how to
model a requirement of "being married" , we observe that generally there are
at least three possibilities of how to model a business requirement:

• Attribute (fact only view)

• Relationship (limited information scope)

• Type construct (full information scope).

The attribute "married" with the value domain "yes/no" or the attribute
"family status" with the value domain "single, married, divorced, ... " corre
spond to the view that there is only an interest in the fact itself. There is
no need for the knowledge of any detail, since this can not be represented in

www.manaraa.com

fAA 627

this attribute construct. Accordingly, if there is a business need to also know
the spouse, the start date and some detail behind the marriage, a relation
ship construct like a Party-Party Relationship "is married with" with some
attributes of this relationship may be the appropriate choice. The disadvan
tage of such a relationship construct is the fact that for the establishment of
the relationship the second partner has to be known. But if there is signifi
cant interest in the details of a marriage, for example because of an insurance
product covering the risk of a marriage or a product where a marriage allows
for a claim of a benefit, neither of the two variants discussed so far suffice to
cover the information related (e.g. to the legal marriage agreement, to the
documents proving the marriage, costs for the wedding ceremony etc.). In
such a case there is a need for a construct that carries the specifics of the
information and allows to use parts of the data model to represent the whole
picture of needed information.

In fact, project experience has shown that in different organizations differ
ent decisions have been made regarding the scope of information associated
to the same notion. Moreover, sometimes different parts of the same orga
nization express different needs! Therefore the business requirement consists
of the "notion" and the scope of information associated to that notion. The
scope of information is heavily influenced by business strategies and prod
uct involvements. This in turn translates to the fact that in semantically
complete models decisions have been made on the scope of information that
relates to the notion and that this scope must meet the business requirements
in order to make the model acceptable.

In the IAA data model either of three possibilities can be represented,
since one main achievement of the IAA Data Model is the fact that the
basic structure provided is sufficiently rich in order to give suitable entity
candidates for the third option without the need of enlarging the data model
structure.

After this discussion it should have become evident why IAA intended
to deliver an Insurance Business Architecture and why this corresponds to a
high level of generalization. We will end the discussion of the data model with
some remarks on the "classification" construct used in IAA. The systematic
use of the constructs discussed also allowed to express the Business Rules,
traditionally contained in program logic, in form of data structures. The IAA
Data Model does not provide the collection of the business rules themselves,
but it contains the structure that is needed to express these business rules
in form of data structures and thereby it provides a way to organize the
application systems around a "Product Management System" defined by data
contents.

3.2 Function Model Constructs

On the evolution of IAA from Edition 1 to Edition 3, the Function Model
has experienced pressure from a strong Data Model and a strong process

www.manaraa.com

628 Norbert Dick, Jurgen Huschens

orientation. As a result, the functionality identified is very fine grained,
since early attempts to provide coarse-grid (but meaningful in a business
sense) function definitions as an architectural content failed due to the fact
that different insurance organizations showed different opinions on what is
contained inside such "functionality". Therefore, in order to provide the
structures and not decide on the contents, the elements contained in the
Function Model consist of basic functions needed to build higher aggregations
of functionality that can carry business meaning.

The IAA Function Model consists of

• Business Algorithms

- Elementary Business Algorithms

- Calculation Business Algorithms

- Navigation Business Algorithms

• Elementary Business Functions.

While Elementary Business Functions basically serve for data manipulation,
the Business Algorithms provide functionality for logical evaluations. While
Elementary Business Algorithms provide the categorization of functions that
perform simple logical evaluations (e.g. for obtaining data contents), the
Calculation Business Algorithms are capable of performing nested opera
tions. These Calculation Business Algorithms are allowed to contain calcu
lation functionality and Elementary Business Algorithms. For data retrieval
generally the Elementary Business Algorithms have to be used. Navigation
Business Algorithms are the functionality to provide paths across the data
model containing the logic how to navigate through the data structure in
order to establish the logical data link needed.

Generally speaking, the categorization given in the IAA Function Model
provides a separate data manipulation functionality together with function
ality incorporating logical operations ranging from calculations to navigation
information.

3.3 Function Flow Model Constructs

The Meta Model constructs of IAA show a strong, well-defined interconnec
tion between the discussed dimensions of Data Model, Function Model and
Function Flow Model (which is strongly related to the notion of a Work Flow
model [WFCL96]). The IAA structures of Edition 3 satisfactorily cover the
data dimension of Function Flows. This allows a strong integration and in
teraction between the data dimension of workflow and the original business
data. The clear separation of the "meta-data" within the model provides the
key for the possibility to rigorously define the data dimensions of Function
Flows within the model. Moreover, IAA provides significant contributions to
the description of flow-dependent functionality.

www.manaraa.com

fAA 629

Since it is commonly accepted that Function Flows are particular for indi
vidual organizations and areas of competitive advantage, IAA does not intend
to provide standardized business processes or workflows. Therefore the pro
cesses documented within IAA are marked as examples demonstrating the in
teraction and aggregation of all the constructs described. What the function
flow related constructs in IAA want to achieve, is an architectural framework
of functionality arising in a process that allows for context-independent reuse
of parts.

The constructs within the IAA Function Flow Model dimension of the
Business Architecture consist of

• Data Condition Functions (DCF)

• Triggering Condition Functions (TCF)

• Flow Control Functions (FCF).

While the Flow Control Functions correspond to the representation of the
process description, the Data Condition Functions provide the functionality
to check integrity conditions needed to start operations. With the Triggering
Condition Functions a join between functionality and the function flow is
established that addresses the topic of context independence. DCF and TCF
allow a clear description of what kind of function flow is allowed to use a
certain kind of general functionality that does not carry any pre-condition
information. TCF allow to describe partial processes that may consist of
other partial processes, but form a unit of activities, that must be addressed
in order to ensure integrity and consistency from a business perspective.
This need for emphasizing this special case of workflow was also identified in
the VA A-initiative of the German insurance industry [VAA97] giving strong
evidence of the importance of this distinction, not explicitly emphasized in
the Workflow Coalition models [WFCL96], for the insurance industry.

With the granularity of function flow constructs used in IAA, a very
rigorous description of Function Flows can be achieved.

4 Contents of the Architecture

The IAA Data model is made up of the following Business Entity families
(where a Business Entity family corresponds to a top-level, or A-level, entity
representation of a model)

• Party

• Object (Physical Object)

• Place and Contact Point

• Activity

www.manaraa.com

630 Norbert Dick, Jurgen Huschens

• Event

• Investment

• Financial Transactions

• Specification (Product)

• Agreement

• Delivery

• Rule.

While the separation of Business Entity families like 'Party', 'Place and Con
tact Point', 'Investment','Financial Transactions' from the areas 'Agreement'
and 'Delivery' is similar to the traditional approaches in the insurance indus
try (resulting in corresponding central application systems like Party Man
agement Systems, Payment Systems etc.), this clearly is not the case for
some others. The separation of the 'Objects' treated in the insurance com
panies from the areas of 'Agreement' and 'Delivery' is a new approach that
strongly corresponds to the idea of 'Specification (Product)'. While until now,
separate agreement and delivery administration systems have been built for
the various lines of businesses, all of them carrying the product information
within the administration systems, the IAA Data Model emphasizes a central
'Specification (Product)' area constructed to hold the product information
inside this area via the means of the 'Rule' entities. This focus on 'Product'
as the key for organizing the complete interaction between all kinds of ap
plication systems is one of the major achievements of IAA. While in many
industries this approach has a long tradition, the insurance industry, maybe
due to legal regulations and the immaterial character of their goods, only
recently started to focus on the product orientation inside their application
systems [Woh95]. Indeed, the insurance companies choosing IAA almost al
ways address the product topic and there are first feedback's on how IAA
supports this very challenging transition process [LS96].

Because of the fact that all information regarding the insurance product
shall be held inside the areas 'Rule' and 'Specification (Product)', the areas
'Agreement' and 'Delivery' only shall hold the generic data content related
to the administration of agreements (at its life cycle) and to the processing
of requests (like claims) in the area 'Delivery'. Naturally, the necessity of a
strong interconnection between Function Flow and Product definition arises,
since the static view of the product definition can be addressed by rules and
algorithms, while the dynamic aspects have to be described by the Function
Flow descriptions applicable for this product. But because of the fact that
only the generic data content related to the agreements and requests should
encounter the areas 'Agreement' and 'Delivery', product specific information
like "what kind of object can be insured" has to move away from these

www.manaraa.com

fAA 631

ACTIVITY I I RULESt-

I I
1 1

SPECIF- I ~

PARTY l ICATION
I

'- d !

"111 Ilb CONTAC1 I-
OBJECT AGREE-

POINT & MENT
PLACE r---< l-

I I

I
NVESTMENTI I JhE LIVE RV:f

I
~

II I f EVENTr JFINANCIAL ~I
l TRANSACTION

Figure 3: IAA Data Model Overview

areas. So induced by the product approach is the need for a separated area
'Object ' that also allows to collect information regarding object dependent
risk accumulations or derivations.

The fact that there is need for a new quality of claims processing is re
flected in the areas of 'Event' and 'Activity'. The separation of these areas
from 'Delivery' allows a fine-grained description of claims causes and the
identification of risk centers, independent from its direct effect on the admin
istrative dimension of 'Specification' (product) . Rather this information may
relate to the product development, the product marketing or the product
distribution, since all of them have a special interest on the 'Activity' and
'Events' related to their potential customers.

The content of the Business Entity families, like 'Financial Transactions',
'Investments ', 'Place and Contact Point' should be self-explanatory.

In the IAA Data Model documentation these Business Entity families
are used to establish views on the whole IAA Data Model. For the Busi
ness Entity family 'Party' five different Party Views are used to discuss the
IAA Data Model from a Party-centric perspective. For each view, there is
a textual discussion about the way the contained entities can address re
lated business topics giving examples how the entities contained in a view
interact. The totality of these views represents the whole IAA Data Model,
while the totality of the textual discussions of the separate view forms the
discussion of the whole IAA Data Model. For each Business Entity Family

www.manaraa.com

632 Norbert Dick, Jurgen Huschens

the views discuss the connection of this family (that might be translated into
an application system, e.g. Party system) to the rest of the insurance busi
ness. Inside the Party Views we would be able to find entities like PARTY,
PARTY-OBJECT-RELATIONSHIP, OBJECT, PARTY TYPE already in
troduced in Section 3. In the IAA Data Model around 130 entities with
1240 attributes are documented providing the structural pattern of insur
ance specific data models, but the remarks concerning the construction of
IAA (compare Section 3) should be emphasized again.

While the views and their discussions are contained in a volume: "IAA
Data Model Reference" , the complete entity descriptions are contained in the
volume: "IAA Data Model Definitions". In addition to these two volumes,
the volume: "IAA Data Model Examples Library" provides an extensive
list of examples showing how specific business scenarios, like for example
the treatment of an fraudulent claim, translate into the IAA Data Model
structures. These example library is meant to provide examples how the
population of the IAA Data Model by the mapping of business requirements
(or scenarios) may look like.

On the IAA Function Model and IAA Function Flow Model side the
covered and analyzed areas consist of the "High-Level Business Functions":

• Plan the business and its resources

• Research and analyze the market

• Develop and maintain insurance products

• Gain, service, and retain client business

• Manage party relationship

• Manage company infrastructure and services

• Manage business operations, finance and cash flow

• Manage investment.

Of course, below this highest level of "High-Level Business Functions" ad
ditional sublevels are documented. The substructures of "Gain, service and
retain client business" for example consist of:

• Manage client relationship

• Manage promotion

• Manage authorized channel

• Administer insurance agreement

• Manage claim.

www.manaraa.com

fAA 633

These structures are verified by the work documented in VAA [VAA97].
But, as indicated in Section 3, these High-Level Business Functions represent
in fact a set of business functionality that clearly incorporates workflow and
process character. Hence, a naming convention like "High-Level Business
Functionality" would have facilitated the understanding that Function Flows
using Functions would provide the content of these "High-Level Business
Functions" .

In IAA Edition 3 more than 20 Function Flows are completely worked out
using the contents of the IAA Function Model and the IAA Function Flow
Models, i.e. the elementary Business Functions, the Business Algorithms,
the Data Condition Functions and the Trigger Condition Functions related
to the Business structures. But each of these documented Function Flows
like "Handle Party Information" or "Handle Address Information" is marked
as an example, since a specific choice has been made regarding the scope of
functionality used and the order in which something'is done, These decisions
may differ from insurance organization to insurance organization, but all
should be composable out of constructs provided by the IAA Function and
Function Flow model and the company specific enrichments of the IAA model
constructs.

Alike the Data Model contents, the discussion of the Function resp, Func
tion Flow Model contents is provided in the volumes "IAA Function Model
Reference" resp. "IAA Function Flow Model Reference". The documenta
tion of the specific contents is provided in the volumes: IAA Function Model
Definitions VoLl Elementary Business Functions, IAA Function Model Def
initions Vo1.2 - Business Algorithms, IAA Function Flow Model Definitions
VoLl - Data Condition Functions, IAA Function Flow Model Definitions
Vo1.2 - Triggering Condition Functions.

5 IAA and Object Orientation

As discussed in Sections 1 and 4 many characteristics and constructs of IAA
are related to OO-approaches. The "TYPE" -construct in IAA Edition 3 cor
responds to the Class/Subclass-relationship with single inheritance. More
over, since the contents in the Function Model of IAA Edition 3 either live
within the scope of one entity or belong into the responsibility of one entity,
the interpretation of the Function Model elements given in IAA Edition 3 as
methods is feasible.

In 1993 the Object-Oriented IAA path was started by building a life in
surance prototype in Smalltalk implementing the IAA Edition 3 constructs
using an object interpretation. The class library originating from the proto
type clearly demonstrated the value of the underlying IAA Business Archi
tecture, since the clear understanding of the business determinants and their
interactions allowed the determination of the main business object classes
together with a high degree of reuse by enabling inheritance. Therefore even
at this early stage of IAA-OO developments some customers have chosen this

www.manaraa.com

634 Norbert Dick, Jurgen Huschens

1,240 Attributes

.. " .. : . ; .. ~ .. ':. . :. ". : "' : :

• - - ..j_ - - .oj - - - _t ___ ..j ___ • __ .. ~ .. _ _ •

I I I , I I I
I I I t I I

1,345 Flow Functions and Events
(TCF, FCF, DCF, DCE & EE)

. ~ .. "

1 ,430 Functions
(EBF & BA)

Figure 4: IAA Contents

class library as a basis for their development activities. Other insurance com
panies used the IAA Business Architecture to develop the structure of their
own business object class libraries. So the transformation of the business
knowledge contained in the IAA Insurance Business Architecture into class
libraries has proven to be feasible.

But regarding the aspects of taking the IAA Insurance Business Architec
ture along the OO-path to the System Model layer, it has been experienced
that work regarding an IAA OO-Meta Model was necessary, since none of the
evaluated OO-Meta Models could express all of the needed business model
constructs together with the Systems levels considerations.

So the development efforts concentrated on the directions:

• Definitions of the IAA Business Object Model (BOM)

• Defintion of a detailed Object Model for specific topics like "Specifica
tion" (AOM)

• Definition of the 00 Meta structures

• Definition of the IAA/OT Infrastructure and Platform Architecture.

The IAA Business Object Model is made up of partial Business Object models
corresponding to the Business Entity families introduced in Section 4. In the
newest version, that is intended to be released as IAA Ed.4 in early 1998,

www.manaraa.com

fAA 635

Business Object Models for all business entity families (compare Section 4)
are contained. In these BOMs the structural knowledge of IAA Edition 3
has been transformed into an object model, but also project experiences
concerning the business requirements have been fed in. Requirements arising
in all projects have been included into the OO-model structures.

Especially in the area of Product/Agreement significant contributions
with respect to the contents of Product definition have encountered the Busi
ness Object Model. A detailed Object Model ofthis area has been established
as an Analysis Object Model (AOM). The Meta-level constructs are used to
organize system boundaries between the different parts of the BOM. In con
tinuation of the IAA development the BOM have been developed in a close
relationship with insurance companies doing quality assurance and commu
nicating experiences.

The BOM will serve as the underlying model for industrial strength imple
mentations addressing insurance companies interested in components. With
respect to the middleware components, IAA/OT is closely related to the IBM
internal projects working in these areas.

6 Observations and Conclusions

Working in the area of IAA for several years, it can be stated that there
clearly is a need for an insurance business architecture in order to identify
stable structures for the development of the next generation of application
systems. The success of IAA all over the world is a clear indication for this.

But it can also be observed that the notion of a Business Architecture
brings new topics into the development process that have to be understood
and addressed [Scha96]. The fact that the modeling act now consists of the
detailing and specializing predefined generic structures instead of the possi
bility of inventing new structures is a change. Furthermore, the fact that the
result of this business analysis is the model containing the business require
ments and not necessarily the design for the database structures, is also a
topic that has to be addressed with respect to the mass of data and transac
tions occurring in insurance companies. Therefore working with a business
architecture implies the necessity of a design step (and model) dealing with
the technical implementation of the business contents into a specific envi
ronment. The fact that there is a very clear separation between business
content (which is considered to be technology independent) and the actual
design (which strongly is technology dependent) introduces the separation
of this design step in order to address the fact that a "one-to-one" imple
mentation of the business model often is beyond the capabilities of current
technology.

Nevertheless, the activities concerning business process reengineering can
be interpreted as the attempt to model the process dimensions of the busi
ness by the business people from the business perspective without imposing

www.manaraa.com

636 Norbert Dick, Jurgen Huschens

technology restrictions. A business architecture asks for the additional di
mensions of 'what' and 'how'. Both have in common that the business people
are asked to express their needs in a formalized manner - an exercise with
limited tradition. This means that the success of the usage of a business
architecture strongly correlates with the acceptance and usage within the
business departments.

Concerning the transformation into application systems, experience has
proven that a clear description of the structures carrying the business con
tents is the key to address the different business needs and hence to produce
marketable business software components in areas where no standardization
is given. The developments based on Object technology (see Section 5 and
[OMG96]) clearly depend on the understanding of the underlying business
structures, when the approach of business software class libraries is taken.

Concerning the use of business software class libraries in different indus
tries, this translates to the question how the business architectures for a
specific industry like insurance compares to the business architecture ruling
the class library. The generosity of the constructs used in IAA gives a good
chance for providing the business structures generally occurring inside the
general service business.

References

[Dic96]

[FM93]

[Hus95]

[IBM92]

[IBM93]

[IBM95]

[IEEE94]

[LS96]

Dick, N., IAA und VAA - Eine ideale Ergiinzung, Versicherungsbe
triebe, Nr. 3/96, Juli 1996, 6-8

Ferguson, C. H., Morris, C. R., How architecture wins technology
wars, Harvard Business Review, March-April 1993, 86-96

Huschens, J., Detailierung von IAA am Beispiel Partner, in:
Tagungsband, Anwenderkongrefi 1995 Versicherungswirtschaft, IBM
Deutschland GmbH, 1995

Insurance Application Architecture (IAA), Edition 1, licenced mate
rial of IBM Corporation, Copenhagen, 1992

Insurance Application Architecture (IAA), Edition 2, licenced mate
rial of IBM Corporation, Copenhagen, 1993

Insurance Application Architecture (IAA), Edition 3, licenced mate
rial of IBM Corporation, Copenhagen, 1995

IEEE, Standard glossary of software engineering technology, IEEE
Std 610.12-1990, in: IEEE, IEEE Software Engineering Standards
Collection, 1994 Edition, The Institute of Electrical and Electronics
Engineers, New York, 1994

Leuzinger, R., Schonsleben, P., Innovative Gestaltung von Ver
sicherungsprodukten, Gabler-Verlag, Wiesbaden, 1996

www.manaraa.com

[OMG96]

[Scha96]

[VAA97]

[Wal93]

[WFCL96]

[Woh95]

fAA 637

Object Management Group Webpages, http://www.omg.org

Schatzmann, Ch. H., Vorgehensmodell fUr die Verwendung partieller
geschiiftlicher CASE-Templates bei der Realisierung von Informa
tionssystemen, Ph.D. Thesis, Universitiit Zurich, Zurich, 1996

Gesamtverband der deutschen Versicherungswirtschaft (ed.), Ver
sicherungsanwendungsarchitektur, Bonn, 1997

Walter, K. J., Was bedeutet IAA fUr den Anwender?, in:
Tagungsband, AnwenderkongreB 1993 Versicherungswirtschaft, IBM
Deutschland GmbH, 1993

Workflow Coalition, Workflow Model Reference, New York, 1996

Wohlschlager, L., Transformation von Versicherungsprodukten in
Datenmodelle - dargestellt am Beispiel der Transformation der
Fahrzeugversicherung in das IAA-Datenmodell, Master Thesis, Uni
versitiit Koln, Koln, 1995

www.manaraa.com

CHAPTER 29

Reference Models of Fraunhofer
DZ-SIMPROLOG

Markus Rabe, Kai Mertins

Modeling in the field of application "production and logistics systems" is still based
on ad hoc procedures. This contribution describes the development of reference
models as well as of supporting methods and guidelines for this field along with
design criteria that are applied for the systematic decomposition of this complex
area. Modularization and interoperability are the main terms in this discussion.
Furthermore, this contribution indicates steps necessary for the development of
a simulation integration platform within the Fraunhofer Society. This will allow
application-centered working with a set of appropriate model libraries and simu
lators. An application example demonstrates usage and benefits of the described
approach by means of utilizing the reference model "manufacturing systems" .

1 Introd uction

In order to advance the use of simulation technology in general practice, nine
institutes of the Fraunhofer Gesellschaft joined together to set up one research
unit called DZ-SIMPROLOG. The individual institutes have expertise in
different areas of simulation application, e.g. in the planning of production
and assembly systems, in the planning of logistics and of material flows, and
in the planning of distribution and personnel organization. Accordingly, a
set of different simulation systems were developed, which are best suited to
a large number of simulation applications within production and logistics.

Tools like CREATE!, MOSYS, PERFACT!, Persimo, Simple++ or USE!
are incorporating know how and experience within these application fields.
In addition to adequate tools, simulation experiments require comprehensive
technical knowledge in order to model, plan, and evaluate simulation experi
ments, and in order to interpret the results. The knowledge of how to model
production and logistics systems were isufficiently documented before, and
experiences were confined to the simulation experts and were frequently no

www.manaraa.com

640 Markus Rabe, Kai Mertins

longer available after the respective project ended. The goal of this work is
to change this practice, and define a new way of preserving and transmitting
this knowledge.

The work done within DZ-SIMPROLOG was divided up into two phases.
While the first phase "Exploitation of Distributed Know How and Develop
ment of Common Tools" was finished in 1996 the second phase "Development
of an Integration Platform for Simulation Systems" was started in 1997.

2 Structure of Reference Models

For larger modeling structures that describe complete systems up to com
panies, the name "reference model" is often used. So far, there is no clear
common definition of the term "Reference Model". Sometimes this term is
used as a description of standard business processes, that are supported by
a standard software. This type of reference model shows an ideal process
that hardly will fit for any existing company. It is used as a guideline for
process design and a measure for the process quality. In the joint develop
ment project conducted by the Fraunhofer Society, experiences of multiple
simulation projects and the last stage of research are used to define standard
structures for simulation models. In this project the term "reference model"
is used for the complete set of structures together with a description, how
these structures apply and how they can be adapted to a given problem.
Therefore a reference model is not an ideal solution used as a measure, but
a modeling base for a special type of problem. Usually it cannot be used as
it is, but has to be adapted [MRK95).

Reference structures can be identified on different levels of abstraction,
reaching from the top level where cooperation of companies or company divi
sions is described down to structures for material and information flow inside
a workshop. Also basic structures for personnel employment can be found.
These reference models are prefabricated modules for typical problems of ap
plication in production and logistics planning. They contain a generalized
description of characteristic production or logistics systems, which can be
adjusted by the user to the specific conditions of his company. The models
describe the interactions between spatial structure, capacity, products and
control; they can be executed and used as a basic supporting framework
for simulation experiments. A reference model is composed of three main
components:

• basic building blocks and structures,

• collection of examples,

• description language which is used for a uniform display, and for ex
changing information between the different competence centers.

www.manaraa.com

Reference Models of Fraunhofer DZ-SIMPROLOG 641

The basic building blocks and structures contain models of typical machines
and transport devices, usual manufacturing structures, control guidelines,
typical products, production strategies, and the operation sequence as well
as a prepared evaluation of the simulation results. The basic model serves
to explain to future simulation users the principles of manufacturing simu
lation and to ease and speed up the modeling process within the thematic
field of the reference model. The collection of examples contains simulation
models from industry. It serves to comprehensively explain complex simu
lation applications. The objectives of simulation projects are described; the
attainment is measured against the simulation results.

As the describing language, the Integrated Enterprise Modeling (IEM)
is utilized, which is using the modeling constructs of process and enterprise
models of ISO TC 184/SC5/WGI and in ISO TC 184/SC4/WG8.

3 Simulation Model Engineering

A design engineer today will rarely design a new product completely from
scratch. In the contrary he will try to use as much existing components as
possible to reduce development and production costs. Catalogues of standard
parts and subassemblies allow the selection of appropriate solutions. Stan
dardized interfaces and dimensions guarantee that the selected components
will fit together.

Unfortunately engineering principles are rarely applied to the construc
tion of simulation models so far. Due to the lack of standardization, the
definition and marketing of simulation model components appears not very
attractive. As a result, simulation models are still built from scratch every
time, consuming valuable resources for the modeling of very similar systems.
As an answer to this, Fraunhofer is creating the means to introduce an engi
neering approach to simulation model construction [MRF96].

Basis of the reference models is a collection of generic model structures,
organized in libraries which contain a set of domain specific structures. Every
structure comprises a generic description of objects, relations and properties
with a well defined interface. These structures are built with the primitives
of the simulation language and are therefore more complex. They allow for
two different types of usage:

• Black box use, where neither the internal structure nor the parameters
of the elements are altered; the structure is used as it is;

• White box use, where the structure is adjusted to specific needs of
the task either by adding or deleting elements, changing relations or
changing parameters of elements.

As experiences in different application areas show, the degree of abstraction
applied to decompose the object domains of the application field is most crit
ical for the usability of the reference model. To allow the application model

www.manaraa.com

642 Markus Rabe, Kai Mertins

DDD
DO

---~---

Modelling

Language Primitives

Basic

Model Structures

Complex

Model Structures

FigUre 1: Abstraction levels used in the Reference Model [MRM097]

builder to choose the appropriate level of detail for his task, the reference
model is built hierarchically (Figure 1)_

4 Development and Corporate Standards

In addition to documenting and exchanging experiences already available,
Fraunhofer has developed new software. This software works with all the
simulation tools of the alliance. There are two classes of software:

• Databases to transfer data from industrial clients to Fraunhofer's sim
ulation tools and services. This gives connections to tools like SAP or
helps to exchange data between the Fraunhofer institutes.

• Tools to further exploit simulation experiment results. Actually, one
tool makes a 3-dimensional animation, that may be photo realistic;
another one does a simulation based costing.

To have those tools common for all the different simulation software, corpo-
rate standards have been set: .

• A process data standard to exchange data like inventory, process plan,
production plan,

• A trace standard to exchange event lists for later evaluation.

5 Integration Platform

The integration platform provides the methods and tools for data exchange
and synchronization of systems using different time and event models. Data
can be exchanged between

www.manaraa.com

Reference Models of Fraunhofer DZ-SIMPROLOG 643

Componentware

Client I Sefver • models deftned using components

• communlcaUon among

simulaUon servers

• partial models for simulation servers

federated systems

• communlcaUon among simulators

• partial models for simulators

• synchronization

• communlcaUon Interface <-> server

• partial models for simulation servers

'synchronizaUon

partiCIJlar or common
model editor

• Interface Is based on components

common
user Interface

Figure 2: Synchronization of different time and event models (online coupling),
Source: FhG-IML

• Any business application like a system for PPC and a simulator,

• Two models running on the same simulation system, or

• Two models running on different simulation systems.

This part of the integration platform supports the so called off-line coupling
of different business applications and simulation systems. Off-line means a
non-interactive coupling, for example the transmission of data (results of
a simulation run) after finishing the first simulation experiment to a sec
ond simulation system. The coupling of different business applications and
simulation systems in order to realize an interactive exchange of data and
algorithms is called online coupling. The main goal for DZ-SIMPROLOG
is the coupling of different models running on different simulation systems.
In addition to the off-line data exchange there exists the necessity to pro
vide synchronization mechanisms to coordinate the different time and event
models. In Figure 2 the symbol for representing this mechanism is a clock.

An example for the application of a distributed simulation network is
the semiconductor industry. Different manufacturing systems distributed
all over the world are connected in a process chain to produce for exam
ple ICs. For each task there are different alternatives (manufacturing sys
tems/organizational units) which can execute the task. For the finding of
an optimal plan and the routing through the network the concept of dis
tributed simulation can be used. This includes the online coupling of the
different models running on different simulation systems which exist in the
nodes of the network. This procedure allows the consideration of the inter
dependencies among the processes which are executed in each node of the

www.manaraa.com

644 Markus Rabe, Kai Mertins

manufacturing network. Therefore this is the only basis for efficiently get
ting good and evaluated manufacturing plans with realistic time and cost
statements.

6 Example: Reference Model Manufacturing
Systems

The Institute for Production Systems and Design Technology (IPK) has con
ducted simulation studies for the design of manufacturing systems for many
years. The reference model manufacturing systems summarises the aquired
experience and is one of the contributions of IPK to the above mentioned
joint project. The approach follows the idea of "simulation model engineer
ing" [MRM097]. Three main aspects have been considered while building
the structures of the reference model manufacturing systems (Figure 3):

• Type of equipment typically used in manufacturing systems,

• Main organizational prinziples used to connect the equipment,

• Influencing factors of the production control system.

The typical equipment for manufacturing systems has been grouped into
machine tools, manual workplaces, transportation and testing devices. Ad
ditionally a set of structures for modelling of workers, considering different
shift models and concepts of multi-machine operation has been defined.

Structures that can be found regularly connect the equipment organiza
tionally. For the integration of organizational prinziples, an analysis of the
german market leads to the identification of four basic principles:

• Jop shop production, portraying the task-oriented type of organisation,

• Islands of automation, portraying the product-oriented type of, organi
zation without sequential control and sequence of operations,

• Flow production, portraying synchronized work stations that are set up
in the order of production sequence, and

• Construction site production, portraying the product-oriented type of
organization with machines, tools, material and workers beeing moved
to a single location.

It appeared that job shop production still dominates, even though the advan
tages of islands of automation are well known. But an increasing number of
companies uses simulation studies to compare product-oriented to activity
oriented forms of organisation, in order to reorganize their production.

The success of a manufacturing system depends not only on an optimized
material flow and balanced capacities, but to a high degree on the infor
mation flow and order control [MJR94]. Existing simulation studies often

www.manaraa.com

Reference Models of Fraunhofer DZ-SIMPROLOG

manufacturing control

control procedures

loading
priority rules

typical

F!>
.!J.

products

loading e:> models of manufacturing systems
times DODOD

I due dates Ie:>
typical equipment

operation f typical structures

sequence iJ iJ iJ iJ

evaluation

o !efficiency

o !throughput time ,

¢ I bottlenecks

e:>!stocks

O! utilization

arrange-

LJ'''"'''''"
lot sizes

mentol and stor- capaciti es
work- age orga-
places nization

deSign van ants

Figure 3: Design of Reference Model "Manufacturing Systems"

645

concentrate on the physical aspects of the system, neglecting the order con
trol or reducing it to very simple strategies for the selection of the next order
on a machine. But numerous influencial factors need to be taken into con
sideration and the complexity and reciprocal dependencies can hardly ever
be controlled with analytical methods. Moreover, if the physical system and
the order control are designed independently, mutual dependencies cannot
be considered [Rab94]. This leads to an additional, time consuming integra
tion step. For this reason, in the reference model manufacturing systems,
the influencing factors of the production control system are considered as an
additional feature. They are defined as independent structures for the pro
cessing of orders which have well defined interfaces to the structures defining
the physical aspects [MRM97] .

By combining different structures of order control with a given structure
of the physical system, it is now much easier to analyse the impact of different
control strategies and select an appropriate strategy.

A manual that describes the modelling, validation and evaluation proce
dures is a vital part of the reference model manufacturing systems (Figure
4) . It contains a guided tour through simulation beginning with data aqui
sition and ending with possible approaches to solve problems. The usage of
the existing structures is demonstrated by examples. A catalogue allows a
quick overview over the existing structures and helps the modeller to find and

www.manaraa.com

646 Markus Rabe, Kai Mertins

order control

guideline

organizational principle

Figure 4: Integration of order control into a model

understand solution alternatives. The interface description of each structure
reveals how structures can be combined. If a structure has to be modified, a
description of its elements and parameters helps to minimise the effort.

7 Application Example

During a pilot project used to evaluate the basic principles of the reference
model a job shop production has been reorganized and the traditional push
control has been replaced by a pull control.

In the first step the existing manufacturing system was modeled using
the job shop structure available in the reference model. This basic structure
was modified according to the number and type of machines and transport
devices. These components were selected from the catalogue of predefined
equipment and their respective parameters like buffer sizes were adjusted.
In the next step, the existing order control system was modeled using the
structure for push control available in the reference model. Because the
focus in this case was on the manufacturing system only, the control model
was restricted to the shop floor control level. Arrival of orders from the
PPO-system was modeled as input parameter and derived from an analysis
of a past production period. An important aspect of this type of control
was the fact that large buffer sizes were necessary to store material while
the response from the predecessing manufacturing step was processed in the
control system. Only after the release of the order the material could be
transported to the next machine. Strategies for reaction on disturbances were
little flexible, because the control system was involved in every reaction.

After verification of the model the experimenting phase started. Two al
ternative combinations were investigated to distinguish the influence of the
physical system and the order control system. Thanks to the predefined

www.manaraa.com

Reference Models of Fraunhofer DZ-SIMPROLOG 647

structures that could be used, it was possible to define the two models very
quickly. The first model replaced the job shop production with island of
automation, but left the control system nearly unchanged. This resulted
in better productivity, because the islands have a certain independency for
the scheduling of the work inside the island. But coordination between the
islands was left to the central control system and continued to slow the pro
duction process. The second alternative investigated the island production
with a simplified control system. Now a pull principle between the islands
was introduced, eliminating the central control system completely. Coordi
nation was now decentralized and managed with orders exchanged directly
between the islands.

The main task turned out to be the adjustment of the buffer size, the
minimal stock in the buffer an the effective lot sizes. This process was again
supported by the manual, that offers reliable calculation methods for the dif
ferent parameters. After these parameters had been fine-tuned, a significant
rise in productivity could be noticed, compared to the original system.

Indeed the effects demonstrated with this example depend also on the
product mix. In the given case, the production times of the different prod
ucts were close enough together to allow this type of restructuring. But the
main purpose of the example, to demonstrate the use of the reference model
manufacturing systems, was completely reached. Modelling of alternatives
was faster than before and allowed to investigate several alternatives in a
shorter period of time.

8 Vision: Simulation Component Ware and
Standards

In the past the effectiveness and efficiency of processes in many enterprises
were improved through automation and reorganization activities. But in
many cases it is possible to achieve further improvements by an integrated
design and optimization of the whole process chain. Optimizing the interfaces
among different processes and coordinating the execution of the processes
requires an integrated view on the material and information flow on one side
and the information and communication systems on the other side.

The development to a market and customer driven business leads to strong
and not easy to achieve requirements for the quality of planning and control
systems. In most cases these requirements are only achievable using the
concept of simulation. Simulation allows a dynamic view on the different
processes and their interaction and is the basis for optimization, evaluation,
and execution of plans. For simulation activities in a network of processes,
different models (reference models of DZ-SIMPROLOG, particular models
for manufacturing systems etc.) and data out of various systems (systems
for PPC, sales and distribution etc.) have to be taken into account.

The vision of DZ-SIMPROLOG is an integrated system including different

www.manaraa.com

648 Markus Rabe, Kai Mertins

fields of application

common descrlpHlon In IEM

RM RM RM ••• RM

3D
ani·
mao
lion
etc.

Figure 5: Architecture a future simulation tool box

business applications which are able to efficiently work together by using an
integration platform. Figure 5 shows the architecture of a simulation tool
box consisting of five main elements:

• Description of the fields of application using a common methodology
(IEM) ,

• Simulator dependent reference models,

• Integration platform for data exchange and synchronization in a dis
tributed simulation environment,

• Integration platform for synchronisation of different executable models,

• Add-on components for animation and evaluation of simulation results.

9 Conclusion

To meet the continuously changing market requirements, companies have to
adjust their production constantly. Simulation is an excellent method to
evaluate redesign alternatives. Unfortunately, traditional simulation studies
require a significant effort for model creation that keeps smaller and medium
sized companies from using this technology. Through the usage of reference
models the expenses of simulation projects can be reduced.

The reference model manufacturing systems consists of a set of general
structures that can be used in specific simulation studies to create models
more effectively. The modeller is guided by a modeling manual from the
creation of the initial rough model, built from predefined structures, through
the adjustment of parameters to the evaluation of the model. The clear

www.manaraa.com

Reference Models of Fraunhofer DZ-SIMPROLOG 649

distinction of physical aspects of the system and its control leads to eas
ier experiments with control strategies and allows for more alternatives to
be investigated. The transparency of the interrelations between technology,
organization and production control guarantees reliable decision-making.

References

[MJR94] Mertins, K., Jochem, R., Rabe, M., Factory Planning Using Integrated
Information and Material Flow Simulation, in: Proceedings of the Eu
ropean Simulation Symposium, Istanbul (Turkey), 1994, 92-96

[MRK95] Mertins, K., Rabe, M., Konner, S., Reference Models for Simulation
in the Plannung of Factories, IMACS Symposium on Systems Analysis
and Simulation, Berlin, 1995, 655-658

[MRF96] Mertins, K., Rabe, M., Friedland, R., Referenzmodell Fertigungssys
teme - Effiziente Simulation bei groBerem Nutzen, 10. Symposium Si
mulationstechnik, Dresden, 1996, 95-100

[MRM097] Mertins, K., Rabe, M., Miiller, W., Ohle, F., Reference Model Man
ufacturing Systems: A new Approach for more Efficient Simula
tion Studies, 14th International Conference on Production Research
(ICPR), Osaka (Japan), August 4-8, 1997, Vol. 1, 254-257

[MRM97] Mertins, K., Rabe, M., Miiller, W., Reference Models for Process Ori
ented Manufacturing System Modelling, 32nd International MATA
DOR Conference, Manchester, Juli 1997, 157-162

[Rab94] Rabe, M., Simulation of Order Processing, in: Proceedings for the
Dedicated Conference on Lean/Agile Manufacturing in the Automo
tive Industries (27th ISATA - International Symposium on Automotive
Technology and Automation), Aachen (Germany), 1994, 479-486

www.manaraa.com

CHAPTER 30

Configuring Business
Application Systems

Stefan Meinhardt, Karl Popp

In the past few years business process modeling has become established practice in
many enterprises. One area where it is used is in implementing standard business
application systems. In such projects, reference models provide valuable support to
enterprises when they are creating the business process models that describe their
enterprise. Reference business process models give an overview of the business pro
cesses that are supported by the application system, and in doing so they help
select the processes to be applied in an enterprise. However, it has been much more
difficult to make use of business process models when you were setting parameters
that change the behaviour of a standard business application system accordingly.
It is described how the architecture of reference business process models can be
extended to support the setting of parameters in a standard business application
system. We then provide a practical illustration of the configuration of such a ref
erence model and the setting of parameters in the system concerned.

1 Introduction

Business process models are of great benefit in the implementation of stan
dard business application systems because they explain the functionality of
the system, and they are of significant benefit in the creation of models of
the enterprise processes to be supported [KM96, Mei95, KP96aJ. The scope
for using business process models in the configuration of (that is, the setting
of parameters in) application systems has so far been very limited. The main
reasons for this limitation were the media gap between modeling tool and
application system, and the failure to link the actual content of models to
the parameters that can be set in the application system. The media gap
at least can be bridged by providing open interfaces and integrating naviga
tion and modeling tools in standard business application systems. At SAP
much work has been done on linking business process models to the param
eters that can be set in the R/3 System. That work has been published

www.manaraa.com

652 Stefan Meinhardt, Karl Popp

[KMZ94, KP96b, KS96b, Sch96j. This contribution presents an overall con
ceptual design of an integrated configuration for the business process model
and the application system, and illustrates it with a practical example.

2 Business Process Configuration

In response to the requirement that, using the R/3 Reference Model and busi
ness criteria, it should be possible to select and analyze R/3 System business
processes and subsequently to configure the R/3 System, SAP defined the el
ements needed and a simple portrayal [KS96bj, and determined the following
goals:

• to provide a classification of business process models for particular sec
tors and efficiently present subsets of the overall R/3 Reference Model
for specific industries

• to manage variant-richness and improve maintenance of business pro
cess models by modularizing the business process models

• to simplify finding, and restrict the variant-richness of, business process
models

• to provide mechanisms for linking the business process models to the
parameters used in customization of standard application systems.

The elements required to achieve these goals are described in Section 2 and
illustrated using a practical case in Section 3.

2.1 Method of Portraying Business Processes as
Models

Business process models are made using the event-driven process chain
("EPC") method developed by SAP in the period 1990 to 1992. Business
processes are shown simply and clearly [KNS92, KP96aj. The elements that
make 'up an EPC are events, functions, information objects, organization
units, relationships between elements (for example, control flows), and logi
cal operators (see Figure 1). An EPC describes the flow of events and tasks
(functions) through time and in a logical business sequence. The events to
trigger and to complete a chain are defined, and process paths are added
to them pointing to any predecessor and successor processes. There is an
extensive literature on this method [KNS92, KS96a, KP96aj.

2.2 Structure of Business Process Models

The EPC method links tasks to elements of organizational structures, and so
it is the cornerstone of business process engineering [Zen94, KM94, PM94,

www.manaraa.com

Configuring Business Application Systems 653

Name Symbol DefiDitioD Example

Event M event descrlbes the occurrence Of a Ordel received
slate that causes a certain effect.

Funcflon CJ A funcflon deScribes the transformation Check order
from an IntHal slate 10 a largel statE!.

Organizational unit Q Organlzaflonal units are used 10 deScribe Sales organization
the structure of an enterprise.
In the R/3 System, the organlzaflonal unit
Is a system organlzaflonal unn.

Infornnaflon object Q Information objects represent, Sales order
or model, Objects In the real world Rerun of check
(e.g. business objects, enflfles).

Process path 0]he process path shows the connecflon DeIIvety processing
leading from one process 10 another

Logical operator @ee logical operators deScribe the effects of ")(00', "AND', 'OR'
logically Inking together events and tuncflons.

Control flow , A contrOl flow indicates the logical or chronological , .. dependencies be1ween events and funcflons/processes .

Inlormaflon and ~ lhese flows indicate whether a funcflon
material flows t-- wrfIes, reads or makes changes.

Allocation of resources This describes which organlzaflonal unn, employee
and organizaflonal units -- or resource performs a given funcflon.

Figure 1: Elements of Event-Driven Process Chains (EPCs)

Pop95bj, For example, when one is analyzing a business process, it is of
benefit to see the degree to which a task is automated and the form in which
work flows from one task to the next. Another important element of EPCs is
the organizational assignment of tasks to owners (organization units), Three
kinds of organization units are relevant to implementing a standard applica
tion system. The logical organization in the R/3 Systems is described using
system organization units (for example, company codes and controlling ar
eas), as well as the enterprise structure that defines departments, positions
or roles with their interrelationships [WFBDE95], and the software infras
tructure that defines the R/3 Systems working together in an enterprise.
These are basic conditions for creating processes that cross organizational
boundaries between departments, R/3 Systems or system organization units
[MP96j, It is possible to describe distributed systems in terms of the dis
tribution of business processes among departments or among different R/3
Systems [GKG96j.

Two hierarchically organized levels of business process models are shown
as EPCs in the R/3 Reference Model. At the detailed level there are com
ponent business processes. "Customer order processing", "Delivery process
ing", and "Invoice processing" are examples. Ways in which component
processes can be combined are indicated as process paths. At the aggre
gated level, component processes are portrayed as functions linked together

www.manaraa.com

654 Stefan Meinhardt, Karl Popp

~' 00gIrI!IlII00

""""'" U'iI
,--------- -~---------- ,

Figure 2: Basic structure of an Event-Driven Process Chain (EPC) with example

in EPCs called scenario processes. Figure 3 shows the "Purchase order pro
cessing" component process as a part of the "Procurement handling" scenario
process. Scenario processes serve as overview diagrams for combinations of
component processes in particular business contexts, such as "Direct sale to
industrial consumer" or "Project handling for plant engineering and construc
tion". Scenario processes are themselves combinable: possible combinations
are indicated in models as process paths.

Scenario Process 'Procurement Handling"

!
j

-e---.
~ :
(~J

.... -

Component Process ·Purchase Order Processing'

®-.-.-
r--O, - ----, ! --~9 i
, , '

(-~.) ',.
~-.@---~

! ~ L;:J i

~
, L;J

:--·-··· ·e --:----1

~
L.::.J ,

j

Figure 3: Scenario Processes and Component Processes

The possible combinations that are technically feasible and make busi-

www.manaraa.com

Configuring Business Application Systems 655

ness sense are described in the R/3 Reference Model. The eight hundred
component processes in the R/3 Reference Model are widely combinable. In
addition, a collection of component process combinations specific to particu
lar industries has been prepared, to help enterprises find relevant parts of the
R/3 Reference Model easily. Two views of event-driven process chains are
useful: looking out and looking in. Looking out you see the possible combi
nations of the component processes and scenario processes shown as process
paths. Looking in you see the scope for varying a component process or
scenario processes, for example as optional elements. Although the business
process models are arranged in two levels, scenario processes and component
processes, it can be difficult for an enterprise to identify the relevant scenario
processes and component processes. This is because of the large number of
business process models and their variants and because differences occur be
tween corporate and business process model terminology. Such difficulties
are typical of large collections of modules [BFP95]., This is why an addi
tional classification structure is used to find the scenario processes needed in
a particular sector. The purpose is to create meaningful subsets of the whole
content and variant complexity of the business process model. The classifi
cation system comprises two levels: the economic sectors and a number of
enterprise process areas to which in turn a number of scenario processes are
assigned [KS96b]. An economic sector is a factor in the economy. "Man
ufacturing", "Retail", and "Services" are examples of economic sectors. A
number of enterprise process areas, and the scenario processes in them, are
assigned to an economic sector. This shows which parts of the R/3 Reference
Model are useful in any economic sector. An enterprise process area is a
business structure displaying elements of an enterprise that are homogeneous
in process-oriented terms. It has defined task areas, which are described in
a set of scenario processes. "Product Development, and Marketing", "Sales
and Distribution Logistics" and "Procurement" are"e:xamples of enterprise
process areas in the "Manufacturing" econo~ic sector.'

Starting from the economic sector in which it is positioned, an enterprise
can draw on a manageable set of enterprise process areas and scenario pro
cesses. From this set an enterprise can select the required scenario processes
and component processes and thus arrive at a specification of its require
ments for subsequent use in setting R/3 System parameters. The procedure
is described in Section 3 using a practical example.

2.3 Variants of Business Process Models

Business processes can have many variants [Pop95a, Pop96, Rau96]. The
"Project handling" scenario process is an example: It has variants for han
dling make-to-order, investment, and plant engineering/construction pro
jects. These scenario processes may be combinable with variants of other
scenario processes for, say, revenue and cost controlling. This simple example
shows that a reference business process model must also incorporate mech-

www.manaraa.com

656 Stefan Meinhardt, Karl Popp

Economic Sector: Manufacturing Retail

I

Enterprise Process Area: Sales and Distribution Procurement
Logistics

I

Scenario Process: Sale from Stock Sale from Stock
to industrial Customer to Consumer

Service Industries

Figure 4: Economic Sectors and Enterprise Process Areas as a classification struc
ture

anisms for managing variant-richness of business processes. Variant-richness
of business processes can also arise as the result of differences between enter
prises in the organizational ownership or automation of tasks. These variants
are not under consideration here. One way of managing variant-richness that
is often used is a system of levels. This is used in the R/3 Reference Model,
where variants may be created at the scenario process and at the component
process levels. The following business process model variants are permitted
in the R/3 Reference Model:

• Variants of scenario processes: Looking out, one can produce variants
according to the ways scenario processes are allowed to be combined
and according to the different flows through a scenario process .

• Variants of component processes:

- Looking out, variants of component processes reflect the combina
tions of component processes in different scenario processes.

- Looking in on component processes there may be both optional
functions and function variants (that is, a choice of one or more
different practical solutions for particular functions).

The number of variants seen by customers can be considerably reduced by
the selection of economic sectors and enterprise process areas. It is useful if
the number of scenario process and component process variants presented in
the context of anyone enterprise process area in an economic sector is not
too large. From the developer's perspective, variants of a given component
process or function can be created and managed centrally. This improves re
usability and maintainability of the models [Pop95a]. The advantage of the
variant concept in the R/3 Reference Model is that the context information
provided by the economic sectors and enterprise process areas substantially

www.manaraa.com

Configuring Business Application Systems 657

reduces the number of scenario process variants to be considered. Also, only
consistent business processes (that is, ones that are useful in business terms
and can be executed in the application system) are available to be selected.
This makes for efficient selection of models from an extensive reference busi
ness process model.

2.4 Linking the Business Process Model to the
Application System

The goal is to select a set of required application system components and
set their parameters in the system, by restricting the business variability of
process models. The following elements are available to be used for link
ing parameters in the application system with the constituent parts of the
business process models:

• Function variants are differing solutions in the R/3 System for functions
in component processes. The "Check material availability" function,
with function variants for checking availability against stock, against
planned stock and against subassembly planning, is an example [KS96aj .

• Parameter profiles are ready-to-use sets of parameter values that reflect
useful application system settings in a given business context.

The link is made by creating parameter profiles for the function variants in
the business process model. Such profiles substantially reduce the number
of parameters that have to be set manually in the course of implementation.
Parameter profiles make it easier to find and decide on correct and consis
tent parameter settings. The practical example that follows illustrates the
procedure for configuring business processes, and the resulting benefits.

3 Example: Configuring Business Processes

In the course of working on an R/3 implementation project, an enterprise
will configure its business processes in levels, from the top down, i. e. from
high-level to detailed level [MS96j. The first task is to compare the business
areas in the enterprise with the enterprise process areas in the R/3 Reference
Model, and so identify the core business processes in the enterprise and the
business processes that support them. The main purpose of this is for the R/3
implementation project team to see clearly the business-process-dependent
and functional requirements of the enterprise in terms of how they will utilize
the R/3 System. The second level is to present possible outline solutions
for the core business processes in the R/3 System using the R/3 Reference
Model's prepared scenario processes. Then the defined requirements can be
compared with the scenario processes, and models configured to reflect the
particular needs of the enterprise. The results delivered by this process-based

www.manaraa.com

658 Stefan Meinhardt, Karl Popp

model configuration work effectively to determine the scope and content of
the subsequent parameter setting activities that make it possible to run the
operative processes in the R/3 System. The following sections demonstrate
the main business process configuration and system parameter setting tasks
by describing an example of how this work is done.

3.1 Identification and Selection of Scenario Processes

The example discussed is the core sales logistics business process in an enter
prise that only sells goods from stock. The goods are serial products made or
procured to a sales plan for ex-warehouse delivery to customers. There is thus
no direct link between sales orders and procurement. The business process
envisions handling sales inquiIies and orders entirely within the framework
of sales logistics without having to raise design or work order documents.
The material requirements planning element addresses only the picking and
shipping of finished goods. The emphasis is on shipping product on time by
the best route. The product might be, for example:

• white goods (washing machines, refrigerators, coffee machines)

• brown goods (TVs, stereos)

• industrial semifinished products (polymers, tensides)

• industrial electronics products (printed circuit boards)

• components and replacement parts (tires, dynamos)

• groceries.

The R/3 Reference Model includes a group of alternative scenario processes
showing implementations of "direct sales" in the R/3 System. The direct
sales scenario processes show the handling of sales orders with and without
reference to quotations or outline agreements, and of delivery, shipping, and
billing. They also contain processes for handling returns and complaints,
post-supply credits such as rebates and commissions, and returnables and
empties. The various scenario processes are distinguished by customer types
(industrials, consumers, retailers). This example assumes the enterprise sells
only to consumers, so we need not consider scenarios for direct sales to in
dustrials and retailers in the project. They appear in the set of all scenario
processes in the R/3 Reference Model, but we can discard (deselect) them
(Selection and Reduction: Levell).

3.2 Selection and Reduction of Processes

The next level is to analyze the selected scenario process in detail, and to
configure it for the particular purposes of the enterprise. This means that

www.manaraa.com

Configuring Business Application Systems 659

~COmpl8int>-

Figure 5: "Direct Sale to Consumer" scenario process (shown as a value chain)

for different forms of direct sales some processes (or parts of processes) can
be reduced to a minimum or dispensed with altogether. For example, there
may be a "Cash Sales" variant that would not normally include inquiries,
quotations, or shipping in its flow, because the customer pays for the goods
at the register and takes them away with her. The EPC model of a scenario
process shows (through the respective control flows or explicit identification
of optional processes) how particular processes are selected or deselected.
These mechanisms ensure that it is only possible to make selection decisions
that are technically feasible in the R/3 System. (Selection and Reduction:
Level 2). Special attention should be paid to process paths, which show
the integrating links between the scenario process under consideration and
other scenario processes. For example, in the "Direct Sale to Consumer"
scenario process, the result of the "Customer Order Processing" process is
a completing event, "Sales Requirements are determined", that is linked by
a process path to the "Non-Allocated Production" scenario process (in this
case to "Repetitive Manufacturing" in the production logistics area).

Once the "Direct Sale to Consumer" scenario process has been adapted to
meet the requirements of the enterprise, the next task is to analyze the indi
vidual component processes with respect to the functional options they offer.
Nonrequired functions are deselected, and where functions have alternative
function variants, the ones that are needed in the context of the "Direct Sale
to Consumer" scenario process are selected. Processes, with their events and
functions, are also shown as EPCs, so the same mechanisms are used to se
lect and deselect events and functions as for processes in scenario processes:
alternative control flows and the explicit identification of "optional" func
tions (Selection and Reduction: Level 3). The following sections analyze the
"Customer Order Processing" process more closely. The central functions
in the processing of a customer order include determining who placed the
order and what items are ordered, pricing, checking availability, determining
a date for shipment and a route, and credit control: These are the functions
to be carried out in the example. However, the functions to determine article

www.manaraa.com

660 Stefan Meinhardt, Karl Popp

§j
:-········e ·········;

r::!::::\ ~
~ ~

Figure 6: "Direct Sale to Consumer" scenario process

or item variants, batches or serial numbers are not needed for the simple
made-to-stock product, so they can be deselected, as can their associated
events.

For some of the functions selected, for example the order item availability
check and credit control, one can see alternative function variants to identify
and select as appropriate for the context of the process under consideration,
which is "Customer Order Processing", and variants of the scenario pro
cess, which is "Direct Sale to Consumer" (Selection and Reduction: LeveI4).
An availability check can look at the current stock position for an item, or
at planned inward (outstanding purchase order) and outward (outstanding
sales order) stock movements. Credit control can be carried out in the R/3
System either in static or dynamic form. These different ways of carrying
out functions are expressed as function variants at the process model level,
and correspond to parameter profiles at the implementation leveL It will be
possible to use such profiles and their specific standard parameter settings
to greatly reduce the complexity and the amount of work involved in set
ting system parameters. At the same time, this method achieves automated

www.manaraa.com

Configuring Business Application Systems

8
(~-)

Function variants :
- eneCK against stOCk
- eneck against planne<!
Inward and outward stock move men

661

Figure 1: "Customer Order Processing" process (detail), showing function vari
ants

quality assurance in parameter-setting, avoiding consistency errors between
interdependent manually maintained values.

4 Setting the System Parameters

Identification, selection and reduction of model elements (scenario processes,
processes, functions, and function variants) cause parameter profiles available
in the R/3 System to be activated, as seen in Section 3. Only a subset of the
parameters can be set automatically. In particular, the parameters that can
be set using profiles are those that correspond to different procedures for car
rying out functions. The enterprise still has to set the remaining parameters,
which are chiefly descriptive, manually, so they reflect the business. However,
you can see the whole set of parameters to be set, because the parameters are
assigned process model elements. So the parameter values needed to carry
out the enterprise business process in the R/3 System can be determined
from the business process model.

4.1 Using Profiles to Set Parameters

In this section, the "Credit Control" function is used to illustrate in detail
how profiles are used to set system parameters. The "Credit Control" func-

www.manaraa.com

662 Stefan Meinhardt, Karl Popp

tion can be carried out in various processes in the context of the "Direct Sale
to Consumer" scenario process, for example in "Customer Order Processing" ,
"Delivery Processing", and "Goods Issue Handling for Stock Material". You
can have the function carried out differently in different processes. Dynamic
credit control covering open order values is required in "Customer Order Pro
cessing", but in "Delivery Handling", and "Goods Issue Handling for Stock
Material" static credit control covering open invoiced values is adequate.

Process

+ cont~ins
Function

+ possesses

Function variant

+ corresponds

Profile

Figure 8: "Credit Control" function with function variants and their parameter
profiles

There are six preconfigured parameter profiles in the R/3 System to set
parameters that correspond to these various function variants. As they make
their decisions in the process model, a part-automated process helps project
team members set consistent system parameter values

A parameter profile is fundamentally a set of any number of parameters
(values for table fields). All fields that characterize a function variant have
appropriate values and are grouped in a profile. Fields that are not relevant
for the profile in question are hidden. Dynamically reduced parameter profiles
are presented to the implementation team member as regular Customizing
views. Fields are "fixed" in system parameter profiles if they are fundamental
to the function variant and should not be maintained by the team member.
This means there is no danger that any inconsistency between selections made
at the process model level are not carried through to the physical values in
the system. The enterprise has to verify, and if appropriate change, any
standard values for the remaining fields.

Often, selecting a function variant to activate the associated parameter
profile does not fill all the fields in the profile with standard values. In
particular, profiles often have parameters that depend on organization units
the enterprise does not define before the project. This means that at the time
the standard values in a parameter profile are verified, appropriate enterprise
organization units are assigned. There remains a set of settings that have to
be made manually.

www.manaraa.com

Configuring Business Application Systems

Profile Assigned Parameters

.. . _ riG !.III1C ·e

t1 ·11,. 11.s:11: "alll ~S
., 1111 .".Ie Ir1 ,,.I

JII' "" Ithk a-u u :a",

_ -

Figure 9: Profiles with assigned parameters in the R/3 System

•
'!1 l,

4.2 Setting the Remaining Parameters Manually

663

The parameters that cannot be set using prepared profiles are set manually by
the enterprise. In future , manual settings work will be process-oriented: This
will always be done in the context of the scenario process. For example, for
the "Customer Order Processing" process in the "Direct Sale to Consumer"
scenario process, enterprise-specific parameter settings have to be made for
the "Create Order Header" function, and these parameters are presented to
the team member to be individually selected for the business case in question.

Also, the number of parameter settings to be set manually is automatically
reduced by deselecting functions, and the project team only sees and works
on the settings that are needed to configure the scenario process.

5 Conclusion

This is how the overall conceptual design achieves the goals set out at the
beginning of this contribution:

• The structured classification of business process models by economic
sector and enterprise process area leads to efficient selection of relevant
scenario processes.

• An appropriate variant concept provides control over variant-richness,
and improves maintenance of business process models by modularizing
them.

www.manaraa.com

664 Stefan Meinhardt, Karl Popp

CD Belonging Table Fields

..... ... ,.,.... r •• w"" ..,. """
"" .. 0001 ..,. riwd

cnO(... ..,.
C"WOq . , ..,.
c.-

__ I
"" .. -.. - _I -
Of't'"

__ I -., .. ,

CMPAA

CAAlOR

reduced area compared to the
standard- 'Custon'izlnIl'Vlew

CD Profile

1'7a~s orners~l'1
sialic -l)

® D}namicallyreduced Customizing-\I1ew

.. "..,. _",.",..
", •• _IMI ,

r

Figure 10: Parameter profile with dynamically reduced view

• The classification structure makes it easier to identify the relevant busi
ness process models. Working through layers of context by selecting
the economic sector, enterprise process areas and scenario processes
progressively reduces the number of variants .

• Using profiles to set R/3 System parameters can considerably reduce
the amount of time spent on setting them. At the same time, potential
errors can be avoided by defining consistent parameter profiles.

This contribution demonstrated that the envisioned integration of business
process model configuration with the system parameter settings level con
tributes crucially to the customization of enterprise-neutral R/3 System func
tionality to reflect enterprise specifics. This solution also reduces the amount
of work involved in configuring an R/3 System and provides a high level of

www.manaraa.com

Configuring Business Application Systems 665

Function: C ustomizin g Activ ities

Create - Assigning Sales Area to Sales Document Types
Order Header

With this activity Order Types are assigned to the existing Enterprise Sales Areas

Figure 11: Descriptive customizing activities: example

quality assurance.

References

[BFP95]

[GKG96]

[KNS92]

[KS96a]

[KS96b]

[KM94]

[KM96]

[KMZ94]

[KP96a]

[KP96b]

Bellinzona, R., Fugini, M. G., Pernici, B., Reusing Specifications in
00 Applications, IEEE Software, March 1995, 65-75

Gehring, K., Krauss, S., Gruler, S., Strategies for implementing dis
tributed application systems, in: SAP AG (ed.), SAP info, Focus
"Continuous Business Engineering", 1996, 56-58

Keller, G., Niittgens, M., Scheer, A.-W., Semantische ProzeBmo
dellierung auf der Basis "Ereignisgesteuerter ProzeBketten (EPK)",
in: A.-W. Scheer (ed.), Veroffentlichungen des Instituts fUr
Wirtschaftsinformatik, No. 89, Saarbriicken, 1992

Keller, G., Schroder, G., GeschiiftsprozeBmodelle: Vergangenheit,
Gegenwart, Zukunft, Management and Computer, No.2, 1996, 77-
90

Keller, G., Schroder, G., Konfiguration betriebswirtschaftlicher An
wendungssysteme, in: A.-W. Scheer (ed.), 17. Saarbriicker Arbeits
tagung Rechnungswesen und EDV, Heidelberg, 1996, 365-388

Keller, G., Meinhardt, S., Business Process Reengineering auf
Basis des SAP R/3-Referenzmodells, in: Schriften zur Un
ternehmensfiihrung, Band 53, Wiesbaden 1994, 35-62

Keller, G., Meinhardt, S., DV-gestiitzte Beratung bei der SAP Soft
wareeinfiihrung, Handbuch der modernen Datenverarbeitung - The
orie and Praxis der Wirtschaftsinformatik, No. 175, 1996,74-88

Keller, G., Meinhardt, S., Zencke, P., Business Process Reengineer
ing im SAP Umfeld, Management & Computer, 2. Jg., No.4, 1994,
293-305

Keller, G., Popp, K., Referenzmodelle fiir Geschiiftsprozesse, HMD -
Theorie and Praxis der Wirtschaftsinformatik, No. 187, 1996, 95-117

Keller G., Popp K., New era in software configuration, in: SAP AG

www.manaraa.com

666

[Mei95]

[MP96]

[MS96]

[PM94]

[Pop95a]

[Pop95b]

[Pop96]

[Rau96]

[Sch96]

[WFBDE95]

[Zen94]

Stefan Meinhardt, Karl Popp

(ed.), SAP info, Focus "Continuous Business Engineering", 1996,
12-17

Meinhardt, S., Geschiiftsprozefiorientierte Einfiihrung von Standard
Software am Beispiel des SAP Systems R/3, Wirtschaftsinformatik
37 (1995) 5, 487-499

Meinhardt, S., Popp, K, Prozef3orientierte Einfiihrung von R/3, BIT
Spezial Systems 1996, 1996, 46-49

Meinhardt, S., Sanger, F., R/3-Vorgehensmodell als methodischer
Rahmen fUr einen erfolgreichen Projektverlauf, Handbuch der ma
dernen Datenverarbeitung - Theorie und Praxis der Wirtschaftsin
formatik 33 (1996), 193

Popp, K, Meinhardt, S., Business Process Reengineering unter
Verwendung des R/3-Referenzmodells, in: Informationssystem Ar
chitekturen, Rundbrief des GI-Fachausschusses 5.2, No.2, 1994,
19-21

Popp, K, Aspekte der fachlichen Wiederverwendung in Geschiifts
prozef3modellen, Informationssystem-Architekturen, No.1, 1995,
32-41

Popp, K, Business Process Reengineering using the R/3 Reference
Model, in: SAP (ed.), SAP info, Focus "Business Reengineering",
1995,3-4

Popp, K., Vergleich von Methoden zur GeschiiftsprozeBmodellierung
in bezug aufWiederverwendbarkeit - Uberblick, Informationssystem
Architekturen, No.1, 1996, 23-25

Raue, H., Wiederverwendbare betriebliche Anwendungssysteme,
Wiesbaden, 1996

Schroder, G., Industry-specific business process modeling, in: SAP
AG (ed.), SAP info, Focus "Continuous Business Engineering", 1996,
18-21

Wachter, H., Fritz, F. J., Berthold, A., Drittler, B., Eckert, H., Ger
stner, R., Gatzinger, R., Krane, R., Schaeff, A., Schlagel, C., We
ber, R., Modellierung and Ausfiihrung flexibler Geschiiftsprozesse
mit SAP Business Workflow 3.0(r), in: Proceedings der GI/SI
Jahrestagung, Heidelberg, 1995

Zencke, P., Software-Unterstiitzung im Business Process Reengineer
ing, Schriften zur Unternehmensfiihrung, Band 53, Wiesbaden, 1994

www.manaraa.com

CHAPTER 31

The SIZ Banking Data Model

Daniela Krahl, Hans-Bernd Kittlaus

The German Savings Banks Organization has established a large enterprise-wide
data model as a standard for heterogeneous IT organizations. The basic elements,
the architecture of the data model and practical experiences are described which
show significant benefits for the organization on several levels.

1 Introd uction

In order to understand the purpose and objectives of the SIZ Banking Data
Model, one must first understand the structure of the German Savings Banks
Organization (GSBO) and the role of SIZ within this organization. This will
be explained in this Section before we describe the SIZ Banking Data Model
and its development in Section 2. Practical experience with the data model
is detailed in Section 3, before we finish with an outlook and conclusion.

1.1 SIZ and the Savings Banks Organization

The GSBO consists of more than 600 savings banks, 13 state banks and a
number of associated partners. Each of the savings banks is a legally in
dependent company that is owned by the regional authorities (with a few
exceptions). The savings banks have formed associations on a regional level
and on the national level. The national association is the DSGV (Deutscher
Sparkassen- und Giroverband). The state banks were founded on the regional
level, originally with the objective to manage the financial transactions be
tween the savings banks and other banks, but today they operate as wholesale
banks. The savings banks are complete retail banks (in contrast to savings
banks in the US).

In the world-wide rankings for the finance industry, the GSBO is usually
not listed, since it is not one corporation, but an association of banks. How
ever, if the accumulated total balance sheet of all organizations that are part

www.manaraa.com

668 Daniela Krahl, Hans-Bernd Kittlaus

of the GSBO is compared to the industry rankings, the GSBO ranks as the
biggest banking organization in the world. In Germany, it has managed to
establish a very solid corporate image despite its decentralized structure.

This decentralized structure is reflected on the IT side of the organization.
Around 1970, IT centres were formed on the regional level with the objective
to provide IT support for the savings banks in their respective regions. The
state banks have their own IT departments. In total, there are more than 50
computing centres in the GSBO about half of which develop applications on
their own. This situation led to the foundation of SIZ, the computer science
centre of the GSBO, in Bonn in 1991. SIZ is an independent company that is
owned by the biggest state banks and by regional associations (in some cases
their IT centres). Its mission is to make progress in IT available and usable
for the GSBO in order to improve productivity and quality. To this end, it
is supposed to work towards more conformity and synergy in the IT area, in
particular towards the exchange of applications between the IT centres.

SIZ focuses on setting standards for the GSBO in terms of architecture,
methodology and products, providing consulting services and co-ordinating
joint application development of IT centres (but not developing applications
on its own). This is done in close co-operation with the IT centres and the
DSGV. According to its mission, SIZ is basically covering all of IT, with
special emphasis on new technologies (systems, telecommunication, office),
security, application co-ordination and application provision. Application
provision includes methodologies and tools for application development, in
tegration and modelling.

2 The SIZ Savings Banks Data Model

A major cornerstone in the SIZ strategy for setting standards in the area of
application provision is the SIZ Banking Data Model. The ideas behind this
model, its architecture and the innovative and unusual story of its develop
ment are covered in this section.

2.1 Purpose

A major opportunity for SIZ to provide more synergy was identified early on
in the exchange of applications between IT centres. However, there were a
number of obstacles to this in terms of non-compatible system architectures,
application architectures, data base designs and even different terminologies.
It quickly became evident that an organic, evolutionary approach to these
problems was more realistic than to attempt a radical change. Therefore, SIZ
chose to focus on standards for new developments that would make the re
sulting applications more easily exchangeable, without forcing the IT centres
into major investments in adapting their legacy applications. In the area of
data, this required a focus on a common terminology and logical data model,

www.manaraa.com

The SIZ Banking Data Model 669

but not on a common physical data model since the applications would have
to run based on the existing non-compatible data bases. This led to the idea
of a reference model that would provide a common terminology plus gains
in productivity and quality without enforcing a particular implementation.
Acceptance in the IT centres could be achieved by a service-oriented ap
proach that centered on productivity and quality gains for each application
development project based on the data model (e.g. [SH92]).

The objectives of the project were to create a reference model useful for:

• application development projects with focus on

- reusability

- minimization of data redundancy

- flexible and reliable data structures

• existing database analysis and tracing projects with focus on

- stable definitions of data from an enterprise perspective

- understanding existing data bases

- migration to a maintained and stable model

• quality check of existing data models (e.g. of standard software)

Later on, the data model proved to be very useful in some other constellations,
e.g. in the context of object models and when creating a new nomenclature
for archive systems.

2.2 Development Approach

The SIZ data model was created and modified over a time of nea,rly five
years. In order to understand the development it is helpful to understand
the underlying model architecture which is described later in more detail.

The basic structure of the model is based upon IBM's Financial Services
Data Model (FSDM) philosophy and distinguishes three levels called A, B
and C (the architectural foundations are described in [Zac87] and [SZ92]).
The A level introduces the major data concepts, the so called kernel entities,
with their definitions. These kernel entities - in total nine - serve as the
major sorting and classification categories for all other banking terms or for
all other data concepts.

The B-Ievel contains all data concepts sorted in hierarchies with the A
level kernel entities on top level. Every data item may be integrated in as
much detail as necessary to hierarchies structured in super-subtype layers.

The C-Ievel contains all data concepts of the B-Ievel in the same fine
granularity. But the representation of the C-Ievel is an entity relationship
model and therefore much closer to a conceptual database design.

www.manaraa.com

670 Daniela Krahl, Hans-Bernd Kittlaus

2.2.1 Customization of FSDM's B-Level

In 1991 IBM offered a general, internationally valid banking data model,
intended as a reference model which was to be customized to the national and
company-wide rules and specialities. The IBM-Financial Services Data Model
(FSDM) was a preliminary, early engineering version and needed thorough
and comprehensive quality improvement. The FSDM proposal was made,
however, at a time when the SIZ organization was prepared and willing to
build such a model from scratch internally.

Both approaches offered different benefits and risks on the road to suc
cess. On initial consideration, the idea of buying a comprehensive banking
model from IBM seemed to be very attractive, however, the FSDM-option
entailed faith in an, as yet, incomplete system. The alternative of building
an enterprise model internally would have had the benefit of a tailor-made
model for GSBO, but lacked a unifying, central basic structure reflecting
the different (and often conflicting) needs of the GSBO members. The use
of a model developed internally by one IT-centre would have put too much
emphasis on the implemented systems view of that centre and might have
had too little regard for future structures and more open, more flexible re
quirements. Finally, after much internal discussion and consideration, it was
decided to purchase and modify IBM's FSDM.

In the first customization project from 1992 to 1993 a large effort was put
into the understanding and enrichment of the IBM-FSDM model. The mag
nitude and complexity of adapting all information items in such a comprehen
sive model led to an end result where the B-level could only be described as
half customized. The structure for the C-Ievel had not been provided by IBM
yet. But creating a new structure on the C-Ievel and filling this structure
with elements proved to be such a time-consuming exercise that it could only
be done on a sample basis, leaving the C-Ievel practically empty for further
projects. The customizing top-down process was correctly organized as a
joint effort of all IT-centres, however, the absence of specific project require
ments and the sheer magnitude of the task at hand only led to theoretical
and generic results. The results of the evaluation of this first customized
organization-wide data model were disappointing if not discouraging.

The results were too generic. The model required far more detail and a
level on which the projects could find their project view with the semantically
connected information also connected in structures and the model presenta
tion. The B-Ievel was set as a normative level for naming and data definition
alone including a structure that would support a data management view but
not a project view. As there was no clear guideline of how to transform the
B-level information via C-level to the needed details of data base design, the
members of application development projects could not be expected to see
the immediate benefits of the B-Ievel model and the not clearly characterized
C-Ievel. The IBM C-Ievel that was evaluated later when it became available,
seemed to be too generic and unspecific.

www.manaraa.com

The SIZ Banking Data Model 671

The goal, the usage and description of each level of the IBM model archi
tecture and it's C-Ievel was questioned. At this point SIZ was forced to make
a decision which would influence the development of GSBO's electronic data
systems for decades to come: whether to drop the idea of one common data
model across all IT centres or to stick with the further development of the
model. While the former option would have meant the abandoning of SIZ's
main project and writing off the substantial development costs, the latter
option would require a difficult discussion about the architecture of the data
model in order to devise an organization-wide data model which would be
truly useful.

It was clear that the key success factors for the introduction of an enter
prise-wide data model lay in sound decision-making with regard to the archi
tecture and methodological structure combined with a suitable data manage
ment organization (e.g. [Dur85, Gil85]). Workshops involving the IT-centres
and SIZ were held in order to align both technical and conceptional expecta
tions and possibilities. The creativity, flexibility and vision of the colleagues
from different backgrounds with differing practical needs led to a plan which,
while ambitious, was felt by all participants to be practical and in the best
interests of their individual IT-units.

In this plan, the idea of levels called A, B, C was maintained from the
IBM FSDM model. The details, however, had to be fine-tuned and adapted
to the requirements we found in our existing organization. It was absolutely
necessary that the new plan combined the tools, method, presentation and of
course the data items within the data structures itself in a way acceptable for
all IT-units. Today, the original IBM-FSDM model and the SIZ data model
have grown so far apart that they are hardly comparable any more.

2.2.2 Creation of a Savings Banks-Specific C-Level

The creation of a stable C-Ievel was accompanied by a long debate regarding
the purpose and role of the C-Ievel. Basically, the purpose of a reference
model in general was questioned. As the different views developed of how
the model ought to be used, the modelling techniques also evolved to suit
the objectives. Finally, the major success factor for the improvement of the
C-Ievel based on bottom-up projects was to reach an agreement on the use
of a reference model.

The C-Ievel is a large entity-relationship model (ER-model [Che76], an
excellent book is [BCN92]). The creation of the C-Ievel went through three
steps. In every step the method, the extension and intention of the ER-model
was further developed. As a result the model, called version 1.0, contained 3
organization-wide integrated levels (A, B, C) where every level was regarded
as stable enough for being used in projects running in parallel. Before this
point, we had two pre-releases.

The three development phases of the C-Ievel:

www.manaraa.com

672 Daniela Krahl, Hans-Bernd Kittlaus

1. a sample from the first customization project (free style)
In 1993, the first part of the C-Ievel was created in the partition of
securities-arrangement. Since there was no quality check against the
requirements of a dedicated project or system, the results seemed to be
reasonable, but not yet detailed enough (see Figure 1: the prelimary
version from 1993 (a)).

2. a so-called "generic" model after integrating a loan system's model
(IBM philosophy)
The data interface of a standard loan advisory system was mapped
against the B-Ievel. The missing data elements were added to the B
level or changed if necessary. The C-Ievel was created very closely along
the classification structures of the B-Ievel following the philosophy of
IBM's C-Ievel. As a result, the structures of the loan system had to be
split into the dominant classification structures which led to difficulties
in locating typical loan information in a particular loan context, espe
cially among the financial (non-IT) staff. Therefore, it was argued that
we needed domain views according to major banking concepts such as
loan, customer, address etc. A pure reference model seemed to be cryp
tic for anybody with a practical banking background. The application
/ banking driven views should be supplementary to the same C-Ievel
not an extra level requiring another encyclopaedia (see Figure 1: the
prelimary version from 1994 (b)).

3. a representative C-Ievel after the complete integration of two controlling
application models (SIZ philosophy)
The data model required more banking details. Two existing control
ling models (large ER models) had major advantages compared to data
models of other banking applications: they had been developed and
used in a large co-operation between two IT centres and already re
flected the required generality and similarity to database design (e.g.
[TL82, Dat86]).

Once again, the information requirements were mapped against the B
level and added or modified if necessary. On the C-Ievel the modelling
techniques were analyzed in detail in order to achieve the maximum
semantic expression without losing the generic character of a global
banking model. For this reason, one of the first results in this integra
tion project was a handbook of the SIZ modelling methodology [SIZ97].
This project was the first one in which we introduced an extra level for
project models. The existing controlling models were traced against the
C-Ievel. And according to the data management requirements, we built
traces from B- to C-Ievel and from model version to model version.

Nevertheless, we decided that the C-Ievel should not be simply a reference
model, rather - if required - a base for direct application development. With
this C-Ievel the SIZ data model, version 1.0, could be used in various projects.

www.manaraa.com

The SIZ Banking Data Model

2.2.3 Project Driven Enhancements through Central
Administration

673

Since completion of version 1.0, the banking model has been enriched bottom
up with the benefit feedback of various projects. We discarded the idea of
defining domain clusters on the C-Ievel along major banking concepts. We
found that it was not possible to maintain and manage consistent banking
domain models which would be compatible with the various, heterogeneous,
yet subjectively justified projects views.

Rather, we found that most of the recurring discussions in different projects
were questions of semantic principles. For example, in controlling projects
a decision about how to model management accounting is required. In the
ensuing projects after V. 1.0 we supported three more controlling projects.
In order to introduce a unifying view to these overlapping projects we needed
a strong argumentation and position to carry through the initial modelling
decisions.

We started to define so called "Leitbilder" on all levels which are broad
outlines or semantic principles which allowed the central data modelling team
to summarize the main decisions on modelling critical concepts such as ac
count or customer. These broad outlines, however, still allow enough variants
for specific database designs.

Later, we explain the idea of one "Leit bild" : the general decision about
how to model "Customer".

SIZ Dlta Model (1993, preliminary Ion)

".'C-liNIII~. ,

SIZ Data Model V. 1.0 (01.1996)

l1Otlttlbla.
arwa.u.nIH

"C"'QlllGI9II
t25O.,.III(.
110rtlldoMN ...
OIII8.C!m'Ii

d~lIwIIu"

(a)

(e)

Figure 1: Versions of the SIZ Data Model

SIZ OataModel (1~, pnllmlnary Ion)

) 1ZZ2C~W.CIII"". 301 .. _

m."lbu1H
56IIttIiIIol1ll'ips

SIZ DIll a Model V. 2.0 (06.1997)

)0 C.-.mnwpt:ll .., .. -m
,."....,MhI ..

, •• 0InIIM:. .1Mlft

(b)

www.manaraa.com

674 Daniela Krahl, Hans-Bernd Kittlaus

2.3 Architecture

2.3.1 A-Level Modelling Concepts, Kernel Entities

On the A-level there are 9 top classification concepts. They serve as a sort
ing help for all other banking terms or data elements and are equivalent to
IBM's main data concepts [Eve96]. We let the definitions go through a fine
tuning process which occasionally led to re-definition. The kernel entities are
described in Figure 2.

Involved
~ ___ Party

Condition

Business
Direction

Class ification
(account, segment,

management
accounting)

Resource

Figure 2: A-level: the kernel entities

Event

Location

2.3.2 Classification Hierarchies: the B-Level

The B-Ievel is used to identify and to select the required scope of information
for a special project. The B-Ievel could be compared to a normative language:
all banking terms are named, defined and classified by the 9 A-level kernel
entities.

The B-Ievel contains a set of concept hierarchies. Every banking business
data item may be integrated in as much detail as necessary in the concept
hierarchies structured in super-subtype layers. Method and structure of the
B-Ievel follow to a large extent the IBM philosophy.

For each kernel entity there are 3 kinds of concept hierarchies: the clas
sification hierarchy, the relationship hierarchy and the description hierarchy.

www.manaraa.com

The SIZ Banking Data Model

Entity Type: INVOLVED PARTY
:LONG NAME: Involved Party

:DEFINITION:
An Involved Party is a natural person, an organization,
an organizational unit or a group of people about which
a financial institute wants to collect information in
order to co-operate in an optimal way.

:ALIAS:
- Business Partner

:EXAMPLES:
- the natural person "Hans-Bernd K."
- the organization "Daimler Benz AG"
- the organization "Norddeutsche Landesbank"

675

- the organizational unit "Revision Department Savings"
- the group of people "Mr and Mrs Krahl"

:COUNTER EXAMPLES:
- the dog "Hugo zu Wittgenstein" with the right of

inheritance

Table 1: Definition of the kernel entity 'Involved Party'

In choosing the most suitable hierarchy for a particular data concept, the
following distinctions are helpful:

• A classification hierarchy is the appropriate hierarchy type if the data
concept is a subtype of one of the kernel entities. For example the data
concept: a bankrupt or solvent company; these are kinds of Involved
Party classified by their financial solvency.

• A relationship hierarchy is best suited if a data concept exists only in a
relationship between concepts of classification hierarchies. All sorts of
roles are concepts that exist when one data concept stands in a certain
relationship to another. Cologne is the "home city" of Daniela Krahl.
Here "home city" is a concept that exists in the relationship between
a concept of the Location classification hierarchy and a concept of the
Involved Party classification hierarchy.

• A description hierarchy is appropriate if a data concept gives a further
detail to the relevant kernel entity. For example the differentiation
between legal names and birth names can be found in the description
hierarchy of Involved Party.

www.manaraa.com

676 Daniela Krahl, Hans-Bernd Kittlaus

It is not always obvious which of the 9 kernel entities or which of the hierarchy
types is best suited for a special data item. Often, modelling proved to
be a constructive task requiring the analysis of almost equivalent modelling
alternatives before choosing the optimal solution. Only some of the modelling
decisions can be settled by methods or analytical considerations, for example,
when deciding upon the hierarchy type.

But how is a concept hierarchy constructed? The top concept is always
one of the kernel entities. When building super/subtype-layers it is helpful
to use the subtyping criteria; for example 'Involved Parties' can be classified
by their different financial solvency type, their life cycle phase or by their
tax status. By means of these criteria, called "schemes", the subtypes or
"values" are sorted. A detail of the classification hierarchy 'Involved Party'
is given in Figure 3.

CVINVOLVEO PARTY

CS IP LIFE CYCLE PHASE

Figure 3: Classification hierarchy 'Involved Party'

CV = uClasslflcation Value"

CS = " ClaSSification Scheme"

IP = " Involved Party"

A second example for the B-Ievel in Table 2 presents the definition of
Customer.

Please note that in Table 2 Customer is defined as a role or as a rela
tionship between two Involved Parties. One of the Involved Parties has an
actual or potential business connection to another Involved Party (a bank).
This idea forms one "Leitbild". There are some other ways of modelling Cus
tomer. Methods or analytical considerations are not relevant at this stage.
This definition of Customer leads to a rather flexible and open model.

The detail in Figure 4 showing Customer is taken from the relationship
hierarchy of Involved Party.

www.manaraa.com

The SIZ Banking Data Model

Customer
:LONG NAME: Customer

:DEFINITION:
A customer is defined through the relationship between two
Involved Parties in which the one Involved Party has an
actual or potential business connection with the other
Involved Party.

:ALIAS:
- Partner

:EXAMPLES:

677

- Mr Hitze is private customer of the Savings Bank Bonn
- Mr Schmidt from Bakery Schmidt is a business customer

of Hessische Landesbank

Table 2: Definition of Customer

RV= "Relationship Value"
RS = "Relationship Scheme"

Figure 4: Customer as part of the relationship hierachy Involved Party

2.3.3 Enterprise-/Organizationwide ER Model: the C-Level

The C-Ievel consists of all business data items that can be found on the B
level and that were necessary in one or more projects. The creation of the

www.manaraa.com

678 Daniela Krahl, Hans-Bernd Kittlaus

C-Ievel is strictly project driven. If no project ever needed to differentiate
between a "legal name" and a "birth name" than these data concepts would
not be transformed from the B-Ievel to the C-Ievel.

The C-Ievel is structured as a large Entity-Relationship model where only
business terms are modelled. It is a conceptual layer without any implemen
tation considerations. Especially noteworthy is the fact that the number of
entities is not reduced or limited - this may be done for a good database
design in a specific project data model.

Because we assume that most readers are familiar with Entity-Relationship
Models we do not explain the main principles: entities, attributes, relation
ships, attribute domains and domain values. However, we would like to point
out some important decisions that were established to meet the requirements
in the GSBO. Specifically, the question of how to model relationships and
attributes can be seen between two extreme positions. The one position has
the interest of expressing as much banking specific content as possible on
the ER diagrams in order to be easy to use for projects. The other posi
tion has the interest of expressing as much generality and as little specific
details as possible in order to support the central data model administration
requirements.

We started with the principle: as specific as possible and as generic as
necessary. Over time rules were settled for modelling techniques on the C
level. In Figure 5 the representation of Customer and Involved Party is
shown.

Why is the "Leitbild" Customer an orientation for further projects? With
the given definition (Being a customer is a role of an Involved Party having
an actual or a potential business connection with a financial institute) the
modelling variations are limited. The example in Figure 6 of the C-Ievel is
incompatible with this principle.

Note, that in Figure 6 a lot of redundant information is being modelled
due to an inadequate modelling decision. In this counter example you would
find almost all attributes redundant between Customer and Non-Customer
and consequently between all of their sub-types. This model would not be
acceptable due to non-conformity.

3 The SIZ Data Model in Use

3.1 SIZ Data Model Conformity

3.1.1 Definition of Conformity

The definition of conformity is a sensitive point. If the definition of model
conformity is too. restrictive, some IT -centres of the GSBO would not be
able to develop new applications which conform to the definition without
unacceptable overhead for connecting their already existing databases. If
the definition of model conformity is too loose, then there would not be any

www.manaraa.com

The SIZ Banking Data Model 679

benefit from a unified conceptual schema. So we needed to find a balanced
way between restrictions and freedom to match the actual needs.

When defining the SIZ model conformity the limited time available i~ each
project for modelling concerns was taken into account. The identification of a
project scope on the B- and C-levels, the transformations of this initial scope
to a realistic project model together with the final quality checks should be
done without long agreement processes involving people not familiar with the
project. Moreover, since most projects follow a phase-oriented process the
modelling phase requires an official approval at the end, despite the fact that,
in a later phase when specifying the functionality and the data base design,
changes of the data model are very common.

Therefore the definition of SIZ data model conformity is split into two
parts addressing two questions:

1. When does a project data model conform with the SIZ data model?

2. When does an application conform with the SIZ data model?

A project data model conforms with the SIZ data model if:

• The following basic requirements are met:

- Use of terms and definitions given by the SIZ data model

Figure 5: Customer and Involved Party on C-level

www.manaraa.com

680 Daniela Krahl, Hans-Bernd Kittlaus

EN INVOLVED
PARTY

EN NOT
CUSTOMER

EN CUSTOMER

Figure 6: Example for an inadequate modelling decision

EN POTENTIAL
CUSTOMER

EN CORPORATE
CUSTOMER

EN BUSINESS
CUSTOMER

EN PRIVATE
CUSTOMER

Use of the defined modelling techniques and co-operation with the
organization-wide data management team

Conformity with the main principles ("Leitbilder")

Project model output is in a special format (export file format
Cool:Enterprise) 1

• There is a trace or mapping between the project data model and the
C-Ievel of the SIZ-data model.

An application conforms with the SIZ data model if:

• The project data model conforms

• There is a trace or mapping between the project data model and the
physical database structures.

1Cool: Enterprise (Sterling Software) is a proven OS/2-based tool suite for model-driven
development of host-based and client/server applications. It is a complete client/server
development environment, generating source code, map definitions, graphical user interface
resources, database definitions and network protocol definitions. It is also well-known under
the former names: ADW or KEY:Enterprise.

www.manaraa.com

The SIZ Banking Data Model 681

This distinction is also important for introducing 'off-the shelf' software prod
ucts. In case of a fixed and not modifiable data model or data interface, one
can only prove how the given model is covering the reference model (SIZ
data model). Quite often, you get no insight how this given data model
corresponds to the underlying physical database.

3.1.2 Tracing

A trace documents the dependencies between different model versions or
between layers in the SIZ data model. In the latter case, normally the rela
tionship between two adjoining levels is described. But there are exceptions,
where the trace is written between the projects models and the B-Ievel. Ob
jects are identified by their unique identifiers which are artificial keys. A
typical trace would be the mapping of a project database schema to the
C-Ievel of the SIZ data model.

Tracing is an important but time-consuming activity aimed at maintain
ing a consistent data model of proven quality. Every tool support is helpful,
however, tools that are offered on the market never matched our needs ex
actly. Customization of the tools and organizational support were necessary.

The minimum of information that is required in a trace is the combination
of two object keys with some additional information to explain the source of
the tracing.

BOOOOO03
BOOO0010 aJOO0040

oQjecLname
CV INVOLVED PAR'IY

BOOOOO002 CS INVOLVED PAR'IY TYPE

BOOOOOO13 I CV ORGANIZATION
BOOOOOO13 I CV ORGANIZATION
B ..•• CV ACCESS

Figure 1: Example of a B-C-level trace

C-Ieve! objects

id_object_c
aJOOOO001
aJOOOO002

I aJOOOO023

1~~00027

I trace OmtU
I leam1-

ob'ecCnillllc
EN lNVOL VED P AR'IY
ATlNVOLVED PAR'IY 1YPE

DT ORGANIZATION
EN ORGANIZATION
EN ACCESS

Note that in Figure 7 the classification value Organization (B-Ievel) is
mapped to the entity Organization and the domain type Organization (C
level). This controlled redundancy is accepted when modelling super-/subtype
relationships.

We see a strong need for an advanced tool support. The technical envi
ronment is being improved this year by the introduction of a repository. The

www.manaraa.com

682 Daniela Krahl, Hans-Bernd Kittlaus

decision was made to use ROCHADE2 , because it offered the most flexible
meta model to support the SIZ specific layer structure.

3.2 Application Development Projects

The usefulness of the unified data model and the expected benefits varies
depending on the banking context that has to be worked through and the
need for freedom to create new structures.

We identified three project types from this respect: new development
projects, reverse engineering projects and referencing projects.

3.2.1 New Development Projects

If a project starts from scratch developing a new application, it is most helpful
to have an initial, comprehensive data model. In our experience an initial
project model can be extracted from B- and C-Ievel in very short time. The
better the specific information requirements are known at the outset, the
easier it is to identify the required elements on the B-Ievel. If the scope of
the B-Ievel is marked accordingly it is very easy to extract the counterpart
on the C-Ievel. Here the tool MI3 offers excellent tracing functionality.

This initial project model will be enriched during the modelling phase
and might be modified again after understanding the full functionality of the
supported application and creating the database design.

3.2.2 Reverse Engineering of Databases

Reverse engineering projects aim to create a logical view of an underlying
database of an already existing application. Eventually, the database may be
redesigned. As a result, the data requirement of the application is transparent
and comparable to other SIZ conforming applications.

In reverse engineering projects the SIZ data model is important to intro
duce common terms (unified in the GSBO) and to understand the banking
context of the existing database. If serious contradictions to one or more
"Leitbilder" are discovered, the drawbacks and benefits of a physical redesign
can be considered.

2Rochade (by R&O) is a enterprise-scale repository environment implemented in a
client/server architecture. It is available on all popular platforms. The Rochade repository
is designed to handle an organization's total information management need. It is easy to
use, scalable, flexible, extensible, reliable and promotes reuse ofthe models and components
defined by the meta data.

3Modelware Ml is a new type of software tool specifically designed by ModelWare to
support the Information Framework, IFW (IBM). Functions within Ml include: Navigation
of all IFW content models, full support for customizing and extending the models, ability to
define countless project views that allow users to select model items relevant to a particular
project, model management including model comparison, model merge, audit and security
functions.

www.manaraa.com

The SIZ Banking Data Model 683

3.2.3 Referencing Projects

When deploying 'off-the-self' software products it is important to understand
the data interface offered by these. Usually, only a non-modifiable data model
or data interface is given, from which one may prove how the given underlying
model is covering the reference model (SIZ data model).

This analysis may support the decision to purchase and deploy 'off-the
shelf' products. Also, such analysis will help to connect the new software to
the existing databases if the underlying database is documented with traces
to the SIZ data model.

4 Future Work

In the future, the SIZ data model will serve as a basis for several other
strategic projects. In these projects, the data model, in particular the B
level, is the appropriate starting point for different unifying approaches.

4.1 Creation of a Common Nomenclature

All financial institutes in the GSBO use nomenclatures for organizing filing
cabinets, archives or record offices. Some of them have introduced electronic
archive systems. But everywhere, the manual processes for organizing repos
itories are still regarded as necessary. For all of these processes -manual
or electronic- a structure of the records and a list of keywords is necessary.
These lists of keywords form a nomenclature which must be used when an
information item is classified in order to archive, and later when the archived
information item is being searched for. Unfortunately, there is no such single
common nomenclature in the GSBO, but several existing, quite redundant
and large nomenclatures. Moreover, none of them include definitions of the
keywords. Therefore, the data model's B-Ievel is an ideal basis for mapping
the existing nomenclatures.

4.2 Definition of a Target Application Architecture

We plan to develop an application reference model which shows all banking
business areas and their connections (e.g. [Sch95]). This requires the identifi
cation of the domains of business functions and related flow of information. A
further elaboration of such functional architecture should then be the connec
tion with business process models. Process models are developed in parallel.
Processes manipulate information that has been modelled on various levels
of the SIZ data model and associated project models. This description of a
target application architecture is useful for each IT centre individually as well
as for co-operations between IT centres especially for data and application
interchange.

www.manaraa.com

684 Daniela Krahl, Hans-Bernd Kittlaus

The SIZ data model can be used for finding the information objects which
play an important role for the connection between the business functions.
When implementing components in the new application architecture the data
model should be used.

4.3 Data Warehouse Model

Data warehouse solutions are based on a logical and a physical architecture.
The physical architecture describes the database technologies, the extraction,
replication and distribution technologies and end user tools such as On-line
Analytical Processing (OLAP) tools or Data Mining tools for different search
strategies. The logical architecture describes the end user's information re
quirements, the data warehouse/data mart data model and the references to
the original sources of the data items. Building a comprehensive data ware
house solution means at the same time introducing an enterprise-wide view
to information requirements and information management, details of which
are beyond the scope of this contribution.

The SIZ data model can be used as a base for defining the data ware
house data model because it already has an enterprise-wide view. Some of
the "Leitbilder" and kernel entities are very similar to often required dimen
sions in a data warehouse. The development of data warehouse schemata,
however, needs additional input. We already started to expand the mod
elling techniques for specific data warehouse approaches (see also [Dev97] or
[AM97]).

5 Conclusions

The experience of each project was documented and collected in the central
data model administration group. We wanted to learn from the pilot projects
in order to understand the drawbacks and project needs. The main focus was
put upon six criteria:

1. Expenditure on data modelling

2. Reuse of data structures

3. Method and project proceedings

4. Use of the "Leitbilder"

5. Tool support

6. Generating database structures

www.manaraa.com

The SIZ Banking Data Model 685

5.1 Expenditure on Data Modelling

The evaluation showed modelling with the help of the SIZ data model to be
more cost-effective than the previous modelling methods. This assessment
was especially apparent and positive when compared to estimates made before
the SIZ data model was considered. Not only the modelling itself became
more efficient, also the planning of time and of manpower resources became
more reliable due to the superior overview of the requirements achieved by
mapping the first ideas against the B-Ievel.

5.2 Reuse of Data Structures

But how suitable were the already predefined data structures and the quality
of the model description from the projects' view? The feedback from indi
vidual projects showed clearly that they were suitable. Only the first two
projects had the disadvantage of finding very little business content in the
required scope.

Actually, projects with an information requirement comparable to projects
already finished, found the reuse of data structures to be very helpful. Even
if this assessment does not sound astonishing, it is certainly surprising. Ear
lier on, the IT centres in the GSBO were convinced that their information
requirements and their data structures could not be shared with other IT
centres. And since all IT centres are independent and there is no top man
agement giving directions to everybody, only the discernment and insight to
the benefits for each of them could convince the whole organization.

5.3 Method and Project Proceedings

The evaluation of the modelling method and project work led to a positive
assessment of the entire model. The adequate support of the central data
administration group was a key success factor. The data management ,concept
was improved and today offers a good description of the project proceedings
and the co-operation with the central data administration group.

5.4 Use of the "Leitbilder"

The semantic principles, "Leitbilder", were proved to be necessary as a basis
for compatibility. The ease of application of the "Leitbilder" was dependant
on the predominant, already implemented database structures - in some cases
the application was uncomplicated where as other projects required longer
discussions. However, the overall evaluation was again positive.

5.5 Tool Support

Different modelling tools are used. The central data administration team uses
the tool Ml (IBM) in connection with Cool:Enterprise (Sterling Software).

www.manaraa.com

686 Daniela Krahl, Hans-Bernd Kittlaus

These tools can exchange encyclopaedias via a common export file format.
Ml is superior for the B-Ievel and the administration of the traces between
B- and C-Ievel. Cool:Enterprise is superior for entity relationship modelling
and multi user support. Nevertheless, some traces are maintained with MS
Access or other tools. This disadvantage will not disappear until a single
repository can be used for large traces and model versions. We have started
to extend to use of the repository Rochade, but in some projects other tools
are still in use.

The other IT centres may use tools of their own choice as long as the
export format is compatible. Here, a tool bus is very helpful. Better tool
integration is still a large field with potentials for greater synergy and faster
information exchange.

5.6 Generating Database Structures

The first pilot projects did not give feedback to physical database design. In
pilot projects databases were designed to service the actual needs, based on
the project models that conformed to the SIZ data model. But it is obvious,
that the more technical details that are included in the SIZ data model, the
more help it offers for this physical DB design. It was not our initial goal to
achieve physically unified data structures, but on a conceptual level a unified
data model. In the future, we intend to extend work towards a technical
level.

5.7 Contribution of the Model to Achieve the SIZ
Goals

Since the pilot projects gained many benefits from the data model, its use
has recently been declared mandatory for any new application development
in the IT centres. This model now represents a cornerstone in SIZ's work
towards more synergy in the IT area, in particular towards the exchange
of applications between IT centres. By itself, it is not sufficient as a base
for exchange, but it is a necessary and valuable prerequisite. Moreover, the
common terminology and structure will penetrate the whole GSBO over time
and thereby make synergy more easily achievable in far more fields than just
logical views of data structures.

References

[AM97] Anahory, S., Murray, D., Data Warehousing in the Real World,
Addison-Wesley-Longman, Harlow, England, 1997

[BCN92] Batini, C., Ceri, S., Navathe, S. B., Database Design, An Entity
Relationship-Approach, Redwood City, 1992

www.manaraa.com

[Che76]

[Dat86]

[Dev97]

[Dur85]

[Eve96]

[Gil85]

[SIZ97]

[SH92]

[Sch95]

[SZ92]

[TL82]

[Zac87]

The SIZ Banking Data Model 687

Chen, P. P., The Entity-Relationship Model - Towards a Unified View
of Data, ACM Transactions on Database Systems, vol. 1, no. 1, 1976,
9-36

Date, C. J., An Introduction to Database Systems, vol. 1, Addison
Wesley-Longman, Reading, Massachusetts, 1986

Devlin, B., Data Warehouse - from Architecture to Implementation,
Addison-Wesley-Longman, Reading, Massachusetts, 1997

Durell, W., Data Administration - A Practical Guide to Successful Data
Management, New York, 1985

Everden, R., The Information Framework, IBM Systems Journal, vol.
35, no.l, 1996, 37-68

Gilleson, M. L., Trends in Data Administration, MIS Quarterly, vol 9,
no. 4, 1985, 317-325

SIZ, Modelling Handbook - Modellierungshandbuch SIZ, Bonn, in Ger
man, 1997

Scheer, A.-W., Hars, A., Extending data Modeling to Cover the Whole
Enterprise, CACM, vol. 35, no.9, 1992, 166-172

Schmalzl, J., Architekturmodelle zur Planung der Informationsverar
beitung von Kreditinstituten, Heidelberg, 1995

Sowa, J. F., Zachman, J. A., Extending and Formalizing the framework
for information systems architecture, IBM Systems Journal, vol. 31, no.
3, 1992, 590-616

Tsichritzis, D., Lochovsky, F., Data Models, Prentice Hall, Englewood
Cliffs, 1982

Zachman, J. A., A Framework for Information System Architecture,
IBM Systems Journal, vol. 26, no. 3, 1987, 276-292

www.manaraa.com

CHAPTER 32

ODP and OMA Reference
Models

Andy Bond, Keith Duddy, Kerry Raymond

The Reference Model of Open Distributed Processing (RM-ODP) was a joint effort
by the international standards bodies ISO and ITU-T to develop a generic archi
tecture for the standardisation of open distributed processing (ODP). The model
describes a framework within which support of distribution, interworking, interop
erability and portability can be integrated. The Object Management Architecture
(OMA) was developed by the Object Management Group (OMG) as a specific ar
chitecture based on the generic principles and structures of RM-ODP. The OMA
provides a framework for an integrated suite of standards for object-oriented dis
tributed computing.

1 Introduction

Advances in computer networking have allowed computer systems across the
world to be interconnected. Despite this, heterogeneity in interaction models
prevents interworking between systems. Open distributed processing (ODP)
describes systems that support heterogeneous distributed processing both
within and between organizations through the use of a common interaction
model.

ISO and ITU-T (formerly CCITT) have developed a Reference Model of
Open Distributed Processing (RM-ODP) to provide a coordinating frame
work for the standardisation of ODP by creating an architecture which sup
ports distribution, interworking, interoperability and portability.

The Object Management Group (OMG) has developed an Object Man
agement Architecture (OMA) [So195] as a basis for their members to specify
a distributed object computing framework which can be independently im
plemented by any software company. The basic communications mechanism,
CORBA, has been stable for several years, and is implemented by dozens of
different products.

www.manaraa.com

690 Andy Bond, Keith Duddy, Kerry Raymond

2 Open Distributed Processing

2.1 The Goals and Deliverables of RM-ODP

RM-ODP aims to achieve:

• portability of applications across heterogeneous platforms

• interworking between ODP systems, i.e. meaningful exchange of infor
mation and convenient use of functionality throughout the distributed
system

• distribution transparency, i.e. hide the consequences of distribution
from both the applications programmer and user.

RM-ODP provides a "big picture" that organises the pieces of an ODP system
into a coherent whole. It does not try to standardise the components of the
system nor to unnecessarily influence the choice of technology.

There are many challenges in developing a reference model. RM-ODP
must be adequate to describe most "reasonable" distributed systems avail
able both today and in the future, so RM-ODP is abstract, but not vague.
RM-ODP carefully describes its components without prescribing an imple
mentation.

2.2 Structure of RM-ODP

The RM-ODP standard is known as both ISO International Standard 10746
and ITU-T X.900 Series of Recommendations and consists of four parts:

• Part 1: Overview (ISO 10746-1/ITU-T X.901)[RMODP-1]

• Part 2: Foundations (ISO 10746-2/ITU-T X.902)[RMODP-2]

• Part 3: Architecture (ISO 10746-3/ITU-T X.903)[RMODP-3]

• Part 4: Architectural Semantics (ISO 10746-4/ITU-T X.904)[RMODP-4]

Part 1 contains a motivational overview of ODP and explains the key con
cepts of the RM-ODP architecture. Part 2 gives precise definitions of the
concepts required to specify distributed processing systems. Part 3 prescribes
a framework of concepts, structures, rules, and functions required for open
distributed processing. Part 4 describes how the modelling concepts of Part
2 can be represented in a number of formal description techniques.

This section focuses on the architecture described in Part 3.

www.manaraa.com

ODP and OMA Reference Models 691

2.3 Viewpoints

Part 3 of RM-ODP prescribes a framework using viewpoints from which to
abstract or view ODP systems. A set of concepts, structures, and rules is
given for each of the viewpoints, providing a "language" for specifying ODP
systems in that viewpoint.

RM-ODP defines the following five viewpoints:

• Enterprise Viewpoint (purpose, scope and policies)

• Information Viewpoint (semantics of information and information pro
cessing)

• Computational Viewpoint (functional decomposition)

• Engineering Viewpoint (infrastructure required to support distribution)

• Technology Viewpoint (choices of technology for implementation).

Specifying an ODP system using each of the viewpoint languages allows an
otherwise large and complex specification of an ODP system to be sepa
rated into manageable pieces, each focused on the issues relevant to different
members of the development team. For example, the information analyst
works with the information specification while the systems programmer is
concerned with the engineering viewpoint. Figure 1 shows how the RM-ODP
viewpoints can be related to the software engineering process.

Enterprise Requirements Analysis
------------- ---;;;:--.~- ---------------

/ pol", ~

Information Computational Functional Specification ------~--7 -------
Engineering Design

Technology Implementation

Figure 1: RM-ODP Viewpoints and Software Engineering

www.manaraa.com

692 Andy Bond, Keith Duddy, Kerry Raymond

2.4 Enterprise Viewpoint

The enterprise viewpoint is used to specify organisational requirements and
structure. In the enterprise viewpoint, social and organisational policies can
be defined in terms of:

• objects - both "active" objects, e.g. bank managers, tellers, customers,
and "passive" objects, e.g. bank accounts, money

• communities - groupings of objects intended to achieve some purpose,
e.g. a bank branch consists of a bank manager, some tellers, and some
bank accounts; the branch provides banking services to a geographical
area

• roles of the objects within communities, expressed in terms of policies:

- permission - what can be done, e.g. money can be deposited into
an open account

- prohibition - what must not be done, e.g. customers must not
withdraw more than $500 per day

- obligations - what must be done, e.g. the bank manager must
advise customers when the interest rate changes.

The enterprise language is specifically concerned with performative actions
that change policy, such as creating an obligation or revoking permission. In a
bank, the changing of interest rates is a performative action as it creates obli
gations on the bank manager to inform the customers. However, obtaining
an account balance is not a performative action as obligations, permissions,
and prohibitions are not affected. Thus, an enterprise specification of a bank
need not include the obtaining of account balances; such functionality will
be identified in the computational specification.

By preparing an enterprise specification of an ODP application, policies
are determined by the organisation rather than imposed on the organisation
by technology (implementation) choices. For example, a customer should
not be limited to having only one bank account, simply because it was more
convenient for the programmer.

2.5 Information Viewpoint

The information viewpoint is used to describe the information required by
an ODP application through the use of schemas, which describe the state
and structure of an object; e.g., a bank account consists of a balance and the
"amount withdrawn today" .

A static schema captures the state and structure of an object at some
particular instant; e.g., at midnight, the amount-withdrawn-today is $0.

An invariant schema restricts the state and structure of an object at all
times; e.g., the amount-withdrawn-today is less than or equal to $500.

www.manaraa.com

aDP and aMA Reference Models 693

A dynamic schema defines a permitted change in the state and structure
of an object; e.g. a withdrawal of $X from an account decreases the balance
by $X and increases the amount-withdrawn-today by $X. A dynamic schema
is always constrained by the invariant schemas. Thus, $400 could be with
drawn in the morning but an additional $200 could not be withdrawn in the
afternoon as the amount-withdrawn-today cannot exceed $500.

Schemas can also be used to describe relationships or associations between
objects; e.g., the static schema "owns account" could associate each account
with a customer.

A schema can be composed from other schemas to describe complex or
composite objects; e.g., a bank branch consists of a set of customers, a set of
accounts, and the "owns account" relationship.

The information specification of an OOP application could be expressed
using a variety of methods, e.g., entity-relationships models, conceptual sche
mas, or the Z formal description technique.

2.6 Computational Viewpoint

The computational viewpoint is used to specify the functionality of an OOP
application in a distribution-transparent manner. RM-OOP's computational
viewpoint is object-based, that is:

• objects encapsulate data and processing (i.e. behaviour)

• objects offer interfaces for interaction with other objects

• objects can offer multiple interfaces.

A computational specification defines the objects within an ODP system,
the activities within those objects, and the interactions that occur among
objects. Most objects in a computational specification describe application
functionality, and these objects are linked by bindings through which in
teractions occur. Binding objects are used to describe complex interaction
between objects.

Objects in a computational specification can be application objects (e.g.
a bank branch) or OOP infrastructure objects (e.g. a type repository or a
trader, see Section 2.9.3). Figure 2 illustrates a bank branch object provid
ing a bank teller interface and a bank manager interface. Both interfaces
can be used to deposit and withdraw money, but accounts can be created
only through the bank manager interface. Each of the bank branch object's
interfaces is bound to a customer object.

2.6.1 Computational Interaction

RM-OOP provides three forms of interaction between objects: operational,
stream-oriented, and signal-oriented.

www.manaraa.com

694 Andy Bond, Keith Duddy, Kerry Raymond

Deposit
Withdraw

Deposit
Withdraw
Create Account

Bank Branch Object

owns
account

Figure 2: Bank Branch Object with Bank Manager and Bank Teller Interfaces

Operational interfaces provide a client-server model for distributed com
puting; client objects invoke operations at the interfaces of server objects
(i.e. the remote procedure call paradigm). Operational interfaces consist of
named operations with parameters, terminations, and results. Operations
in RM-ODP can be either interrogations (which return a termination) or
announcements (which do not return a termination).

For example, a bank branch object offers a number of BankTeller opera
tional interfaces, whose signature is defined as:

BankTeller = Interface Type {

}

operation Deposit (c: Customer, a: Account, d: Dollars)
returns OK (new_balance: Dollars)

operation Withdraw (c: Customer, a: Account, d: Dollars)
returns OK (new_balance: Dollars)
returns NotToday (today: Dollars, limit: Dollars)

Note that the notation used in the example above is merely illustrative.
RM-ODP does not prescribe any particular notation for defining operational
interface types. However, it has adopted the use of CORBA IDL for the
specification of the operational interfaces to the RM-ODP functions.

Stream interfaces provide (logically) continuous streams of information
flowing between producer and consumer objects. Consumer objects connect
to the stream interfaces of producer objects or vice-versa, and several streams
can be grouped in a single interface, e.g., an audio stream and a video stream.
Stream interfaces have been included in RM-ODP to cater for multi-media
and telecommunications applications.

Underlying both operational interfaces and stream interfaces are signal
interfaces which provide very low-level communications actions. The OSI
service primitives (REQUEST, INDICATE, RESPONSE, and CONFIRM)
are examples of signals.

www.manaraa.com

ODP and OMA Reference Models 695

2.6.2 Interface Subtyping

The concept of interface type is particularly important in RM-ODP. Inter
faces in the computational model are strongly typed and inheritance of an
interface type (usually) creates a subtype relationship. Subtypes of an inter
face type are substitutable for the parent type (or any super-type).

Figure 3 illustrates interface subtyping. The BankManager and LoansOf
ficer interface types are subtypes of the BankTeller interface (super-)type;
either can substitute for a BankTeller as they can perform the Deposit and
Withdraw operations expected of a BankTeller. Neither a BankTeller nor
a LoansOfficer·can replace a BankManager, as neither can provide the Cre
ateAccount operation.

BankManager

DepositO

WithdrawO

CreateAccountO

BankTeller

DepositO

WithdrawO

FigUre 3: Example of Interface Subtyping

2.6.3 Computational Activity

LoansOfficer

DepositO

WithdrawO

ApproveLoanO

The computational viewpoint also defines the actions that are possible within
a computational object.

These are:

• creating and destroying an object

• creating and destroying an interface

www.manaraa.com

696 Andy Bond, Keith Duddy, Kerry Raymond

• trading for a interface (see Section 2.9.3)

• binding to an interface

• reading and writing the state of the object

• invoking an operation at an operational interface

• producing/consuming a flow at a stream interface

• initiating or responding to a signal at a signal interface.

These basic actions can be composed in sequence or in parallel. If composed
in parallel, the parallel activities can be dependent (the activity is forked
and must subsequently join at a synchronisation point) or independent (the
activity is spawned and cannot join).

2.6.4 Environment Contracts

The refinement of a computational object and its interfaces might require
the specification of requirements on the realization of that object or its in
terfaces (and, hence, of the objects with which it interacts). For example, a
bank must protect the customer's money and must ensure that interaction is
secure against a variety of fraudulent activities, e.g. capturing and replaying
operations. Therefore, the actual interactions must either be communicated
over a secure network or employ end-to-end security checks.

Ideally, environment contracts will be expressed in high-level quality-of
service terms rather than, e.g., specifying a particular network or a particular
encryption scheme (either of which presupposes the environment in which the
ODP system will operate).

Currently, the state of the art falls short of this ideal. However, it is
important that RM-ODP be "future-proof", capable of incorporating both
current and expected future technologies.

2.7 Engineering Viewpoint

The engineering viewpoint is used to describe the design of distribution
oriented aspects of an ODP system; it defines a model for distributed sys
tems infrastructure. The engineering viewpoint is not concerned with the
semantics of the ODP application, except to determine its requirements for
distribution and distribution transparency.

The fundamental entities described in the engineering viewpoint are ob
jects and channels. Objects in the engineering viewpoint can be divided into
two categories: basic engineering objects (corresponding to objects in the
computational specification) and infrastructure objects (e.g., a protocol ob
ject - see below). A channel corresponds to a binding in the computational
specification.

www.manaraa.com

ODP and OMA Reference Models 697

2.7.1 Channels

A channel provides the communication mechanism and contains or controls
the transparency functions required by the basic engineering objects, as speci
fied in the environment contracts in the computational specification. Figure 4
illustrates the channel between a Customer Object and the Bank Branch ob
ject in Figure 2. The shaded area is the channel, composed of stubs, binders,
and protocol objects. Stubs and binders are used to provide various distri
bution transparencies.

Customer

Object

,-------j------, "

, , {SuPPOrting Objec0- ' ,

, , {Supporting Objec0 ' , ,

",(supporting Object) ""

"" ,
Channel

Communications Interface

Figure 4: Structure of a Channel

Stubs are created with knowledge of the application interface types. There
fore, transparencies which use knowledge of application interface types must
be at least partially implemented using stubs. For example, a stub might be
used to maintain an audit trail of operations and their parameters.

Binders are independent of an application's interface types; they merely
transport the messages (bit streams). Binders are responsible for managing
the binding between the basic engineering objects; e.g., binders could use
sequence numbers to foil capture-and-replay attempts.

Protocol objects interact via a communications interface; this models net
working.

Outside of the channel, supporting objects assist the stub, binder, and
protocol objects within the channel. Typically, supporting objects are repos
itories of information required by the stubs, binders, and protocol objects.
For example, binders register and retrieve interface locations via a supporting
object known as the relocator (see Section 2.9.3) in order to achieve location
transparency.

2.7.2 Engineering Structures

The RM-ODP engineering viewpoint prescribes the structure of an ODP
system. The basic units of structure are:

www.manaraa.com

698 Andy Bond, Keith Duddy, Kerry Raymond

• cluster - a set of related basic engineering objects that will always be
co-located

• capsule - a set of clusters, a cluster manager for each cluster, a capsule
manager, and the parts of the channels which connect to their interfaces

• nucleus object - an (extended) operating system supporting ODP

• node - a computer system.

Figure 5 illustrates the structure of a node. Given these definitions, the

/' '\

Nucleus Object

=f:: = f:: =:= =t:
/ '\

/' '\ r r , - --, , - , , - ,
Basic

~
I , , , , ,

-it- n
rtf-

, , : a:: : : s:: :

~
Engineering [, :::: ' , :::: 0 ' ,0 , ,0 ,

Object ~ E- , g ~, ,~ , ,~ ,
Basic

.. ,
n ' , n ' , n ' :::: :::: '0'<: - , • __ t ,- ,

Engineering II g g , .. !;i ' • ~ I I ~ I

0'<: ., , O!
~:

I (;' I ,(> I

II ""
I '0:

, 'O! I

Object g g I , , ,
I I

Cluster \ , , I , I

'-.. /'
./ '-. , --- , ' -

,
'-

,

== == == Capsule

n n n ::r
g ::r ::r

Node § g
::>

'" '" !!. <> ..
- - -

Figure 5: Structure of a Node

following structuring rules are defined:

• a node has a nucleus object

• a nucleus object can support many capsules

• a capsule can contain many clusters

• a cluster can contain many basic engineering objects

• a basic engineering object can contain many activities

• all inter-cluster communication is via channels.

An implementation of an ODP system can choose to constrain the structur
ing, for example, by allowing:

www.manaraa.com

ODP and OMA Reference Models 699

• only one object per cluster

• only one cluster per capsule.

2.8 Technology Viewpoint

A technology specification of an ODP system describes the implementation
of that system and the information required for testing. RM-ODP has very
few rules applicable to technology specifications.

2.9 ODP Functions

The ODP functions are a collection of functions expected to be required
in ODP systems to support the needs of the computational language (e.g.
the trading function) and the engineering language (e.g. the relocator). The
following subsections outline the major function groups in RM-ODPj a few of
the functions are discussed in more detail to illustrate the scope of RM-ODP.

2.9.1 Management Functions

RM-ODP defines a number of functions to manage the engineering structures,
including:

• node management function (provided by the nucleus) for creating cap
sules and channels

• capsule management function (provided by the capsule manager) for
instantiating clusters and checkpointing and deactivating clusters in a
capsule

• cluster management function (provided by the cluster manager) for
checkpointing, deactivating and migrating clusters

• object management function (provided by the basic engineering object)
for checkpointing and deleting basic engineering objects.

2.9.2 Coordination Functions

RM-ODP defines a number of functions aimed at coordinating the actions of
a number of objects, clusters, or capsules in order to produce some consistent
overall effect.

These include:

• checkpoint and recovery

• deactivation and reactivation

• event notification

www.manaraa.com

700 Andy Bond, Keith Duddy, Kerry Raymond

• groups and replication

• migration

• transactions.

2.9.3 Repository Functions

In addition to a general storage function and a general relationship repository,
RM-ODP defines a number of specific repository functions, concerned with
maintaining a database of specialised classes of information. These include:

• service offer repository (trader), which stores information about the
services in the ODP system enabling clients to select services on the
basis of interface type and other characteristics (e.g. quality of service,
ownership)

• interface location repository (relocator), which holds the current loca
tion of an interface, enabling a client to rebind to an interface after
migration or recovery

• type repository to support type checking during trading and binding.

2.9.4 Security Functions

RM-ODP defines a number of security functions (e.g. access control, au
thentication, auditing) based on OSI Security Frameworks in Open Systems
[ISO-Security].

2.10 Transparencies

Computational specifications are intended to be distribution-transparent, i.e.,
written without regard to the very real difficulties of implementation within
a physically distributed, heterogeneous, multi-organisational environment.
The aim of transparencies is to shift the complexities of distributed systems
from the applications developers to the supporting infrastructure.

RM-ODP defines a number of commonly required distribution transparen
cies and describes the computational refinements and use of engineering func
tions needed to provide these transparencies. The distribution transparencies
defined in RM-ODP are:

• access transparency - hides the differences in data representation and
procedure calling mechanism to enable interworking between heteroge
neous computer systems.

• location transparency - masks the use of physical addresses, including
the distinction between local versus remote.

www.manaraa.com

ODP and OMA Reference Models 701

• relocation transparency - hides the relocation of an object and its in
terfaces from other objects and interfaces bound to it.

• migration transparency - masks the relocation of an object from that
object and the objects with which it interacts.

• persistence transparency - masks the deactivation and reactivation of
an object.

• failure transparency - masks the failure and possible recovery of objects,
to enhance fault tolerance.

• replication transparency - maintains consistency of a group of replica
objects with a common interface.

• transaction transparency - hides the coordination required to satisfy
the transactional properties of operations.

The transparencies defined in RM-ODP are not intended to be the complete
set, merely a starting point of common requirements. Additional transparen
cies for both general and specific needs could be subsequently standardised.
For example, lip-sync transparency could be defined for stream interfaces
supporting audio-visual interaction.

3 The Object Management Architecture

The Object Management Architecture (Ol\t.lA) is a Reference Architecture
for the standardisation of the distributed, object-oriented application de
velopment framework being developed by the Object Management Group
(OMG). The centre-piece of this Architecture is the Object Request Broker
(ORB), a distribution-transparent method invocation bus that is specified
in the Common Object Request Broker Architecture (CORBA) standard.
Industry jargon has come to use the term CORBA to represent the whole
of the OMA and all the standards based upon it. The Object Management
Architecture Guide [So195], which explains the OMA, also contains the Core
Object Model, which is a set of foundation concepts used as the basis for
CORBA.

3.1 OMA Rationale

The OMA recognises that in order to build distributed systems more is needed
than just a remote method invocation mechanism. However, the complete
set of additional services and facilities required to support distributed ob
jects could not be predicted when the OMG began standardising CORBA.
Therefore, the OMA Reference Model attempts to provide a template for
standardisation of infrastructure to support CORBA.

www.manaraa.com

702 Andy Bond, Keith Duddy, Kerry Raymond

The OMA has evolved since it was first published in the OMA Guide
[So195]. The Reference Model has always seen the Object Request Broker as
the core component that facilitates communication in a distributed applica
tion. It states that additional support for the application should be supplied
by objects that are identical to application objects in their specification, de
velopment and use by the application. The Core Object Model is the basis of
the CORBA specification. The Guide also contains a manifesto oHhe OMG,
and explains how the organisation of the OMG closely reflects the structure
of the OMA.

3.2 OMA Categories

From its first publication in 1990, until 1995, the OMA contained three
categories for object specifications to be populated as requirements became
clearer following discussions and developments in the OMG. As illustrated in
Figure 6, the categories are:

Application Objects. The parts of a distributed system which provide the
application functionality, e.g. the business logic.

Object Services [OMG96, Trader]. The basic or lower-level services that
support applications and the provision of the object-oriented infras
tructure. The object services provide configuration and administration
needed by all applications, including such services as Naming, Trading
and Event transmission.

Common Facilities. These provide common application functionality. This
group of services was seen to be higher-level, and directly usable by an
application. Common Facilities were subdivided into horizontal facil
ities (across industry domains) and vertical facilities (specific to an
industry domain). Only a small number of Common Facilities were
standardised in the first 5 years of the OMG. For example, the Com
mon Document Management Facility, based on OpenDoc.

3.3 The Model Evolves

As it became clear that the OMG required buy-in from end-user communities
in order to become a success, the number of special interest groups for var
ious application domains increased rapidly. In 1996, the original Technical
Committee of the OMG to which smaller Task Force groups reported was
split into two Technical Committees:

Platform Technical Committee (PTC). Specifies objects to be imple
mented by ORB vendors for the provision of the CORBA infrastruc
ture.

www.manaraa.com

ODP and OMA Reference Models 703

Common Facilities

Application Objects

Object Request Broker

Object Services

Figure 6: The OMA Reference Model in 1995

Domain Technical Committee (DTC). Specifies objects meeting the
needs of specific industry domains.

At the same time, the Common Facilities grouping within the OMA was
split, moving the vertical facilities under the control of new Task Forces within
the Domain Technical Committee. The Common Facilities Task Force (TF)
continued to specify horizontal facilities.

By mid-1997, there were six Task Forces and a number of special interest
groups within the DTC, covering such diverse areas as Health-care, Elec
tronic Commerce and Telecommunications. The PTC contained the ORB
and Object Services (ORBOS) TF, Common Facilities TF and the Object
Analysis and Design (OA&D) TF.

Requirements for particular technologies within certain vertical domains
that fulfilled both an industry specific requirement, as well as being horizon
tally applicable across domains led to confusion over the role of the Common
Facilities TF. It was abolished in June 1997. Its continuing work was redis
tributed to various DTFs and to the two remaining Platform TFs. Although
no official updates have been made to the OMA Reference Model, the current
de-facto structure appears as in Figure 7.

www.manaraa.com

704 Andy Bond, Keith Duddy, Kerry Raymond

Application Objects Domain Facilities

Object Request Broker

Object Services

Figure 7: The OMA Reference Model after June 1997

3.4 Core Object Model

The Core Object Model is a concrete basis for the specification of a dis
tributed object system. It is expressed in English, and provides definitions
for some fundamental concepts that must be extended to produce any OMA
compliant distributed object system. The mechanism for extending the Core
is to define components that build upon the definitions in the Core, producing
what is called a profile.

The CORBA specification [OMG95] is an example of a set of components
that make the Core concepts usable by real implementations. CORBA's com
ponents consist of the Interface Description Language (IDL), Programming
Language Mappings, Security, Interoperability Protocols and a number of
other functions.

CORBA is the only profile required within the OMG, and it is pub
lished with major/minor version numbers that define a current standard to
which ORB implementations should conform. However, the Object Database
Management Group (ODMG) also uses the OMA Core Object Model and ex
tends it with some CORBA components and some additional components for
Database access. This profile is published as the Object Database Standard:
ODMG 2.0 [ODS].

www.manaraa.com

ODP and OMA Reference Models

3.4.1 Core Object Model Concepts

The key concepts defined in the Core are:

705

Object. A model of an entity or concept with an identity. Identities are
encapsulated in an object reference.

Operation. An action offered by an object which is made visible to the
outside world by means of its signature. A signature contains a name,
parameters and results.

Non-object Types. Other types that can have values which are not refer
ences to objects may be defined. None are actually given in the Core
definition, but they are a placeholder for things like numbers, strings,
records and sequences.

Interface. A collection of operation signatures which can be related to other
such collections by inheritance. Inheritance defines a means of identi
fying subtypes.

Substitutability. Substitution of interfaces can be done according to sub
typing. That is, a subtype may be substituted where a super-type is
required.

4 Comparison between RM-ODP and OMA

The Reference Model for ODP is a meta-model that is meant to be instanti
ated by many different concrete models which use its concepts as a framework.
The Object Management Architecture, on the other hand, is a concrete set
of classifications for components of a distributed system which is gradually
being populated by the specifications adopted by the OMG. The OMG Guide
[SoI95] explicitly refers to RM-ODP as a basis for the Architecture; however,
the mapping between the two is only beginning to be documented by the
OMG's Semantics Working Group.

RM-ODP and OMA have definitely impacted on one another, and it is
useful to understand how the OMA complies with the RM-ODP framework,
and how the OMA is influencing RM-ODP in return.

4.1 Transparencies

The OMA provides specific concepts and technologies that allow the im
plementation of various transparencies (as specified in Section 2.10). The
concept in CORBA of an object reference encapsulates and enables access
transparency, location transparency, relocation transparency and persistence
transparency. In other words, an object reference is used by clients to invoke
operations on a CORBA object regardless of which programming language

www.manaraa.com

706 Andy Bond, Keith Duddy, Kerry Raymond

the client and object are implemented in, and regardless of the location and
current run-state of the object.

Transaction transparency and migration transparency are provided by the
Transaction Service and Life Cycle Service respectively. The ORB also ex
tends access transparency to full programming language transparency, which
is provided by the use of an Interface Definition Language (IDL) with map
pings to programming languages.

4.2 Viewpoints

The OMA is not specifically expressed in terms of ODP viewpoints, but the
use of IDL for object-oriented interface signature specifications of CORBA,
Object Services and Domain Interfaces, suggests that most OMG specifica
tions are within the ODP computational viewpoint. OMG specifications that
are concerned with programming language mappings and ORB interworking
are within the ODP engineering viewpoint. As the OMA explicitly prohibits
the use of implementation-specific specifications, the OMG is unlikely to de
velop specifications in the ODP technology viewpoint.

The efforts being undertaken in the OMG's Object Analysis and Design
Task Force are intended to be used· as tools of the enterprise viewpoint,
which can then be refined to become expressions of computational and infor
mation viewpoints. This is closely aligned with the Business Objects Domain
Task Force, which aims to provide even higher-level modelling of enterprise
requirements, and provide facilities for mapping these (semi-) automatically
into lower-level viewpoint artifacts.

4.3 Other Linkages

There has also been some influence in the reverse direction. The OMG's IDL
has been adopted in ISO as a standard notation for expressing operational
interfaces in the computational viewpoint. In that role, the OMG's IDL has
been used in the specification of RM-ODP services and functions.

The recent joint adoption by OMG and ISO of the Object Trading Ser
vice/Trading Function Specification [Trader, ODP-Trader] had a long and
intertwined history. The work commenced within the ODP group in ISO but
was completed by the OMG, and then jointly standardised by both groups.
There are intentions to develop further joint standards between the ODP and
OMG groups based on their mutual overlap of interests.

References

[ISO-Security] ISO/IEC CD 10181, Security Frameworks in Open Sys
tems

www.manaraa.com

[ODP-Trader]

[ODS]

[OMG95]

[OMG96]

[RMODP-1]

[RMODP-2]

[RMODP-3]

[RMODP-4]

[SoI95]

[Trader]

ODP and OMA Reference Models 707

ISO/IEC IS 13235-1, ITU/T Draft Rec X950 - 1, ODP
Trading Function - Part 1: Specification, 1997

The Object Database Standard: ODMG 2.0, R.G.G. Cat
tell et al (eds.), Morgan Kaufman Publishing, 1997

The Common Object Request Broker: Architecture and
Specification, Revision 2.0, OMG, 1995

CORBAservices: Common Object Services Specification,
Revised Edition - Updated, OMG, 1996

ISO/IEC 10746-1, Open Distributed Processing: Refer
ence Model - Part 1: Overview, 1997

ISO/IEC 10746-2, Open Distributed Processing: Refer
ence Model - Part 2: Foundations, 1996

ISO/IEC 10746-3, Open Distributed Processing: Refer
ence Model - Part 3: Architecture, 1996

ISO/IEC 10746-4, Open Distributed Processing: Refer
ence Model - Part 4: Architectural Semantics, 1997

Soley, R. M., Object Management Architecture Guide,
Third Edition, John Wiley & Sons, 1995

Trading Object Service, OMG TC Document orbos/96-
07-26, 1996

www.manaraa.com

PART FIVE

Selected Topics in Integrating
Infrastructures

As a result of the International Conference on Enterprise Modelling Tech
nology (ICEIMT) process in 1992 a reference model for integration has been
proposed, with four domains of integration:

• Execution Environment (the information system infrastructure, includ
ing humans, computers, communication systems and all hardware and
software),

• Application Architecture (the system of application programs that sup
ports business),

• Enterprise Characterisation (models, descriptions of the information in
the enterprise),

• Federation Mechanisms (how the above three domains of integration
are working together).

This categorisation of the elements of the information system is reported in
detail by Ted Goranson in Chapter 33. As it was identified in the subsequent
ICEIMT process in 1997, and also widely practiced in the software engineer
ing industry the level of Information Systems integration can be measured
with some form of capability model that the system achieves through integra
tion. It has been clear that at the end of the 1990's physical systems integra
tion, and much of application integration, are feasible. Physical system inte
gration is achieved through standards (although with a large overhead due to
political and historical reasons). Application systems integration techniques
are largely based on two techniques: database integration, with enterprises
trying to establish enterprise-wide data models and the development of large
suites of programs from which tailored interoperable applications can be gen
erated for particular businesses. Examples for both can be found in the fourth

www.manaraa.com

710 Peter Bemus

part of this Handbook. However, these integration forms do not necessarily
lend enough agility and flexibility to the enterprise. Through making the in
formation visible in the enterprise, such as the models of business processes,
it becomes possible to implement model based integration, whereupon the
execution environment can execute business process models. Richard We
ston, Ian Coutts and Paul Clements in Chapter 34 present the technical
requirements for this, and also present such a prototype infrastructure.

The most important underlying component of integrating infrastructures
is the existence of a distributed processing platform, and Andy Bond, Keith
Duddy, Kerry Raymond present in Chapter 35 the essential building blocks.
However, higher level, adaptable behaviour of the enterprise necessitates that
information integration should not become a completely wired-in facility, or
at least that rewiring should be easy, quick, and reliable. It is therefore
plausible to assume that truly adaptable and agile systems will themselves
have the capability to establish connectivities and decide on joint action, in
stead of relying on some pre-designed connectivity structure. This of course
will need the use of techniques through which relatively independent subsys
tems, via negotiation protocols, could co-ordinate their activities, including
one another's discovery, negotiation and commitment to some shared goal
or mission, decision on joint action, and the ensuing delivery of service or
production. Mihai Barbuceanu and Rune Teigen present in Chapter 36 tech
niques that are capable of achieving such a higher level integration.

Peter Bemus

www.manaraa.com

CHAPTER 33

Architectural Requirements of
Commercial Products

Ted Goranson

Information architectures only become relevant to most enterprises when they in
stance in commercially supported products. The mapping of technical appropri
ateness to commercial appropriateness is not straightforward; it involves a number
factors from a larger perspective that act as architectural constraints, often result
ing in unintuitive decisions. This contribution reviews those factors. It extends
results from a large joint U. S./European precompetitive activity among major in
formation infrastructure suppliers and a recent re-examination. Any such review
which relies on specific products as examples is likely to become dated, so in the
interest of making these insights more longer-lived, we'll be more general than spe
cific with regard to products.

1 Introduction: The ICEIMTI Model

1.1 Background

From 1989-91, a special project was sponsored by the major suppliers of
information architectures. It was the first and to date only precompetitive
effort among these firms. It was broadbased in looking at all architectural
issues, and very well funded. It got its antitrust protection by being facilitated
by the Air Force Manufacturing Technology Directorate (ManTech) and the
Defense Advanced Research Projects Agency (DARPA).

The Joint U. S./European International Conference on Enterprise In
tegration Modeling Technology was devised as the relatively low-key public
means of reporting some of the results of this work [Pet92]. The sponsoring
precompetitive group, the Suppliers' Working Group (SWG), was linked to
high levels in the participating firms and major strategic shifts in many of
those firms resulted following this work.

Among the products of the study were the first complete quantitative
assessments of the size, leverage and components of the architectural mar-

www.manaraa.com

712 Ted Goranson

ketplace. (There were also related national security concerns addressed.) As
a significant preparatory effort, detailed proprietary information was pooled
from the sponsors concerning 100 international case studies, each of which
were revisited under the project.

A workable generic reference model for architectural approaches was de
vised, and was used to characterize the then strategic directions of each player
with the intent of discriminating precompetitive architectural issues from
competitive ones.

Because of policy issues in the U. S., the precompetitive program was
not continued as such after 1992, but a DARPA/ManTech effort worked to
extend and apply the reference model to specific high payoff problems. One
of these, information architectures for agility, is noted below.

Here, we leverage and extend the results of that initial work, report on
results a second ICEIMT which extend this view and provide related per
spectives for support of Enterprise Integration.

1.2 Four Major Divisions

The high level of the first ICEIMT reference model is outlined in Figure 1.

AA: Application Architecture FE: Execution Environment

, - 1- - - ,
I I
I

FM: Federation Mechanism
I

I I
I I
I ID: Integration Domain I
I I
I I
• . .
'-- - ,.,

EC: Enterprise Olaracterization

Figure 1: The first ICEIMT reference model

• The box on the left refers to the Application Architecture (AA) which
comprises the activity of the enterprise: what it does to conduct its
business.

www.manaraa.com

Architectural Requirements of Commercial Products 713

• The box· on the right is the Execution Environment (EE). It is con
stituted from the operating system and communication services used
to support the AA functions. In a sense, these are secondary services,
ones which an enterprise performs only to support those on the left,
serving its primary business. The EE includes hardware, but since the
model is for all information in an enterprise, these services may not all
be computer-based.

• The lower box denotes the information within the enterprise, which we
chose to term Enterprise Characterization (EC) j this is both informa
tion, such as data and models used by the AA, but also operational
information used by the EE.

• Among those three boxes is a fourth space denoting the Integration Do
main (ID), various strategies used to relate the three areas and provide
bases for structuring services within each. These were characterized as
the various Federation Mechanisms (FM).

The original work employed an elaboration of this model to define different
architectures into which all major product architectures fit. And, as men
tioned, we were able to then segregate out technical issues which all shared
and could address in a precompetitive space. The purpose of the model
was to identify key underlying principles that support EI, and evaluate the
strengths and weaknesses of those principles in a commercial, rather than
purely technical context.

For practical purposes, all of our specific ICEIMTI product parsing is
now obsolete as several product cycles have washed through the industry.
The speed with which product strategies have shifted should be noted as an
indicator of the volatility of current strategies. What we'll do here is review
some of the high points of the prior work, and indicate changes and new
market trends since then. We shall recast the model in the ICEIMT97 form
to help the reader understand the forces at work in shaping architectures,
and provide some linkage of architectural characteristics to differing types of
enterprises.

Each of these four divisions has internal architectural dynamics which in
concert drive considerations of architectures of the whole information system.

1.3 The Application Architecture

The Application Architecture (AA) is the structured collection of processes
which support an enterprise's mission. Simple examples are architectures
which are unified in how they relate to databases, say through SQLj or docu
ment architectures which are unified in how they relate to operating system
protocol interfaces. The former defines its architecture in the context of the
Enterprise Characterization (a database), while the latter is defined in terms
of the Execution Environment (for instance Windows).

www.manaraa.com

714 Ted Goranson

There are a variety of AA types, which we will not survey here. Major
examples are those which inter-relate application processes through a central
repository, and those which use an application framework: meaning conven
tions for communication without a centralized reference.

The central repository paradigm is strong; repositories can consist of data
(as already noted), or metadata such as object registries or ontological ref
erences. It's a costly approach but it suits the management techniques of
centrally managed enterprises.

The framework idea is most simply instanced in collections of standards
and procedures that are used to generate the applications so that they can
work together. But more interesting examples are frameworks that have the
ability to dynamically adapt to new components as they are introduced with
new capabilities.

The Suppliers' Working Group noted three trends concerning the AA:

• Historically, the AA paradigm was determined by suppliers of Exe
cution Environments (IBM, Digital, etc.) and the EE architectures
they employed at that level; then they were implemented by third par
ties such as Computer Associates. That was already changing by the
ICEIMT timeframe, driven by the software crisis and the competitive
pressures from AA suppliers (who are many, compared to relatively few
EE suppliers). The trend now is that EE architectures are expected to
support the AA and evolve in response to it.

• There's a circular relationship between models and languages: each
defines the other. All architectures reflect tradeoffs in which of these is
eminent, and which domain (AA or EE) defines which. We've seen an
evolution over time from:

- the older paradigm of the model centralized in the AA, subservient
to languages in the EE (for example inflexible programming prin
ciples guided by languages in the EE which in this case literally
are programming languages. The original impetus behind Ada,
for instance, represents the height of this thinking.)

~ then a period where the "languages," meaning in this context de
tails of the service calls in the EE, were determined by the appli
cation model. The rise of object-oriented application architectures
is traced to this reversal, as is the need for object standards and
design patterns.

Expected is a future period where the roles are again redefined, the "model"
being in the EC with the languages (meaning in this context the different
application philosophies) of the AA being defined based on management of
that information, which is increasingly being known as intellectual property.
But we're getting a little ahead of ourselves with this. We'll revisit it below.

www.manaraa.com

Architectural Requirements of Commercial Products 715

• The third AA-related finding was that the notion of state is key to the
AA. What happens in the actual enterprise is different that what hap
pens behind the scenes in the silicon and operating services to support
those enterprise processes. The processes are fundamentally different
in nature and drive basic differences in architecture. (We use state here
differently than it is used elsewhere in the Handbook. We mean in
frastructure support for advanced notions of progress of collaborative
processes in the enterprise. We discuss of state more fully later.)

• SWG insights in this area drove several research efforts in manufactur
ing simulation, since events in manufacturing have feet in both the AA
and the EE (the EE including the manufacturing equipment). Also of
interest is the asymmetry of the reversible nature of simulated states
and irreversibility of control states. Control happens in the real world,
where time is not reversible; simulations occur in virtual worlds so ac
tions can be undone and alternatives explored but the knowledge gained
persists. Different notions of state must be used to support these two
functions, and the situation is complex when the same models and in
frastructure is intended for both.

Also, while not unique to the SWG, one should reiterate the then much
documented software crisis, which is defined as an inability of application
within the AAs to meet the needs of businesses. As much as 80% of all
software projects (by cost) fail in key respects because of the complexities
inherent in AAs. It's generally felt that this is flaw of the architecture,
reflected in tools and techniques. By architecture, we mean the capabilities
of the AA which are affected by the overall distribution and management of
responsibilities among the AA, EE and ID.

1.4 The Execution Environment

We've already jumped the gun on discussing architectural drivers without
fully defining the EE. The EE is the hardware on which information is pro
cessed, together with services that support the hardware. Services include
operating, network and other basic software components. Computers and
networks are included, as are telephones and message services. Hardware is
considered in the large, and also includes the physical architectures of col
laborative work/office/shop floor spaces and the equipment and controllers
therein. EE software is similarly considered in the large roughly including
most ubiquitous services.

At one time, the EE was the driver of architectural decisions, and discus
sions centered on such things as portable UNIX, open communication models,
and device plug and play. Clearly, the focus has moved to the AA for three
reasons:

www.manaraa.com

716 Ted Goranson

• Managers were slow to develop techniques to evaluate costs of tech
nology investment. What they first saw was the cost of capital assets.
When the much greater AA-related costs started to become visible in
the late eighties, the architectural focus shifted.

• A general management trend developed: "stick to business," and in
formation technologies became more scrutinized for how they could
improve the business mission, the domain of the AA. Legions of con
sultants rose to reinforce this thinking.

• Partly as a result of the above and partly for independent reasons we
won't explore here, the AA marketplace revolted against the hegemony
of the few hardware suppliers who controlled the EE. The visible shock
to IBM was most notable, as a reflection of a sea change in architectures.

We are only superficially touching on the older SWG analyses here, but it
should be noted that the EE has a significant non- computerized component
which rests on social and cultural "hardware." Efforts in understanding those
"soft" architectural issues are emerging in the research community [DR96].

1.5 The Enterprise Characterization and the
Integration Domain

Most taxonomies of architectures have something like the AA layered over an
EE. The SWG deliberately deviated from this convention in defining a cate
gory of information which instead of being in a layer over the AA, interfaced
with both the AA and the EE.

This category, the Enterprise Characterization (EC), is generally consid
ered as the information in an enterprise. The information constitutes process
and business information which the enterprise uses in its mission, in other
words, used by the AAj examples are product data models. But some similar
information is also used in running the EE infrastructure itself. Information
Flow and Resource Models are of this type.

Separating them from both the AA and EE and combining them in a
single category sets the stage for examining them relatively independently of
AA/EE architectural considerations. The reasons for doing so initially came
from some surprising results of the study.

We wanted to know how much was spent on each of the three major cat
egories, and our original look at 100 representative enterprises was initially
unhelpful. This was because the value of information isn't normally con
sidered in accounting systems. So we devised some accounting metrics and
applied them ourselves, at significant cost to the project.

The findings were that more is spent on information (EC) per year than
on AA and EE combined. Moreover, the length of utility was much greater
and a substantial percentage had the potential of being sold for reuse.

www.manaraa.com

Architectural Requirements of Commercial Products 717

On examination, the EC information which related to EE in one archi
tectural paradigm could possibly apply to AA in another. So to preserve
the architectural independence of the taxonomy, we recognized them as one
inseparable item, with its own internal architecture.

Having done so, we realized the intimate relationship between the EC, this
structured information, and the strategies which relate the EC, AA and EE
through differing connectivity strategies in what we termed the Integration
Domain (ID).

1.6 Some ICEIMT-Related Strategies

There were a few findings relevant for our current purposes. The SWG
predicted that as enterprises strove to understand their information archi
tectures, the trend would be to move more to considerations on how the
information is structured (in the EC) than on constraints on how they do
their work (in the AA). To understand how powerful this insight was at the
time, you need to remember that most members of the SWG were controllers
of architecture when EE constraints dominated and were currently occupied
with trying to regain positions in the refined focus, the AA.

Great potential leverage for these firms, as well as anticipated benefit to
the customer was expected by redefining the focus to the EC. This conclusion
resulted in a large number of explorations, including:

• Development of an object oriented application development environ
ment (Dylan for Dynamic LANguage) that was well suited to informa
tion structuring, while having an architecturally independent foot in
each of the AA and EE [Sha96] (More about this below.).

• Development of a multifirm approach to EE services (Taligent) that
provided for very late binding of those services, depending not on AA
constraints, but on those from the EC, structured in clear behavioral
categories (people, places and things) [CP95].

• Development (within IBM) of a System Object Model for the EE which
permanently shifted the language/model relationship noted above so
that the EE had a clear model, expressible and manipulatable from the
EC.

• Support for the development of an Object Request Broker via an indus
try consortium that would provide (it was hoped) an architecturally
neutral way of administratively modeling key state relationships be
tween AA and EE.

The first two of these failed outright, and the second two failed to achieve
ambitious goals originally set for reasons reviewed by ICEIMT 97 below.

Having thus set the stage, we can now discuss the more important insights
that have been since gained from five years of working with the taxonomy.

www.manaraa.com

718 Ted Goranson

These were effected by supplementing internal, proprietary developments.
Therefore, while the results are well documented, the process is not.

2 New Trends Since ICEIMT

2.1 MetaStructure

What the SWG developed was an evolutionary roadmap that made sense,
solving some key technical problems and providing benefit to the customer of
information infrastructure. The prediction was that eventually, information
architectures would all be driven by a metastructure which is independent of
not only equipment and operating systems (the EE) but specific methods of
accomplishing work (the AA) as well.

The more advanced contributions in this handbook address possible slants
on this metastructure, employing either models or languages as the root of
an approach. Incidentally, the feeling of the SWG was that object orientation
was a useful implementation strategy only, that deliberately was separated
from this metastructure. The metastructure, and indeed all of the EC func
tionality would instead be firmly grounded in the advanced mathematics of
logic [Dev91] (but things seem to have gotten stuck in object oriented meth
ods).

We further predicted two commercial trends would emerge:

• that a large and robust economy of reusable information components
would emerge, once even a few technical barriers were solved, and

• that knowledge could be managed for future rather than present needs.
This requires some background:

- currently, enterprises design their information systems around their
business processes, the AA. The trend toward lean and mean en
terprises means that the system is optimized for those processes.
The possible metastructure of the EC isn't ordinarily considered
because all that matters is narrow optimization.

- But most critical business problems arise because the enterprise is
ill-equipped to respond to unexpected change. H the information
architecture was designed as metastructure at the EC level, then
different AA processes could be much more easily substituted or
evolved. This need for agility and the promise of metastructure
was the rational for DARPA and Air Force ManTech to make
substantial research investments in information systems for agile
manufacturing [Gor97a].

However, the world did not rush from AA-oriented architectural paradigms
to EC-oriented metastructure. Indeed, most commercial energy is currently

www.manaraa.com

Architectural Requirements of Commercial Products 719

focused on new AA strategies (Java and other component architectural en
ablers) and even new EE strategies (the "open" standards-based Internet).
Why is this? What commercial forces are at work?

The key factor is the way that the marketplace for architectures is sup
ported by market forces and investor scrutiny, and these have not mapped
to the technical drivers we envisioned. The other key factor is the largely
independent way that those suppliers now define architecture as a strategic
weapon. We'll briefly outline these two factors in this and the next section,
then apply them to a new model of the marketplace.

2.2 Investor Analysis and Internationalization

An important turning point came with SEMATECH, the U. S.-based multi
billion dollar semiconductor manufacturing research consortium, which spaw
ned the SWG (Details of the SEMATECH adventure and failure at its in
formation systems-driven mission are at [Gor97a].). Before that point a case
could be made for relating infrastructure suppliers to national destinies, in
particular the hardware/operating systems/network suppliers with U. S. na
tional and defense interests.

In the early nineties, all that changed. Three revolutions occurred simul
taneously:

• As noted above, the world shifted from EE to more AA-oriented ar
chitectural philosophies, and also as noted the AA locus became more
model-oriented rather than language-oriented.

• The suppliers of infrastructure became more truly internationalized (as
opposed to just selling internationally). This resulted from:

- The aforementioned shift in focus from platform- determined (EE)
architectures to business-process oriented (AA) architectures. And
of course more parties became involved as the cost of entry dropped.
The result was more localized solutions as well as more localized
and niche suppliers.

National governments quietly forced the multinationals to locate
basic research and product development laboratories in their coun
tries. (The SEMATECH experience played a role in this.) And
much to everyone's surprise, this has worked well as the big firms
discover relative national strengths to leverage.

- With the end of the cold war, special benefits that followed from
research sponsored by the U. S. military evaporated allowing de
velopment to leave the U. S.

• These two major changes spawned a third, deeper revolution. It used
to be that the investment community simply trusted the technologists

www.manaraa.com

720 Ted Goranson

to be wise concerning architectural decisions. This was the case for
investors in both the supplier end and the user end. Those days are
well past.

- Now, the investment community closely scrutinizes every decision.
A well-known story is how Boeing determined its computer-aided
design strategy for the 777 not for product excellence or lower
cost, but to lower investor concerns of the technical risk (thus
greatly reducing the cost of the project since the cost of money
was lowered).

- The bad news is that investors haven't simultaneously improved
their technical sophistication. Near-sighted strategies, buzz-word
dominance, and sweeping fads have become more common. Com
plex tradeoff's often get boiled down into simple, high concept de
scriptions.

2.3 Architecture as Strategic Weapon

A second type of revolution has swept through the information infrastructure
community.

It used to be that firms were in business to make money. Toward the
sixties, as professional sports became televised, a new sports-oriented business
metaphor came into common usage. Fed first by consultants, and later by
concerned politicians, business became seen as a zero-sum game, with winners
and losers. The goal became to crush the competition.

This idea took hold particularly strongly in the information technology
world because the pace of change is so fast and new markets are constantly
being defined. The first to snuff' out all competitors owns the playing field.

We owe this unhappy state of affairs to Microsoft, They've set a tone
for competitiveness which has completely permeated the developer world.
And the fact that Microsoft is successful monetarily, both the firm and the
founders, has attracted the support of the investment community for this
carnivorous stance.

Microsoft products are not designed to be technically best, thereby at
tracting customers the old-fashioned way. Nor do they use more modern
business techniques of identifying niches and opportunities. Their products
are designed primarily as strategic weapons in the continuing war with their
competitors. There's something to be said for the fact that Windows95 took
$200 million to develop (essentially copying a competitor) and $300 million
to promote.

These non-technical, commercial factors of investor-driven high concept,
and supplier jostling in a world of constant change make the world a danger
ous place for businesses who depend on commercial information infrastruc
ture. They were what was missing from the SWG reference taxonomy.

www.manaraa.com

Architectural Requirements of Commercial Products 721

3 ICEIMT97: A Revisiting

After five years, the ICEIMT experience was revived to take a fresh ' look
at EI, to look at new pressure points for research investment by updating
the prior work. The same work model was supported: a number of focused
workshops by invited experts on both sides of the Atlantic. In this latter
case, we had the National Institute of Standards and Technology (NIST) as
the U. S. sponsor, DARPA having been legislated out of the manufacturing
infrastructure area. ESPRIT remained the European sponsor.

3.1 The Capability Model

A Capability Model was developed, shown in Figure 2. Levell is the lowest
level, Fragmented Islands of Automation. Level 2, Rigid, adds to fragmented
the ability to coordinate processes across the entire ~ystem . Level 3, which
we called Visible, adds the ability for each process to understand the actions
of its peers so that it can optimize itself in the system context.

Levell fully Adaptable

Level 2 Interoperable

Level 3 Vi ible

Level 4 Rigid

levelS Fragmented

Figure 2: Capability Model

Interoperable, or Level 4, adds the ability for each process to trigger con
trol points in peer processes to optimize operation in the systems context.
And Level 5 adds the ability for each process to reconfigure control mech
anisms in other processes for system optimization. We called that Fully
Adaptable EI.

This model was developed to help understand the basic technical needs.
A dimension is added to the levels to create a technology food chain (Figure
3). At the top of this dimension is the business of the enterprise. This layer
is decomposed according to the management philosophy of the enterprise.
Each of those work components are supported by numerous systems, shown
by an underlying layer. Each of these systems is supported by numerous
technologies which we assign it's own layer, a third.

For example, consider an engineering department which is integrated to
Level 3. One of the key systems which supports integrated engineering pro-

www.manaraa.com

722

Business
Processes

Systems

Technologies

Figure 3: Layer and levels

Ted Goranson

...
I

Scant entries here I

cesses is 3D CAD. And one of the key technologies that supports 3D CAD
solids modeling is Non Uniform Rational B-spline Surfaces or NURBS.

Technologies are needed to support infrastructure architectures (for what
we've termed systems in the capability model) . And those systems make
possible operational architectures. Enterprise modeling is the key technology
that makes Level 2 integration possible. Modeling frameworks (for instance,
GERAM, CIMOSA, SAP, Baan) and others noted in this handbook are (tools
and) technologies which make Level 3 systems possible.

Levels 4 and 5 are currently beyond us. Some work on component- based
semantics and ontology sharing start to lay a foundation for Level 4. But the
Level 5 technology cell is blank, in terms of fieldable candidates.

3.2 Limits of Object Orientation

In 1990-92, implementing Level 3 EI was the goal, and it was hoped that
any tools and technologies brought to bear could apply to the higher level
problem. All of the SWG initiatives and their outcomes (CORBA , Java,
design patterns) are object oriented (00). This has made scaleable Level 3
EI feasible, and there is some movement toward the envisioned $100B EI
market. But it appears that object orientation may be a barrier to higher
levels of EI.

The reason is that market forces have been such that only AA-based
solutions seemed to be profitably productized. 00 allows the AA, EE and
EC to work harmoniously in a scaleable manner, but it does so by imposing
AA sensibilities on the EC. One of the key tenets of 00 is encapsulation;
only the external behavior of objects is visible.

www.manaraa.com

Architectural Requirements of Commercial Products 723

But if process dynamics, the actual physics of how they work, are hidden
within objects then clearly the visibility of Level 3 is defeated. 00 is fine
when designing software and systems other than EI systems, systems where
control is not complex issue. But in cases where you have different state
spaces, like our EE, AA and Ee, the state paradigm must allow the system
to see its own dynamics.

An example is in order. An airline reservation system can have a simple
layered architecture (Figure 4). The state space of the reservation-related in
formation can be abstracted/translated into a collection of database/application
services. Those applications utilize underlying computer and communication
services. The state of a given reservation is simply related to the state of
certain data at our rudimentary AA level. And that is simply related to the
status and activity of for instance communication packets at the simple EE
level.

Reservation System User

t
User Interfaces,
Process Models

EC

i
Databa e (or Knowledge Representation) Engine,

Application/Component Frameworks,

AA

i
Hardware,

Network/Communications,
Service Management

A Typical lltyered Architecture

Figure 4: Example

But an EI environment is more complex. Managing the enterprise in
cludes managing its EI resources, which is to say the EE (which includes
manufacturing resources and people) as well as the AA. A change in state in
any of the components can fundamentally alter the internal mechanics of the
other. For instance: a process trigger (AA) may cause a machine tool (EE)
to go off-line, which changes the model of available resources of the enterprise

www.manaraa.com

724 Ted Goranson

(EC) which might trigger a reconfiguration of the scheduler (AA) bringing
latent tooling assets (EE) on-line.

Without developing the argument formally, the reader should begin to
see how complex the state and causality relationships are because EI systems
include themselves. It's not straightforward like the reservation system is.
There encapsulation is your friend; in EI with aspirations, it becomes your
enemy as it prevents introspection.

What's needed is an EI strategy that relies on an introspective EC, while
allowing the AA folks to leverage 00 within their own scope.

3.3 New Commercial Forces at Work

Combined with the insight of Levels, and the problems of 00, some non
technical marketing forces were noted.

3.3.1 Forces Toward Lower Services

What would benefit the enterprise user would be architectures with a focus on
EC-oriented metastructure, as just noted. This would insulate the investment
in the architecture and models from how they might be used. There's a clear
hierarchy here: EC-focused systems are more friendly than AA-focused ones,
and both are manifestly more powerful than EE-focused ones.

But it is in the interest of the market to push the focus down the list. It's
simply more profitable to build a user base that is AA or EE focused. Con
sider the biggest perceived revolution in information systems: the Internet.
It is revolutionary in that it is not a centrally controlled architecture. But it
is at the EE level.

As you review the contributions of this Handbook, consider how the var
ious models and languages are to be applied. If it's at the pure information
(EC) level, it'll give you a more powerful system, but all the commercial
energy will be at the "lower" AA level in integrating processes.

3.4 Forces Toward Centralization

We've already mentioned that the market forces drive toward centralized
systems, regardless of the axis of focus. Many customers like this as well
because it suits common top-down management styles.

But there's a technical reason as well: centralization helps mitigate the
problems of complexity that vex any interesting enterprise. A less centralized
solution has more power; it

• allows different groups or functions to innovate rather than having to
swallow the lowest common denominator,

• sets a stage for some self-organizing, and adaptive behavior,

www.manaraa.com

Architectural Requirements of Commercial Products 725

• increases the number and types of goals for which the system can eco
nomically optimize, and

• perhaps provides for the long-sought holy grail of integrating the diverse
planning models with those of even greater diversity used for control.

But you will not see a market rush from consolidated SAP and Oracle
paradigms. As you review the Handbook's contributions, consider which
can allow you the power of federated diversity balanced against the (non
technical) commercial and managerial benefits of consolidation.

3.4.1 Forces Toward "Hardness"

Most of the important dynamics in an enterprise are soft, that is, resulting
from human collaboration. There are no Maxwell's equations for the elusive
physics behind these interactions. Solving the problem of how to model soft
dynamics in a logical information science context is the next grand challenge.

One type of soft information is information which is tacit. Empirical
studies show that the greatest part of all models have tacit components:
important information that each party assumes. This is soft information
that can be made hard, or explicit, with some effort.

But there's a more difficult type of softness, that deals with the nature of
communication. The SWG study reported that more than well over half of
all business or project failures that can be attributed to information systems
are because of the system's inability to comprehend soft relationships, that
incidentally to humans are usually just common sense.

As you consider the approaches described above, ask yourself if there is
accommodation of this reality. Consider whether its entry into commercial
products (if not already) would attract vendors who would innovate in this
area. We'll revisit this below.

3.4.2 Multiple Entries by All Players

A new dynamic has entered the marketplace. Architectural assumptions are
being challenged. It's clear that some changes are underway, and will be for
some time. Since technical appropriateness is eclipsed by commercial factors,
no one can predict the "winners." The result is that anyone who can, bets
on multiple approaches.

This further destabilizes the situation. Settling on anyone approach
would damp the hysteresis, allow convergence on a starting point and begin
technically-driven evolution. But since everyone backs every horse, this can
not occur. It's the reason, by the way that DARPA initially got involved,
because the effect is a compromised defense industrial base.

A focus on EC modeling can allow an enterprise to avoid being buffeted
by this thrash, switching from one AA/EE architecture to another promis-

www.manaraa.com

726 Ted Goranson

cuously. Which of the approaches described above allows this? Who will you
buy your tools from to support it?

4 A Level 5 EC-Based Federation Mechanism

ICEIMT97 identified two major technical barriers to Level 5 EI. They are
siblingsj each could be seen as a subset of the other. It was felt that if
commercial infrastructure products addressed these barriers, they could:

• provide a basis for Level 5 Elj

• likely overcome the non-technical barriers noted abovej

• merge 00 advantages for AA development and EE services while sup
porting a non-OO EC metastructurej and,

• be robustly supportable by market forces.

4.1 Problems

4.1.1 System-Level Engineering of Distributed Control

Level 5 EI has its clearest benefits in the Virtual Enterprise (VE) situation.
VEs bring two benefits:

• access to an essentially infinite portfolio of core competencies, and

• greater speed and quality associated with decentralized control.

This latter advantage brings problems to the enterprise engineerj EI has
as it's primary goal the ability to understand and optimize at the system
level. However, existing techniques (that is, Level 3 techniques) assume some
system level view of control states, and a high degree of determinism over
those control states. The VE as well as the very definition of Level 5 defeats
this.

Therefore in order to support Level 5, we need the ability to model and
engineer distributed state and causality. These notions are supported at
all levels in the infrastructure, including the EE, and is understood as the
late-binding problem. The state of any element in the enterprise cannot be
predicted (or engineered) by top down methods, because the causal linkages
that generate state change are made at the last moment.

We need a way of representing and controlling state and causality ab
stractions such that:

• we can get the advantages of system-level engineering without the dis
advantages of top-down control and determinism, and

www.manaraa.com

Architectural Requirements of Commercial Products 727

• those abstractions convey across the AA, which is the usual realm for
such things, but also the EE and the emerging EC metastructure.

This latter can only be addressed by commercial infrastructure suppliers and
supplier partnerships who include EE services in their offerings.

4.1.2 Soft Modeling

There is a superset of the state and causality issues which have been identified
by ICEIMT97 which collectively have been termed soft issues. Support of
softness is the core of an expanded Level 5 requirements list. Soft issues
include the ability to represent, understand and reason about:

• unexpected events or unforeseen conditions (external holes in the mod
els),

• deviations from the model because of human autonomy (internal holes),

• ontological mismatches between processes and agents,

• misreadings of tacit knowledge requirements,

• the fact that processes are intended to be optimized at the system level,
but no interesting system can be modeled at the same level of resolution
as a typical system (layered formalism and zooming), and

• the fact that no explicit models of human collaboration have the same
physics as harder models, yet we want to analyze them as if they do.
(We call this the supersoft or ssoft problem.)

These are all problems of the same type: we need to represent eleIpents of
models or situations about which we know little and conduct logical analyses
over those representations. Existing techniques are all unsatisfactory for
general use:

• modal logics (complexity and exceptions are too costly),

• probabilities (doesn't reveal internal causality), and

• constraint modeling (which is the theory of reverse modeling: what can
the process not do - which has the same limit as above).

4.2 Needs

So far as commercial products, we need capabilities in two areas: (EC) mod
eling and (AAjEE) infrastructure.

www.manaraa.com

728 Ted Goranson

4.2.1 Soft and Distributed Models

Both the soft and distributed problems require:

• that there be a mathematically formal logical basis for the representa
tion,

• that there be the ability to have as first class members of the logic enti
ties that represent the soft items noted above: items whose constitution
or behavior is not fully known.

This goes deeper than usual when modeling methodologies are designed. Con
sideration of the underlying language and logical issues are required. Models
are required which are physics-based: they represent behavior by representing
how the behavior results.

4.2.2 Integrated Late Binding AAjEE Infrastructure

Assuming we have the above, those models need to be related to the infras
tructure in a particularly intimate fashion, a requirement that non-manufac
turing enterprises do not encounter. The requirement is that elements that
are soft in the model change to become hard under certain conditions, for
example:

• your analysis shows that certain features need to be made more explicit,
so you do,

• you discover the underlying cause of a process or effect by executing
that process, and

• some nondeterministic event occurs that allows what follows to be more
deterministic.

Those are situations where the AAjEE affects the EC. But because we assume
that the same (or related) models are used to both analyze and control, it
works the other way as well. For instance, statements of control events may
be evaluated (made sufficiently hard for the desired action to take place) only
at the last minute.

Abstractions of state and causality need to be passed back and forth in
the modeling language (and method) to the services environment. The state
of the enterprise (as it evolves) needs to explicitly represented in the same
space as the state of the model (as it similarly evolves to and from softness).

4.3 Example: Dylan/Rhapsody and Situation Theory

As an example, we'll discuss a specific environment being considered for
ICEIMT97-related work.

www.manaraa.com

Architectural Requirements of Commercial Products 729

4.3.1 NeXT

Some time ago, the notion of state abstraction in the EE matured,· with
designers understanding the benefits of segregating state information into a
kernel, an inner microkernel and surrounding EE services. State information
needs to be passed among the layers of course, but more difficult is the
distribution of state information among peers: microkernel to microkernel in
a distributed processing environment, for instance.

Recognizing this need, DARPA sponsored research into state managing.
The result was the Mach microkernel. Mach subsequently became a basis for
the NeXT Operating System (EE).

NeXT went further by introducing state passing between the AA and EE.
They wanted an object oriented AA to support modern notions of program
ming, and engineered a linkage between the states of the AA (in features and
classes of Objective C) and the EE. The novelty h!=!re was it allowed tight
integration of the AAjEE with the effect that state elements could be soft
in the sense of being initialized as soft in the AA and evaluated at runtime
by the EE. This is a particularly useful implementation of the notion of late
binding.

It would be of use to our problem if we used the older notions oflCEIMTl:
AA-centered with an object oriented philosophy. But we need to go further,
to EC, meaning model-based, and to a metastructure oriented philosophy. It
serves as probably the best basis for Level 5 engineering.

NeXT has since been acquired by Apple who is adding substantially more
EE services and a collection of multimedia, user interface and Java elements
to the AA.

4.3.2 Dylan

Apple, with perhaps some invisible partners, invested in research to bridge
the gap between EC-type abstraction, specifically functional dynamism and
AA-type requirements, specifically the advantages of 00 abstraction. This
project started as Ralph but became known as Dylan. It's an 00 dynamic
language; with the main goal to greatly shorten the software development
process (within microprocessor parameters).

This is essentially a marriage of Lisp-based EC abstraction strengths with
Smalltalk and C++ AA conventions. Being able to introspectively pass state
information among the EC, AA and EE would allow developers to work on
code while it is executing, with extraordinary benefits.

While not its primary goal, this would have also allowed an enterprise
engineer to introspectively engineer control states for optimization, using the
same models for EI design, control and operating optimization. But instead
of enterprises, Dylan tried to speak to a development community addressing
small, standalone shrinkwrapped PC applications.

This is a problematic community, and for uninteresting reasons Apple

www.manaraa.com

730 Ted Goranson

dropped the project after developing an impressive demonstration version
(which is available to the public). DARPA sponsors a Dylan project called
Gwydion, but this focuses more on easing the abstraction-to-code problem.
And Harlequin has a product, Dylan Works. But that integrates with Win
dows, a particularly blunt environment with respect to state introspection.

Much of the capability of AppleDylan could be handled in modern Lisp
environments, but the decision was made to not extend MacCommonLisp
(MCL) because it was considered too RAM-hungry and too hard to learn for
their target environment: commercial PC applications and their developers.
But MCL has greatly improved with respect to RAM, which has become a
non-issue with lowered chip prices. And in any case, it's not a driver in the
enterprise domain.

Apple has transferred the Dylan technology to DigiTool, and the relevant
parts are being incorporated into MCL.

5 Conclusion

An ideal future commercial infrastructure would allow the modeler to:

• build models according to an EC metastructure of first order logic,
mixed soft and hard entities involving state information, and mixed
representations of processes (activity models) and actions (agents),

• express these in 00 classes and agent applets for EE management, and

• have them both represent for engineering and operate the EE, the en
terprise and its information processing equipment.

And to have state and causality information migrate among these domains.
At least one commercial environment may be capable of Level 5 EI support.
We can assume that market forces will probably sustain this model, and a
number of similar environments will populate the space if Level 5 capability
(and the competitive advantages for the enterprise) is demonstrated.

References

[CP95]

[DR96]

[Dev91)

[Gor92a)

Cotter, M., Potter, M., Inside Taligent Technology, Addison-Wesley,
1995

Devlin, K., Rosenberg, D., Language at Work, CSLI Publications,
Stanford, 1996

Devlin, K., Logic and Information, Cambridge University, 1991

Goranson, H. T., The Integration Domain and the Enterprise Char
acterization, in: [Pet92), 1992, 23-34

www.manaraa.com

[Gor92b]

[Gor92c]

[Gor92d]

[Gor92e]

[Gor92f]

[Gor92g]

[Gor92h]

[Gor92i]

[Gor97a]

[Gor97b]

[Pet92]

[Sha96]

Architectural Requirements of Commercial Products 731

Goranson, H. T., The Integration Domain and the Application Archi
tecture, in: [Pet92], 1992, 47-55

Goranson, H. T., The Integration Domain and the Execution Envi
ronment, in: [Pet92]' 1992, 56-66

Goranson, H. T., Metrics and Models, in: [Pet92], 1992, 78- 84

Goranson, H. T., Dimensions of Enterprise Integration, in: [Pet92]'
1992, 101-113

Goranson, H. T., The Suppliers' Working Group Enterprise Integra
tion Reference Taxonomy, in: [Pet92]' 1992, 114-130

Goranson, H. T., The CIMOSA Approach as an Enterprise Integration
Strategy, in: [Pet92]' 1992, 167-178

Goranson, H. T., Services in the Sirius-Beta Inter-Integration Domain,
in: [Pet92]' 1992, 341-355

Goranson, H. T., Metrics in the Sirius-Beta Integration Domain, in:
[Pet92], 1992, 430-444

Goranson, H. T., Agility Measures: Engineering Agile Systems, http:
/ /www.agilityforum.org/Ex_Proj/MAVE/mave.html. 1997

Goranson, H. T., workgroup reports, in: Proceedings of the Second
International Conference on Enterprise Integration Modeling Technol
ogy, Springer-Verlag, 1997

Petrie, C., (ed.), Enterprise Integration Modeling, Proceedings of the
Second International Conference on Enterprise Integration Modeling
Technology, MIT Press, 1992

Shalit, A., The Dylan Reference Manual, Addison-Wesley, 1996

www.manaraa.com

CHAPTER 34

Integration Infrastructures for
Agile Manufacturing Systems

Richard Weston, Ian Coutts, Paul Clements

Requirements of general purpose integration infrastructures are analysed in the
context of realising more agile manufacturing systems. The analysis provides a
framework for characterising generic capabilities of existing integration infrastruc
tures. The framework is used to highlight the role of the CIM-BIOSYS integra
tion infrastructure and its associated software tools. Also classified are necessary
future developments before integration infrastructures can underpin evolutionary
behaviour in distributed systems.

1 Introd uction - A Context for Integration
Infrastructure Development

In a climate of increasing global competition and continuous (often unex
pected) change, todays businesses need constantly to be reformed, possibly as
an integral part of a virtual enterprise with processes and systems distributed
around the globe. When operating in such a climate all companies will need
continuously to assess, model, analyse, define and implement change to their
core business processes. Essentially this can be viewed as a requirement to
conduct Business Process Analysis and Business Processs Re-engineering (i.e.
BPA and BPR) via a series of Enterprise Engineering Projects on an ongoing
basis. The result may be a need to form new company partnerships and busi
ness units and define and implement a radical realignment of existing unit
operations. Species of business capable of responding rapidly and effectively
should thrive in an environment characterised by change, or at the very least
they should have the capability to survive.

In practice it is extremely difficult to implement radical change on a wide
scale. Change on an enterprise-wide scale may simultaneously require change
to existing organisation structures, company cultures and IT systems; each

www.manaraa.com

734 Richard Weston, Ian Coutts, Paul Clements

"characteristic" of
market opportunity,
or hole in the market

enterprise "configuration",
as defined by

enterprise "configuration",
post secondary definition
by middle management senior managment

eg 85 %fit

enterprise "configuration",
as defined by
system designers

eg 55 %fit

Figure 1: BPA/BPR practice in the UK

eg 70 %fit

enterprise "configuration",
as realised by
system builders

eg40 %fit

of which will be complex in its own right and possess characteristic prop
erties which resist change. Associated with wide-scale change will be dif
ficulties in defining, communicating and adopting a sufficiently meaningful
consensus view of new requirements. Figure 1 was constructed to illustrate
this point following a government funded study of BPAjBPR practice in the
UK [BJWG96j. This exemplifies key problems when formulating a holistic
view of IT system requirements. Although research world-wide on enterprise
modelling seeks to support the development of a holistic view of wide-scale
complex systems, as explained in other contributions of this handbook there
is still much to achieve. Furthermore, even where a consensus view can be
translated into a well defined requirements specification it is evident that
the time frame of major scale IT projects will be of the order of 6 months
to 3 years [BW97j. Such projects also require very high levels of capital
investment [GZW97j. Major complications arise as the timescales and cost
involved in changing or extending pre-existing large scale IT systems may
be much greater than those involved in engineering a replacement. Hence,
in many cases the stripping out of (so called existing legacy) software is the
only viable option.

Figure 2 has been constructed to highlight the effect of deficiencies of
existing approaches to creating software systems. Essentially current ap
proaches either involve the design and development of a specific software sys-

www.manaraa.com

Integration Infrastructures for Agile Manufacturing Systems 735

goodness of fit

1.0

0.75

0.5

0.25

0.1 0.5 1.0 2.0 4.0

goodness of fit
first time systems engineering effort

1.0

0.75

0.5

0.25

1.0 2.5 5 10 20
engineering a system change

Figure 2: Deficiencies of approaches to creating software systems

tern for an end user (which is referred to here as "custom designed monolithic
software") or are based on the use of general purpose software designed to be
configured to meet common end user requirements. In Figure 2 the second
approach is characterised by the use of two terms, namely: "proprietary gen
eral purpose monolithic software" or "modular proprietary general purpose
monolithic software," the latter class of software system being distinguished
from the former by an increased (albeit limited) level of configurability (this
being provided through a modular packaging of the functional elements of
a larger software system by its manufacturer/supplier). Invariably to-date
either approach to building large and medium scale software systems has re
sulted in a so called "monolithic" solution, in which function, presentation,
information, communication and distribution issues are mixed together in a
"tangled web" [Pri96].

The result continues to be solutions which are difficult to build and im
plement and generally even more difficult to modify and extend. Hence gen
erally speaking current generation software systems will lie in the bottom
right-hand quadrant of Figure 2. Whereas, as explained in this contribu
tion, with the advent of integration infrastructure technology (which itself is

www.manaraa.com

736 Richard Weston, Ian Coutts, Paul Clements

based on advances in network, information and distributed object technol
ogy) and new approaches to producing software from reusable components
we can expect this picture to change appreciably. Later the role of so called
"distributed component based software" and "organic distributed component
based software" will be explained, as will the inherent capability of these new
approaches (to building software systems) to move solutions to a "region" of
"good fit, reduced (re)engineering effort," i.e. to the top left-hand. quadrant
of Figure 2).

Clearly long time scales associated with IT change cannot be accom
modated in world-class manufacturing companies where change is becoming
increasingly frequent and of widening scale. It should also be pointed out
that similar complications arise where cultural change of significance is re
quired. As for IT systems, human system change can involve unacceptably
long lead-times and incur high cost; unfortunately staff replacement (or re
dundancies) may be the only viable option. Clearly therefore there is a need
for more agile business and production systems which can respond rapidly
and effectively to changing needs. Indeed the importance of such a need has
been widely recognised and since 1992 a major US government, industry and
academic programme of research and development has been funded under
the umbrella title "Agile Manufacturing" [GNP95].

It is evident therefore that agile systems require an inherent ability to be
reformed so that the individual and collective behaviour of their component
elements can rapidly be realigned to meet changing needs.

This implies the need for suitable resources (i.e. system building blocks
"or components") from which high performance systems can be built quickly
and readily. In turn this implies the need for mechanisms to establish flexible
linkages between components, so that an ability to facilitate system reconfig
uration and reengineering1 is an inherent property of resultant systems. Also
implied is a need for means of supporting the rapid definition and redefinition
of system behaviour, in a form which helps specify, implement, control and
change the individual and collective operation of components.

In this context Figure 3{a) illustrates generic elements of a system built
from reusable components. In seeking to promote the widespread realisa
tion manufacturing systems from reusable components we need to address
outstanding research issues such as:

1. What generic classes of system component can (individually and col
lectively) realise generic functions required by, and hence can be reused

IThe terms reconfiguration and reengineering both concern the realisation of changes in
a system. However the former relates to change which can be realised via relatively minor
physical modification to a system and its functional capabilities; rather reconfiguration
will normally be realised by establishing new logical relationships between physical com
ponents. Whereas typically reengineering will involve a more radical redesign and require
the physical replacement of system components so as to modify the functional capabilities
of the system as a whole.

www.manaraa.com

Integration Infrastructures for Agile Manufacturing Systems 737

in, different businesses? What should be the "grain size" of these com
ponents, their "target domains," the nature of their "interfaces," the
way in which they should be organised and controlled, and so on so
that generic and changing end user requirements can be met and tech
nical performance targets and commercial benefits readily achieved?
What are the commercial and practical implications of using reusable
components, what change will be required to existing IT system and
component supply chains and how can attendant difficulties be over
come?

2. What generic classes of integration service are required and need to be
widely supported to facilitate interoperation2 in a flexible way between
reusable system components? How can these services build upon emerg
ing standards? How can suitable organisational structures and control
architectures be chosen and implemented to meet specialist require
ments of different applications and component configurations? Are new
standards required to cover different business domains and realise in
teroperation between distributed components of enterprises which may
physically span various parts of the globe?

3. What new tools will be required to support the life-cycle engineering
of agile systems built from reusable components? How can tools more
readily support the definition and implementation of individual and
collective behaviour of components, their use of integration services
and the adoption of suitable organisational structures and control hi
erarchies? How can these tools build upon currently available software
engineering and enterprise modelling methods and tools? What new
tools will be required to facilitate the rapid development of software
and the rapid prototyping of associated system elements?

Implicit in a consideration of the issues raised above (and particularly with
respect to (1) and (2)) is the need to define and provide appropriate in
frastructural services and infrastructural functions. As illustrated by Figure
3(b), infrastructural services will be considered to be general purpose facilities
which underpin and thereby enable the operation and interoperation of sys
tem components. They will not themselves realise domain specific function
ality but will essentially playa "passive" role in accomplishing user defined
tasks. However their use as a "catalyst" may lead to enhanced functional
ity and can lead to significant simplification and rationalisation in resultant
systems; particularly in systems comprising many components requiring one
or more similar facilities. Indeed section 6 of this contribution will illustrate
general technical and practical benefits arising from the use of an integrating
infrastructure. However, if unnecessary infrastructural services are included

2The term interopemtion is defined later (in section 3) of this contribution.

www.manaraa.com

738

;...-
:

J ,

"
~."'"

Richard Weston, Ian Coutts, Paul Clements

integration structure
possibly model-driven

.,

component

interface ...
protocol (a)

organisation ~
structure ••

", ,

(

;
,I

/
.-'

(b)

Figure 3: Generic elements of a system and infrastructural services

this can raise the base level entry cost of systems3• There will be a similar
trade off involved when deciding what infrastructural functions to provide;
which will be considered here to be common facilities which play an "active"
role in realising functionality in a given domain and thereby offer general
support functions to system components.

Also implicit in the research issues raised above is a consideration of ap
propriate integration structures. The purpose of integration structures will be
to organise and control component interoperation in systems, so that their
collective behaviour can be targeted at specific system-wide goals. Certain
forms of integration structure can be viewed as being "passive" in nature,
such as an organisational structure or framework which defines responsibili
ties and roles for individual components. Alternatively integration structures
may be "active" in nature, such as control hierarchy which actively functions
(possibly embedded within one or more systems components) to control the
behaviour of a group of components. Thus integration structures restrain and

3Note, however often in wide-scale systems the actual need for infrastructural facilities
may not be known and can be expected to change, Hence it may be appropriate to
provide a more extensive infrastructural capability than initially considered to be necessary
provided that the implied capital cost is not inordinately high (as the cost of change and
lost opportunity costs may be much higher) ,

www.manaraa.com

Integration Infrastructures for Agile Manufacturing Systems 739

focus system behaviour, whereas integration infrastructures enable and sup
port system behaviour. However both integration structures and integration
infrastructures may comprise both "passive and "active" elements.

It is important to bear in mind that the way in which integration infras
tructure and integration structure is realised can have a significant impact
on characteristic properties of resultant systems, in terms of their "agility,"
"performance" and "ease of use." Theoretically various options exist. For
example potentially integration infrastructure and integration structure ele
ments in a system can be separated from each other and from specific'system
functionality required in any given application. However in practice con
temporary IT systems used industrially have been implemented as a tangled
web of interconnected generic (infrastructure and structure) and application
specific elements. Previously this may have been because of a lack of un
derstanding of the issues involved and associated disbenefits, or because of
technological constraints or simply pragmatism. However, particularly in the
case of wide scale systems the result has been high cost systems, long lead
times and solutions which may only fit their purpose acceptably well for short
periods of times (as earlier exemplified by Figure 2).

In the context of supporting the development of agile manufacturing sys
tems this contribution will focus on the provision of infrastructural services
and infrastructural functions as part of an integration infrastructure. It will
consider certain standards initiatives in the area and describe examples of
infrastructure technology. Necessarily the development and application of
infrastructure technology is intimately linked to requirements of and devel
opments in component technology and modelling technology. Technological
developments in such areas promise means of producing general purpose in
frastructures (comprising infrastructural services which support "syntactic
plug and play,,)4 [Ful96).

2 Integration Infrastructure Requirements

Theoretically there are an infinite number of possible infrastructures which
can underpin the operation of business and manufacturing systems. These
may take the form of complex, domain specific functions and services, such
as that provided by a finance, human resource or engineering department or
more general purpose services and utilities, such as the provision of factory
air, electrical power or a computer network. In this section we focus on the

4The term "syntactic plug and play" was defined by Fulton as meaning "an architec
ture in which the relationships among the data manipulated by various applications are
managed through the models that define the data and the operations performed upon it."
... "Semantic plug and play" promises that different applications can exchange specific
types of objects, each with specific roles in each of several applications, without excessive
dependency on the user's knowledge of how that specific data functions in those other
applications." Whereas "syntactic plug and play" relates more directly to hardware and
possibly object compatibility between simple system components.

www.manaraa.com

740 Richard Weston, Ian Coutts, Paul Clements

provision of general purpose computational infrastructures which build upon
technological advances in networking and computer science.

It is evident that many contemporary components of businesses and man
ufacturing systems comprise suitable combinations of human, computational
and electromechanical elements. One way of viewing these components is
that they are resource elements which have the capability to act and interact
in a variety of ways to realise business and manufacturing processes; in so
doing collectively they can operate to accomplish business goals.

Increasingly common is the use of embedded computational capabilities
within such components. When computer processing facilities are not for
mally embedded into components often it is practical and desirable to facili
tate the activities of people and machines by assigning them computational
support. Hence in this context it is appropriate to seek to provide integration
infrastructures which via computational mechanisms support interaction be
tween business and manufacturing components, where potentially such com
ponents may be distributed around a factory, or globally.

Business and manufacturing components can take numerous forms and
are required to interact in many different ways. Arguably therefore it is in
appropriate to seek to optimise the design of a special purpose integration
infrastructure for each manufacturing situation. On the other hand it may
be equally difficult to specify a set of general purpose infrastructural services
which can, in an effective way, underpin the operation of all types of business
and the components they deploy. Nonetheless, a number of integration in
frastructures have been produced which provide a compromise between these
extremes. Furthermore these infrastructures are already being used with
great benefit.

In seeking to provide a generic framework suitable for drawing compar
isons between the capabilities and scope of emerging integration infrastruc
tures the authors refer back to the previous section which identified the need
to:

1. support the life-cycle engineering of systems,

2. support problem decomposition, and thereby appropriate system archi
tectures and perspectives,

3. cater for advances in enabling technology.

They also point to an evident need to:

1. conform where possible to the use of existing standards,

2. realise encapsulation (separation of the "what" from the "how") so that
component interoperation and system operation can be modelled in an
abstract manner which is independent of the details of the physical
mechanisms deployed,

www.manaraa.com

Integration Infrastructures for Agile Manufacturing Systems 741

" t~!I.
:;: B ·-
b I Q.8
.E T t·g ..
] B" !l .g .. I ~ '5

T].R :I ...

perspectives incl: perspectives incl: perspectives incl: penpectives incl:
orgainisation function info objects ~=e

structure process info schema component
architecture behaviolD' info exchange inlen>ction

Ii control chan '0

...
t ~ ...

oetwork meclwlimls

problmo ptnpuJlvu Dr strvice deCOMposition

Figure 4: Integration infrastructure development

3. be structured according to modern systems theory and enterprise mod
elling ideas, and thereby support generally used problem decomposi
tions (or modelling perspectives) and architectures,

4. separate out infrastructure provision from the specific system function
ality required in any given application,

5. separate out infrastructure service provision from the provision of in
frastructural functions , where the former provide simpler domain inde
pendent underpinning services and the latter add functional capability
into a given domain .

Figure 4 has been constructed to illustrate in conceptual form various notions
and assumptions related to integration infrastructure development.

This figure should be viewed as the lower part of Figure 5, which itself has
been constructed as an abstract representation of the GERAM cube [BN95]
which has been used to help unify previous separate understandings and
developments in the area of enterprise modelling and integration. During the
detailed design stage of engineering integrated systems previous experience
of the authors has emphasised the need to describe systems (i.e. model them)
froin four major viewpoints , namely:

www.manaraa.com

742

Strategic
planning

conceptual
design

detailed
design

implementation
description

system runtime
& change

Richard Weston, Ian Coutts, Paul Clements

./' ./' ./ ./ ./ ./
/~ / / /' /

// /' /' /'/'

Dimension: perspective

/
V

/

V

/VV

/vv
/vv generic

artial / /V p

particular JI"
Dimension:

generlclty

Figure 5: Abstract representation of the GERAM cube

1. structure viewpoint: which relates to the configuration of a system
which in turn may concern organisational and architectural relation
ships and issues connected with system components,

2. application viewpoint: which concerns system functions and controls
expressed in terms of the behaviour and interactions between compo
nents, possibly to realise a defined process, procedure or set of events,

3. information viewpoint: which concerns the way in which shared infor
mation is represented, translated, accessed, updated and stored within
a system,

4. component viewpoint: which describes the resource elements deployed
in a given system such as in terms of their interface and interaction
protocol and information sharing and presentational requirements.

Figure 4 distinguishes between organic and basic components, infrastruc
ture functions and infrastructure services; and abstract service descriptions
from integration mechanisms. Clearly following international and de facto
standardisation processes world-wide, general purpose and standard com
putational mechanisms exist to realise data transmission, data interchange,

www.manaraa.com

Integration Infrastructures for Agile Manufacturing Systems 743

messaging and data distribution, as well as data retrieval, update and stor
age. However if it is to be used with relative ease, a general purpose integra
tion infrastructure needs to offer a more abstract set of integration services,
described in terms which indicate "what" service they provide rather than
"how" the service is achieved (i.e. by some low level standard network or
computational mechanism, like MMS, RPC, RS232 protocols, etc). Indeed
previous experience of the authors has shown the need for abstracted (en
capsulated) descriptions of general purpose configuration, application, infor
mation and presentation services, which may be implemented via alternative
network and computational mechanisms. It is also possible to realise formal
mappings between abstract descriptions of these services and the four mod
elling viewpoints (described above) which need to be supported during the
detailed design of engineering systems. As discussed later this can help fa
cilitate rapid prototyping, reconfiguration and reengineering of systems built
from reusable components which operate over an integration infrastructure.

Technological advances have already been made which support the de
velopment of and interoperation between reusable components of systems.
Generally we will see that some classes of component may best be served by
infrastructure services which operate at a greater level of abstraction than
that required to support lower level interaction (and so called "syntactic plug
and play") between other generally simpler classes of component. We will
see that this may be viewed as providing "semantic plug and play" infras
tructural facilities for so called business components, i.e. providing them
with appropriate support capabilities which allow them to co-operate with
other components in a very flexible manner. We may conclude that a cost
of increased flexibility and support will be a need for a "clever" infrastruc
ture which may only function fully in a more restricted application domain,
i.e. it will need to contain infrastructural functions as well as infrastructural
services.

Although not explicitly illustrated by Figure 4 it is also important to
consider the capability of infrastructural services to execute "models," which
may well have been captured during the detailed design of a specific system
or indeed a system of similar type. Potentially such a capability can much
enhance the ability to realise rapid system change (including rapid application
development and rapid prototyping of systems) in such a way that subsequent
actions and interactions carried out by a system are well aligned to higher
level (i.e. more abstract) requirements and goals, as defined for example
by an enterprise engineering toolset. We will return to the issue of model
enactment in sections 5 and 6.

www.manaraa.com

744 Richard Weston, Ian Coutts, Paul Clements

3 Infrastructural Support and Different
Levels of Interaction

It is evident therefore that business and manufacturing systems will continue
to be distributed around the globe and comprise autonomous components
(i.e. business units and their underpinning component resources) which need
to interact5 with each other to realise global goals, in addition to accomplish
ing their own local goals. As classified by CIMOSA [KK90] and illustrated
by Figure 6, conceptually we may consider interaction between system com
ponents to occur at three different levels of abstraction, namely "business,"
"application" and "physical" levels. In such a schema:

1. Business Interaction is required to realise cooperation between business
functions. To facilitate business interaction high level (abstract) inte
gration functions and services will be required to underpin the control,
monitoring and management of business processes. The Business Inte
gration layer of Figure 6 illustrates examples of high level integration
functions and services needed to underpin the interworking of business
functions (which will be termed business components). With respect to
the conceptual framework of Figure 4 essentially cooperation between
business components will require infrastructural support services from
a class of infrastructural functions which correspond to the layer of se
mantically rich infrastructure junctions, albeit that their own operation
will rely on the use of general purpose infrastructural services,

2. Application Interaction concerns integration at the level of software
applications and associated system components. This will involve in
teroperation at a medium level of abstraction between application com
ponents with concentration on what needs to be integrated in a system
(e.g. organisation, control, information exchange and presentation is
sues) ideally without concern for how it will be realised or where infor
mation and specific software processes physically reside. The middle
(Application Integration) layer of Figure 6 shows typical examples of
infrastructural services required to support component interoperation.
These services correspond to the layer of general purpose infrastructural
services depicted in Figure 4, and essentially will be a medium level ab
straction of general purpose services which physically are realised by a
lower level set of (network and computational) mechanisms,

3. Physical Interaction concerns physical structures, mechanisms and con
trols to realise interaction between junctional entities which provide

5Until now the term interaction has been used in a general sense to imply that com
ponents "act collectively" to realise system-wide goals. Of course they will also "act"
individually to realise local goals. Interaction between components requires use of com
mon structures, mechanisms and controls so that collective goals can be realised; generally
this will involve common event synchronisation and resource sharing (such as the sharing
of information of common interest).

www.manaraa.com

Integration Infrastructures for Agile Manufacturing Systems 745

atomic building blocks of components. It is concerned with how inte
gration is practically achieved and by which physical mechanism. It
therefore corresponds to the lowest level of abstraction when character
ising integration services.

Typical examples of mechanisms which realise Physical Systems Integration
are also illustrated by Figure 6 and correspond to a set of physicatmechanisms
which form the generic integration services of Figure 4.

Clearly medium and high level interactions, which subsequently will be
referred to as interoperation and co-operation respectively, only exist con
ceptually. In practice they will be realised by an organised set of low level
integration mechanisms. However, the use of abstractions is vital in sim
plifying the use and characterising and guiding the development of general
purpose interoperation and co-operation structures and infrastructures.

4 Properties of Components

Normally a business component will comprise a set of application components.
Whereas an application component will consist of a lower level set of func
tional entities (or primitive software building blocks). Naturally therefore we
will expect business components to have a greater range of functional capa
bilities than the constituent application components they inherit. Likewise
application components can be expected to possess functional capabilities in
advance of the primitive building blocks of functionality from which they are
built.

Hence one way in which system components can be classified is in re
spect to the scope and range of functional and business process capabilities
they can deliver. Clearly the need to support the various types and scale of
these functions will impact on the infrastructural services which need to be
provided.

A second way of classifying system components is in respect of their in
herent ability to act "intelligently" when they are left to operate as part of a
host system. In this respect basic components (be they business components,
application components or primitive functional entities) may be expected to
provide application specific functionality which can be reused in different sys
tems and operating scenarios. However they will not be required to negotiate
or self optimise the way in which they work with other components, with a
view to optimising the performance of a system as a whole. Nonetheless to
facilitate reuse these basic components will require well defined internal prop
erties (i.e. be described in the form of a model, possibly at various levels of
abstraction) and should utilise "standard" (within domains where they are
to be used) interaction capabilities. In this context the minimum set of ca
pabilities needed by basic (reusable system) components is that they should
positively facilitate their rapid inclusion within systems, and their subsequent
reconfiguration and re-engineering in the event of changing needs. However

www.manaraa.com

746 Richard Weston, Ian Coutts, Paul Clements

CIM Integration Knowledge-based Decision
Supported Business Control '

1970

Business
Automated Business & Process Monitoring

Production & Process Simulation

Integrat~io~n~ ~~~~~ __ _
Portable Applications

Distributed Processing
Application
Integration

Common Servlcesl
Execution Environment

Common (Shared) Data Resources

Inter System Communication!

Network Configuration & Management

Data Exchange Rules & Conventions

Physical Systems Connection

1980 1990

Physical Systems
Integration

2000

CIM Evolution

Figure 6: Interaction between system components

basic components will not be expected to operate organically and thereby au
tomatically develop their own role in a given system. The use of well defined
models of basic components (at different levels of abstraction) should facili
tate the life-cycle engineering of new component generations as well as that
of the systems in which they are used. For example component abstractions
can be used to guide the development of bigger and better components, their
implementation using different hardware and software platforms, and their
maintenance in the field . It is evident that the advent of distributed object
technology, fuelled by the recent availability of infrastructural services sup
porting object distribution and interaction, will provide important concepts
and mechanisms on which to build to produce families of basic component
and thence building blocks of next generation businesses.

With a growing emphasis on agile systems we also anticipate the need for
clever organic components, i.e. a class of components which have sufficient
knowledge of themselves and their environment (or have the capability to
access such knowledge) for them to be able to modify their own role and
behaviour whilst functioning (i.e. during system runtime) as an integral part
of a host system. By producing systems from organic components the result
would be systems which can also demonstrate organic behaviour. Such a
clever class of organic component may require less detailed information and

www.manaraa.com

Integration Infrastructures for Agile Manufacturing Systems 747

intervention from system designers and builders, thereby potentially much re
ducing the time and effort involved in first off system development and even
reducing to zero effort involved in subsequent system change. However, in
evitably organic components will require greater capability within each com
ponent as well as more comprehensive infrastructural services and functions
to underpin interoperation and cooperation in an organic way. Clearly vari
ous possible "grades" or organic behaviour could be realised individually and
collectively by organic components, thereby systems could be designed to
realise various behavioural properties which will provide them with an evo
lutionary capability required by next generation agile systems. In many such
situations it may be expected to be necessary to constrain behavioural change
and system evolution so that associated people and machine systems compo
nents could function in harmony and safety, whilst meeting business goals.
Hence allied advances in the development and use of integration structures
will be necessary to promote the successful deployment of next generation
organic systems.

In this context it may also be appropriate to classify the role of "intelli
gent" components of the kind commonly deployed within human computer
interface systems, such as those based on the use of "intelligent autonomous
agents" . Here distinction is drawn between intelligent components which
during system runtime can adapt and/or evolve their behaviour so that they
competitively realise local (to an individual component) goals from intelligent
components which at system run adapt and/or evolve their behaviour so that
they competitively realise global (i.e. system wide) goals. On categorising
their inherent systems integration capabilities in a given systems context the
former class of intelligent component will be viewed as basic components and
the latter as organic components.

The two dimensional component classification described above (i.e. busi
ness/application/junction entity versus organic/basic) is illustrated graphi
cally by Figure 7. This classification has been developed further in Table 1
which draws distinctions between the infrastructural and structural services
required to support interaction between each component class (this being
designated by a cell number in Figure 7).

NB: The odd numbered entries concern infrastructure services whereas
even numbered entries concern structural services.

This highlights a fairly obvious conclusion that whether or not basic com
ponents have local intelligence their infrastructural requirements will be the
same. Indeed only where organic behaviour is required between a collec
tion of components so that the system itself can behave organically will it
be necessary to provide infrastructural capabilities which underpin the use
of knowledge about a component grouping. Hence distinction is drawn be
tween: components which act individually in an intelligent way and a collec
tion of components which interact intelligently to facilitate the evolutionary

www.manaraa.com

748 Richard Weston, Ian Coutts, Paul Clements

3 6 9

2 5 8

1 4 7

..

BullDesl

COmpoDeJlts

App6catlon

COmpODeJlts

Primitive

CompoDeJlts

level of -'ntelligence-

Figure 7: A two-dimensional component classification

behaviour of a system which may include emergent behaviour6•

5 CIM-BIOSYS: A Research Integration
Infrastructure

This section will seek to emphasise many of the concepts and classifications
introduced earlier in this contribution by referring to the capabilities and ex
ample application areas of the Computer Integrated Manufacturing - Building
Integrated Open SYStems (CIM-BIOSYS) integration infrastructure. The
origin of CIM-BIOSYS concepts and first generation software tools were in
the mid 1980s. Since that time the concepts and their implementation have
been the subject of ongoing development by researchers in the MSI Research
Institute.

5.1 The Basic Set of CIM-BIOSYS Infrastructure
Services

By the late 80s early 90s a basic set of CIM-BIOSYS infrastructural services
had been advanced into a sufficiently complete and robust form to enable
their use in (a) selected industrial application domains and (b) to underpin

6The term emergent behaviour is used in this context to imply that synergy between
components may lead to new behavioural properties and phenomena not present in indi
vidual components.

www.manaraa.com

Integration Infrastructures for Agile Manufacturing Systems 749

For Cell 1 and Cell 4
(1) relatively simple, general purpose and distinct physical
mechanisms to underpin the distribution of components and their
functional interaction and data exchange.
(2) mechanisms which support the use of a suitable organisational
structure, such as an architecture or application framework which
structures and helps configure components.
For Cells 2 and 5
(3) a logical abstraction of (1) to provide a set of "standard"
infrastructural service mechanisms which support component
distribution, interaction and data exchange.
(4) a logical abstraction of (2) to support system management
(i.e. configuration, modification and extension).
For Cells 3 and 6
(5) abstract, semantically rich mechanisms (with embedded
distribution, functional interaction and information interchange
capabilities) which underpin the co-operative working of compo
nents in a given domain.
(6) as for (4) but system management capabilities are likely to
be at a more abstract, user friendly level which is tailored for use
in a target domain.
For Cell 7
(7) as for (1) but in addition physical mechanisms will be
required to enable components to access and store knowledge
(e.g. behavioural rules) about their environment.
(8) as for (2) but additional mechanisms required to support the
management of environmental knowledge.
For Cell 9
(9) as for (5) but in addition, abstract, semantically rich mecha
nisms will be needed to access and store environmental knowledge
in a way which underpins decision making leading to adaptive
behaviour and evolutionary change.
(10) as for (6) but in addition the need to facilitate automatic
system configuration capabilities, based on performance oriented
decision making.

Table 1: Nature of infrastructure and structural services required for each class of
component

the operation of numerous laboratory based proof-of-concept systems (both
in MSI and by other research groups internationally).

This basic set of CIM-BIOSYS infrastructural services is depicted in Fig
ure·8. Essentially they were designed to underpin the interoperation of com-

www.manaraa.com

750 Richard Weston, Ian Coutts, Paul Clements

ponent types 1, 2, 4 and 5, according to the classifications of Figure 7.
This early version of the CIM-BIOSYS integrating infrastructure can be

considered to comprise a number of functional blocks which are described
briefly in the following.

The service manager provides a consistent set of interaction mechanism
for all integration services provided by CIM-BIOSYS, thereby providing ap
plications with a consistent set of access mechanisms. Example services sup
ported to date include establishing a communication data link with another
application, sending data to an application, opening a remote file, etc. These
services have built on and incorporated various emerging international and
de facto standards.

The runtime manager controls all external processes (manufacturing ap
plications and device drivers) and monitors any error conditions that occur
within the CIM-BIOSYS integrating infrastructure. As part of the system,
engineering, administration and operator interfaces are also provided which
enable full manual control of applications and a window into the system such
that the operator can see the state of processes within the system. This
provides facilities for debugging and maintaining the operation of integrated
systems.

The configuration manager maintains all internal system configuration
data and external configuration files. The administration interface offers one
means of enabling manipulation of system configuration data.

The driver manager allows a variety of device drivers to access CIM
BIOSYS using its consistent set of interaction mechanisms. Device drivers
are required to hide/cater for differences between, and within, the various
classes of resources which require to be integrated into a manufacturing sys
tem. Examples of system resources supported in this way include shop-floor
machines, proprietary databases, CAD/CAM and MRP packages, human in
terface systems, etc. These mechanisms and an associated methodology for
creating device drivers provide the means whereby an installed base of sub
systems can be included within soft (or highly flexible) integrated systems;
thereby offering a graceful migration towards fully conformant open systems.

5.2 European Standards Specification for
Infrastructural Services (EMEIS) - CEN TC 310:
A Requirements Specification for Integrating
Infrastructures

To aid the reader's understanding and appraise the suitability of the design
concepts and integration services included within CIM-BIOSYS here we refer
to the European Standards Specification for Infrastructural Services, which
is known as EMEIS. EMEIS was specified during the period early to mid
1990s by Working Group one (WG1) of CEN TC3107 .

7CEN: Communaute European de Normes (European Standards Community)

www.manaraa.com

Integration Infrastructures for Agile Manufacturing Systems 751

system specific set of interacting software processes

C/M-BIOSYS

Figure 8: The basic set of CIM-BIOSYS infrastructural services

As illustrated by Figure 9, this specification defined requirements of a
generic set of IT systems integration services (GenIS) which:

• facilitate distribution transparency and interworking between open sys
tems

• provide protocol to achieve data exchange

• make maximum use of available standards, i.e. protocols and services

• are decoupled from underlying technology, such as via the use of a client
/ server architecture

• contain an abstraction of service mechanisms which support encapsu
lation, i.e. describe "what" not "how"

• utilise an application programming interface to provide transparency
of service provision and application portability

• are structured according to systems theory, so that system interopera
tion can be enabled rapidly and effectively

www.manaraa.com

752 Richard Weston, Ian Coutts, Paul Clements

MDS-
model development services

MXS-
model execution services

GenlT-
IT base services

Figure 9: EMEIS

The EMEIS specification also defined the need for appropriate model exe
cution services (MXS) which should be "open" to different modelling ap
proaches. The purpose of the MXS is to structure and semi-automate the
realisation of systems by embedding a model into EMEIS, thereby convert
ing it into an executable entity. Hence the MXS should provide all services
required to execute models, including an ability to support three types of
modelled component, namely: compiled, interpreted, and parameter driven.

Thirdly EMEIS specifies the need for model development services (MDS)
to enable models to be developed and tested before release. Key requirements
which straddle model development and model execution services (i.e. MDS
and MXS) were:

• common mechanisms to describe modelled components, using different
languages available from alternative suppliers,

• common mechanisms to support interaction, primarily messaging be
tween MDS and MXS. standard ways of describing model behaviour,

• common set of semantics to model the states of components and to
achieve signalling those states,

• common procedures for declaring, registering and withdrawing mod
elled components.

5.3 Assessment of the Basic Set of CIM-BIOSYS
Services with Reference to EMEIS

Although they were realised before the EMEIS specification was developed,
essentially the basic set of CIM- BIOSYS integration services (depicted by
Figure 8) meet each of the requirements specified for the GenIS of EMEIS.

www.manaraa.com

Integration Infrastructures for Agile Manufacturing Systems 753

This is illustrated by Table 2. However, as the EMEIS specification is fo
cused on generic functional requirements and general design principles, in
practice EMEIS conformance can be realised in different ways; therefore Ta
ble 2 explains how CIM-BIOSYS meets EMEIS design criteria and functional
requirements.

Requirement Means of achieving
requirement in
CIM-BIOSYS

facilitate distribution network configuration hidden
transparency from applications, this being

supported by configuration tools
facilitate interworking interaction and connection

service provision
facilitate data exchange information service provision
maximise use of provides an abstraction of
standard/available protocol and service protocols, thereby
services acilitating the use of commonly

used standards like RPC, SQL,
MMS, RS232

means of decoupling services neutral data exchange
from underlying technology mechanisms for service

invocation
abstraction mechanisms used generalised service provision
and means of realising
encapsulation
use of application programming APIs provided for each service
interface
structuring of solutions promotes an organised, reusable
according to systems theory and scaleable decomposition of

application processes to support
their (re)engineering and
(re) configuration

Table 2: How the basic set of CIM-BIOSYS services meets EMEIS design criteria
and functional requirements

5.4 The Provision of EMEIS Conformant MDS and
MXS Capabilities

Since the early 1990s MSI researchers have focused significant research and
development effort on producing MDS and MXS capabilities. In most cases
model execution has been targeted on the CIM-BIOSYS infrastructure. How
ever the work has provided proof-of-concept facilities which can readily be re-

www.manaraa.com

754 Richard Weston, Ian Coutts, Paul Clements

targeted at other infrastructural forms. Hence facilities have been developed
which conform to MDS and MXS requirements of the EMEIS specification.
Most of these developments were realised between 1992 and 95 as part of a
UK Government funded project known as "Model Driven CIM"; the results
of which are reported in greater detail elsewhere [WEH95]. However, MSI
research in this area is ongoing, as outlined in section 7 of this contribution.

Two threads of related research within the Model Driven CIM project led
to (a) general purpose MXS facilities and (b) a high level of abstraction of
general purpose infrastructure facilities. The level of abstraction was chosen
with the purpose of decoupling MXS operation from details of the infrastruc
tural services which it is required to use. This was considered to be important,
particularly as commercially available alternatives to CIM-BIOSYS began to
emerge (e.g. CORBA [CORBA95], NEWI [SSA96] and WWW products and
services). Another thread of related research within the Model Driven CIM
project developed a number of alternative modelling environments which sat
isfy the MDS requirements of EMEIS. Here meta CASE tool technology has
been deployed to produce a complementary set of workbenches which fa
cilitate enterprise modelling. Two such workbenches respectively support
"process oriented" and "object oriented" modelling of systems during vari
ous life phases and from different perspectives. Both workbenches support
the capture and development of models and their transformation and release
to model execution services which are capable of executing the models over
an integrating infrastructure. More complete descriptions of these alternative
modelling environments can be found in [WEH95, WG95b, Wes97].

Table 3 has been constructed to summarise key aspects of MSI research
related to the development of MDS and MXS facilities. However it should be
re-emphasised that many MSI researchers have been working in this arena
and other perspectives on such issues are reported elsewhere in the literature.

Potentially enormous benefit can be realised from an ability to execute
models over an integrating infrastructure, particularly if this can be achieved
in a standard and flexible way. Under laboratory conditions MSI researchers
have shown in various application domains that combinations of MDS, MS
and GenIS facilities can naturally:

1. generate multi-perspective computer processible models of components
and systems which can be transformed and used in different ways,

2. support the decomposition of existing and future systems into reusable
objects (i.e. components and resources) and their organisation within
object classes, object frameworks, object libraries, and so on,

3. utilise "flexible" and "standard" integration mechanisms (such as those
provided by a GenIS) to realise different system behaviour via vari
ous object interactions, in a reusable, reconfigurable, extendible and
scaleable manner. What is more, the interoperating objects can be
"modelled components" or "real components," or combinations of them.

www.manaraa.com

Integration Infrastructures for Agile Manufacturing Systems 755

MDS and MXS requirement Example approaches
supported by MSI
workbenches and tools (used
in conjunction with
CIM-BIOSYS)

common mechanisms for Various process oriented and
describing modelled components object oriented modelling

constructs, made available as an
integral part of enterprise
modelling and software
engineering tools. These include
CIMOSA, IDEF, EXPRESS,
STEP, Booch, STL, PetriNet
and Estelle modelling constructs

common mechanisms to support CIMOSA lIS conformant service
interaction between MDS and mechanisms, MSI derived Binary
MXS Transition Language, EXPRESS

and STEP Translators, Parsers
and Configuration Tools, Estelle
and STL process description
mechanisms

standard way of describing Timebased Stochastic, Coloured
model behaviour and Modular Petri Nets, Harrel

State Charts, MSl's Binary
Transition Language

common set of semantics No underlying ontology
common procedures for Management functions for start,
declaring, registering and terminate, connect, select, status
withdrawing components

Table 3: Means of Realising MDS and MXS Requirements

We may confidently expect property (3) above to have a major impact on
current practice when engineering and configuring agile systems from compo
nents which have embedded software processes. Indeed naturally this prop
erty can facilitate:

1. system analysis based on simulation to help realise better system de
signs, such as via the selection of suitable candidate models, real com
ponents and integration schemata,

2. system implementation and extension based on emulation. When the
operation of modelled components is proven they can be replaced incre
mentally by real components, i.e. thereby providing an ability to add,
delete, modify or change behaviour and functionality,

www.manaraa.com

756 Richard Weston, Ian Coutts, Paul Clements

3. model driven system operation as a precursor to model driven configu
ration, real-time data processing and visualisation, model capture and
automatic validation and model based system adaptation and evolu
tionary behaviour.

6 Case Study Examples

6.1 Flexible Integration and the Control of Shop Floor
Systems

Early versions of the CIM-BIOSYS integration infrastructure were engineered
by MSI researchers8 to solve generic problems of co-ordinating and controlling
the operation of heterogeneous manufacturing machines. Figure 10 illustrates
example flexibly integrated manufacturing systems in which the interopera
tion of various classes of manufacturing component was achieved by enabling
structured and configurable access to CIM- BIOSYS integration services.

Figure lO(a) illustrates conceptually a relatively simple integrated system
produced (in early 1990) in this way for a major UK manufacturer of printed
circuit boards. In this case the original requirement was to control in a flexi
ble way the operation of a surface mount technology (SMT) production line
comprising different types and makes of computer controlled machine. In
dividual machines deployed different computational platforms and interface
protocol; required different styles of interface mechanism to achieve inter
action with machine operators; and had different local application software
support capabilities. The original systems specification determined the need
for a cell control system capable of: (1) co-ordinating the collective operation
of machines deployed by a production line; (2) supporting individual machine
operation and set up by providing database access to machine programmes
and printed circuit board data; (3) monitoring the operation of machines; (4)
supporting machine operators, via common "look and feel" interfaces. Also
implicit was a need to enable modification and extension on a system-wide
basis, as it was evident that: (i) there were also opportunities to improve the
performance of other printed circuit board production lines within the com
pany; (ii) it would be necessary to replace SMT machines with more advanced
machinery as it became available (possibly within months rather than years)
and (iii) the functional capabilities required from any given production line
could be expected to extend (with resultant increase in system complexity) as
pressures for increased productivity levels and reduced lead-times continued.

The successful installation in the company of the CIM-BIOSYS based sys
tem depicted by Figure IO(a) followed an unsuccessful attempt by an external
IT subcontractor to use conventional system design and construction tech
niques9 to meet the identified need. The relative success of the CIM-BIOSYS

8Much of the early CIM-BIOSYS work was the brainchild of Jack Gascoigne.
9The sub-contractor involved deployed well proven methods of building custom designed

www.manaraa.com

Integration Infrastructures for Agile Manufacturing Systems 757

approach stemmed directly from the availability of common infrastructural
services. This led naturally to a separation of distribution, interaction, in
formation sharing and presentation issues, and a further separation of issues
concerned with application functionality and system management and con
figuration. Thus use of the CIM-BIOSYS Integration Infrastructure led to
a natural problem decomposition and thereby provided a means of handling
complexity. Evidently, however, whether or not systems are structured and
supported via an infrastructure there remain complex systems integration
problems to solve.

One generic integration problem, illustrated by the case study example of
Figure 8(a), is that of coping with "legacy" components and systems. For the
case study, the SMT machines offered only rudimentary and custom designed
digital data link capabilities to upload and download data and to remotely
invoke and monitor machine operation. This situation is a very common one
with respect to shop floor machinery used in many industries. Hence a struc
tured approach to handling legacy machines was developed in MSI based on
the use of so called "alien application handlers," which essentially function as
a configurable "gateway" for non-CIM-BIOSYS conformant system elements.
These handlers provide a structured and reprogrammable way of facilitating
protocol conversion between heterogeneous protocols (deployed by specific
machines or groups of them) and the "standard protocol" required to access
the services of CIM-BIOSYS. In this way flexible linkage can be established
with "alien" machines to facilitate remote control of their operation; albeit
that typically (1) the capabilities of such a link will be constrained by the
interface and interaction capabilities provided by the machine builder and
(2) it is necessary to develop an "alien application handler" for any machine
not previously supported. Although in respect to (2) generic alien applica
tion handlers have been produced by MSI researchers which much simplify
this process and once a machine handler has been produced it can be reused
many times over.

A second generic integration problem illustrated by the case study con
cerns the configuration and management of systems. On their own the basic
set of CIM-BIOSYS infrastructural services do not realise systems engineer
ing and reconfiguration, rather they structure and support this requirement.
Hence MSI researchers also produced a set of generic software tools which
support the configuration of CIM-BIOSYS application processes and thereby
facilitate system reconfiguration (and hence system modification and exten
sion). The case study industrial use of CIM-BIOSYS determined a need
to provide different styles of interface to these tools which suit generic re
quirements of system managers, builders and maintenance personnel. Al
though each of these needs were satisfied it became evident that conceptual

computer links between computer systems and their underlying processes. Although these
links were established using well proven methods the approaches used failed to provide a
sufficiently well structured and robust way of building a system in which complex interac
tion processes are involved.

www.manaraa.com

758 Richard Weston, Ian Coutts, Paul Clements

system en gineers
~.Jiiii

(a)
pcb assembly machines

Interconnection, interaction. information exchange & resentation enabled b

~materiab ~ I eng ebts
lannin management

(b)

CIM-BIOSYS Infrastructure Line 2
(c)

Line 3

Line 4

Figure 10: Flexibly integrated manufacturing systems

design decisions had to be made concerning the inclusion of domain spe
cific functionality into systems configuration tools intended for generic use.
Hence for example the basic system configuration capabilities included into
the CIM-BIOSYS infrastructure support different styles of user interface but
only directly facilitate the processes of forming associations between appli
cation processes and establishing their distribution. To maintain a general
approach therefore formal architectural structures linking CIM-BIOSYS ap
plication processes (Le. integration structures) are implemented and main
tained by one or more other CIM-BIOSYS application processes, whereas the
configuration services only support the engineering of such architectures.

A third class of generic systems integration problems illustrated by this
case study was highlighted following subsequent needs of the company to
extend and enhance its SMT lines. In particular this exemplified difficulties
involved in choosing an appropriate decomposition of application functional
ity and mapping that decomposition onto a suitable set of application pro
cesses which can interoperate effectively over an integration infrastructure.
Clearly this area of need is vast in its scope as it raises issues such as: how
can the operation of the application processes in a system be aligned to high
level business needs? can a particular application decomposition be realised
effectively and changed readily? and so on. Hence significant research effort

www.manaraa.com

Integration Infrastructures for Agile Manufacturing Systems 759

in MSI has been focused of finding ways of realising appropriate application
decomposition rapidly and effectively. Here enterprise modelling and soft
ware engineering tools have been utilised and advanced. A primary area of
study has been centred on developing MDS and MXS capabilities which sup
port the mapping of abstract models of system functions, system behaviour,
and information flows onto application processes executed over an integrating
infrastructure.

A fourth generic system integration problem illustrated by the case study
application concerned a company requirement to provide common classes of
interface to machine operators, shopfloor supervisors, maintenance person
nel and systems engineers. The interfaces required need to be largely in
dependent of specific human interface requirements of proprietary machines
as this can improve the efficiency with which different classes of user fulfil
their role and reduce training requirements and system implementation time
frames. Once again MSI researchers deliberately separated the use of the
basic CIM-BIOSYS infrastructural services from abstract representations of
human presentational requirements and the support of these requirements by
off-the-shelf software tools. In this way specifics of company methods and de
velopments can be separated away from technology developments in human
computer interface (HCI) techniques and from specifics of the software pro
cesses involved. Indeed this thread of study led onto more generic research in
MSI on modelling and profiling users of manufacturing systems by deploying
MDS, MSX and GenIS facilities as reported by Monfared [MWWH96]

Shortly after commissioning the system depicted by Figure lO(a) (i.e. in
mid 1990) it became necessary to support new integration requirements. Cer
tain of these new requirements emerged for business reasons, others emerged
as it became evident to the company that the approach of using an integrat
ing infrastructure could be beneficially applied on other SMT production
lines in the company. The inherent flexibility of the CIM-BIOSYS approach
and the reusability of software processes, human interface systems and alien
application handlers allowed changes depicted by Figure 10(b) to be accom
modated with orders of magnitude saving in both engineering effort and lead
times when compared with conventional approaches to systems engineering.
The most challenging changes in requirement concerned the need to realise
remote access to proprietary software systems (used to support materials
requirements planning, computer aided process planning, engineering data
management and materials, inventory and quality tracking) as depicted by
Figure 10(c). At the time the approach taken was similar to that adopted
for machines; where an alien application handler was specified and imple
mented primarily to realise protocol conversion (as appropriate via "screen
scrapping") between abstracted CIM-BIOSYS service protocol and the pro
grammatic and/or human interfaces utilised by specific software packages. In
this case remote terminal access to such packages was already available, but
the natural abstraction of the integration services realised by deploying an

www.manaraa.com

760 Richard Weston, Ian Coutts, Paul Clements

define system
modelling domain

model building capability

SEW-~SA

MXS-based on MSl's BTL & EXPRESSmodel enactment

Gen OS- based on CIM-BIOSYS integration services

integration infrastructure

Figure 11: Support of the integration of software components

integration infrastructure proved to be highly beneficial as the company em
ployed a variety of networks and protocols. Indeed this line of study served as
a forerunner to a number of follow up research projects which have studied al
ternative means of accessing legacy software and more futuristically utilising
MDS, MHX and GenIS facilities to investigate how contemporary monolithic
software systems can be broken down into smaller grained, reusable software
components [EHW97].

6.2 The Provision of Generic Integration Services for
Enterprise Engineering Workbenches: A Surrogate
CIMOSA lIS

During the early 1990s the basic set of CIM-BIOSYS infrastructural tools
were used in a variety of application areas. Probably the most innovative
of these has been its use to provide the basis of a runtime execution envi
ronment for a number of enterprise engineering workbenches. As mentioned
earlier, much of this work is reported elsewhere in the literature. However
to illustrate the principles involved here we consider a case where the CIM
BIOSYS toolset was extended to enable it to execute CIMOSA conformant
models [Agu95] .

Figure 11 illustrates how the CIM-BIOSYS integrating infrastructure has

www.manaraa.com

Integration Infrastructures for Agile Manufacturing Systems 761

been used to support the interoperation of software components in accor
dance with the requirements of the Business Entity of CIMOSA. By so doing
the Business Entity provides an MXS facility for executing models of system
behaviour expressed both in Petri Net forms and by using a behavioural de
scription language (BTL) defined and developed by MSI researchers. This
approach has proven to be very powerful in facilitating system analysis and
visualisation leading on consistently to the co-ordination and control of real
and model components, which function collectively by accessing the common
CIM-BIOSYS infrastructural services. Thus models created, tested and re
leased by a CIMOSA conformant modelling tool (in this case MSIs SEWOSA
enterprise engineering tool which functions as a MDS) can be used to struc
ture and drive the operation of real systems in a way which flexibly maps
integration structure onto concurrently operating application processes. The
so called business model (used as input to the Business Entity) can be modi
fied rapidly and if required the effect of such modifications can be assessed via
use of a simulation tool before the new executable model is released. In this
way cooperation, interoperation and interaction between modelled and real
components of various systems can be changed rapidly and effectively. Such
changes can be invoked having followed rigid system design processes and pro
cedures, whereas alternatively they could be invoked on-line, either under hu
man supervision or automatically, e.g. in response to predefined commands,
environmental stimuli or changed system goals. In such cases CIM-BIOSYS
can readily support the incremental addition of software processes including
processes which control and/or adapt and evolve the behaviour of groups of
processes.

7 N ext Generation Agile Systems

Thus we have seen that modelling, component and infrastructure technolo
gies are emerging which promise a step change in practice leading to better
systems, more quickly and cheaply. On the not too distant horizon are self
adapting systems in which components interact not only flexibly but intel
ligently so that resultant systems can be considered to demonstrate organic
behaviour.

Ongoing research in the MSI Research Institute seeks to promote the de
velopment of integration infrastructures and model driven integration struc
tures which promise to promote the realisation of a new generation of agile
manufacturing systems. Ongoing studies are investigating such developments
along both dimensions of the component classification matrix illustrated by
Figure 7. Along the vertical axis being considered are alternative basic com
ponent decompositions and their interaction, interoperation and coopera
tion needs with a view to meeting sometimes conflicting needs of IT com
ponent and system providers and the manufacturing end user communities
they serve. Whereas along the horizontal axis of Figure 7 an area of cur-

www.manaraa.com

762 Richard Weston, Ian Coutts, Paul Clements

rent study seeks to identify generic requirements of organic components, and
their impact on integration structures & infrastructures, so that systems can
be realised which are capable of rapidly responding to change without the
need for human intervention. The types of change being considered include
the addition/removal of components into/from a system, the modification of
structures used to organise and control the system, and the resultant impact
on quality of service. This work has confirmed that additional infrastructure
services and functions are required to underpin interaction, interoperation
and cooperation between organic components which are over and above those
required by basic components.

Indeed to date the work has identified additional infrastructure require
ments which include:

• a capability to register the capabilities of each component in a sys
tem, so that other components can select and qtilise those capabilities,
this being analogous to advertising capabilities on yellow pages of a
telephone directory,

• a capability for the infrastructure to support the negotiation process
between components, as new or modified relationships are developed,

• a capability for the infrastructure to have (or have means of accessing)
knowledge of system structures, so that the components of a system
collectively function in alignment with system-wide goals,

• a capability for the infrastructure to report its state and activities to
external entities.

To realise the infrastructural capabilities listed above MSI researchers are
investigating the use of various mechanisms and standards including: KQML
[FMFM94], the Business Object Facility proposed within OMG [OMG96]
and Newi negotiation protocols. .

8 Conclusions

This contribution has highlighted key barriers which must be overcome before
we can produce complex systems, comprising distributed software processes.
Currently the timeframes involved in developing large scale software systems
are orders of magnitude too long. Also difficulties involved in systems reengi
neering place undue constraints on business processes. In this context this
contribution has illustrated the important enabling role that network and
associated computational infrastructural services will play in building better
systems, more quickly and cheaply.

It is evident however that many parallel technical and commercial devel
opments will be necessary before the potential of infrastructure technology
can be fully realised. In some areas tools based on Internet are already

www.manaraa.com

Integration Infrastructures for Agile Manufacturing Systems 763

dramatically impacting practice. However to more generally enable the de
velopment of business processes this contribution has shown how it will also
be necessary to:

1. develop and agree upon appropriate problem decompositions to han
dle the complexity involved. This leading to descriptions of reusable
components and systems, and possibly business processes,

2. develop and agree upon more abstract, user friendly and comprehensive
general purpose integration services, which can support the flexible and
effective integration of the decompositions identified under (1),

3. develop and unify the use of enterprise (including software) engineering
toolsets. This providing means of creating better specialist enterprises
and systems and of supporting developments under (1) and (2).

Already researchers and system developers have advanced systems integration
technology to a point where larger scale solutions can be handled better than
before, at least in proof-of-concept form. Hence the challenge is to accelerate
this trend and more widely bring industry and commerce on board.

References

[Agu95] Aguiar, M. W. C., Executing manufacturing models of open systems,
PhD Thesis, Loughborough University, 1995

[BJWG96] Barber, M. 1., Jennis, S., Weston, R. H., Gascoigne, J. D., A Study
of Business Process Re-engineering Practice in the UK, MSI Pub.,
Loughborough University, 1996

[BN95] Bernus, P., Nemes, L., A Framework to Define a Generic Enterprise
Reference Architecture and Methodology (GERAM), Div. Rep. No.
MTM 366 CSIRO Div. of Manu£. Tech., Preston, 1995

[BW97] Barber, M. I., Weston, R. H., Scoping study on business process
reengineering: towards successful IT application, in: International
Journal of Production Research, 1997

[CORBA95] The Common Object Request Broker: Architecture and Spezification,
Revision 2.0, OMG, July 1995

[EHW97] Edwards, J. M., Hodgson, A., Weston, R. H., Manufacturing Software
Interoperability: Steps Towards Interoperating Distributed Objects,
Second Review Report to EPSRC/CDP, Loughborough University,
1997

[FMFM94] Finin, T., McKay, D., Fritzson, R., McEntire, R., KQML: An Infor
mation and Knowledge Exchange Protocol, in: K. Fuchi, T. Yokoi
(eds.), Knowledge Building and knowledge sharing, Ohshama, and
lOS Press, 1994

www.manaraa.com

764 Richard Weston, Ian Coutts, Paul Clements

[FuI96] Fulton, J. A., Semantic Plug and Play - Model-Driven Interoperable
Information Systems, in: J. G. Nell (ed.), Proceedings of Joint Work
shop on Standards for the Use of Models that Define the Data and
Processes ofInformation Systems, NIST, Ga., USA, 1996

[GNP95] Goldman, S. L., Nagel, R. N., Preiss, K., Agile Competitors and Vir
tual Organisations, Van Nostrand Reinhold Pub., New York, 1995

[GZW97] Gascoigne, J. D., Zhang, B. L., Weston, R. H., A Report on the UK
Cell Control Marketplace, in: Integrated Manufacturing Systems, Vol.
8, No.2, 1997

[KK90] Kosanke, K., Klevers, T., CIMOSA: Architecture for Enterprise In
tegration, Journal of Computer Integrated Manufacturing Systems
Vol.3, No.1, 1990, 317-332

[MWWH96] Monfared, R. P., Waine, P., West, A. A., Hodgson, A., A Common
User Interface for CIM, Intelligent and Cognitive Systems Conference
96, Tehran, Iran, Sept 1996, Ed. Caro Lucas, Pub. IPM (Institute
for studies in theoretical Physics and Mathematics), Tehran, 1996,
310-316

[OMG96] OMG96, Common Business Objects and Business Object Facility
(cf/96-01-4), Object Management Group, Framingham, MA, US, 1996

[Pri96] Prins, R., Developing Business Objects - A framework driven ap
proach, McGraw Hill, 1996

[SSA96] SSA96, New World Infrastructure (Newi), SSA Object Technology,
Newbury, UK, 1996

[WEH95] Weston, R. H., Edwards, J. M., Hodgson, A., Model Driven CIM: A
framework and toolset for the design, implementation and manage
ment of open CIM systems, Final Project Report to EPSRC, Lough
borough University, 1995

[WG95b] Weston, R. H., Gilders, P. J., Enterprise engineering methods and
tools which facilitate simulation, emulation and enactment via formal
models, in: P. Bernus, L. Nemes (eds.), Working Conf. on Models
and Methodologies for Enterprise Integration (EI95), IFIP TC5 Spe
cial Interest Group on Architectures for Enterprise Integration, Heron
Island, Australia, Chapman and Hall, London, 1996, 1-16

[Wes97] Weston, R. H., A suite of software tools for rapid prototyping of flex
ible and extendible manufacturing systems, International Journal of
Production Research, 1997

www.manaraa.com

CHAPTER 35

Distributed Processing
DCE, CORBA, and Java

Andy Bond, Keith Duddy, Kerry Raymond

DCE and CORBA are two distributed processing technologies that provide remote
procedure calls in a location-transparent manner between heterogeneous platforms.
Java is not a distributed processing technology, but a programming language that
can be executed remotely using Web browsers. There are advantages and disad
vantages to the use of each of these technologies, and there are some benefits in
combining them.

1 Introduction

Distributed processing involves the construction of an application from multi
ple components which are physically distributed over a number of computers.
The challenges of distributed processing include:

• enabling communication and synchronisation between the components

• overcoming the heterogeneity of the hardware, operating systems, and
programming languages used by the components

• finding the components wherever they are located in the current con-
figuration.

DCE and CORBA are superficially similar technologies for constructing dis
tributed applications. Both DCE and CORBA provide remote procedure
calls in a location-transparent manner between heterogeneous platforms. How
ever, the goals of DCE and CORBA and the approach to their standardisa
tion were significantly different, resulting in two technologies with an almost
disjoint set of strengths and weaknesses.

Java is widely touted as the "new direction" for distributed applications.
Unfortunately many commentators mistakenly believe that Java is a dis
tributed processing technology. On the contrary, Java is not a distributed

www.manaraa.com

766 Andy Bond, Keith Duddy, Kerry Raymond

processing technology, but a programming language that can be executed
remotely using Web browsers, giving the illusion of distributed processing.
In this review, the goals and history of DCE, CORBA, and Java are ex
plored, and the major components of each technology described. An outline
is given on how to develop a distributed application using the various tech
nologies, and the underlying infrastructure of each technology is explained.
Based on this information, the technologies can be compared and their future
predicted.

2 Distributed Computing Environment
DCE

The Open Software Foundation's (OSF)1 Distributed Computing Environ
ment (DCE) emerged in 1990 following a request for technology issued in
1989 [FKR92]. The request called for a single software technology that would
provide vendor transparency and the sharing of resources. A snapshot of DCE
was released in 1990 incorporating technologies from organizations such as
Digital, Hewlett Packard, MIT, Siemens-Nixdorf, and Transarc. The selected
technologies were mostly individually mature and the contribution of DCE
was their integration into a single toolset.

DCE is licensed as source to vendors. Several reference platforms are
provided to verify further ports to vendor platforms. As a consequence of
this common code base, DCE products offered by different vendors are highly
interoperable.

2.1 Components

DCE supports the development, use and maintenance of distributed appli
cations based on the client/server interaction model. The environment is
provided through a layered architecture as presented in Figure 1. It is a
middleware or enabling technology designed to provide distributed system
services layered above the basic operating system and network services. DCE
was primarily designed for use by C programmers.

Services within DCE are strongly integrated. Each relies on the others
for essential distributed systems support. In addition, DCE is an extremely
adaptable environment allowing the programmer to modify the behaviour of
these services by the setting of attributes and by selecting between alternative
mechanisms.

2.1.1 Threads

Threads provide multiple execution paths within a single program while shar
ing common program data. Private data is maintained within each thread

IThe OSF is now part of The Open Group.

www.manaraa.com

Distributed Processing 767

Di tributed File Service I

/// I I ~
CDS

I" Security

DNS I X.SOO
DTS

RPC

Threads

Operating System and Network Services

Figure 1: The Distributed Computing Environment components

stack. Threads are not a fundamental requirement for a distributed environ
ment, but threads provide a more sophisticated programming model suited
to the more complex needs of distributed applications. For example, a multi
threaded process can prevent deadlock caused by cycles of interactions which
occur when a number of services make use of one another.

DCE threads use the Posix l003.4a threading interface known as Pthreads
for thread management, synchronisation, and mutual exclusion. All DCE
Services are fundamentally thread-aware allowing support for simultaneous
access to resources.

2.1.2 Remote Procedure Call

The Remote Procedure Call (RPC) is a syntactic model for process interac
tion which supports a client/server communication model. The RPC is the
backbone of DCE as a distributed system. The DCE run-time supports:

• the selection and location of an appropriate server for the client

• the allocation and maintenance of a communication path between the
client and server

• the transmission of messages between the client and server to implement
the RPC

• the marshalling and unmarshalling of data transmitted between the
client and server.

www.manaraa.com

768 Andy Bond, Keith Duddy, Kerry Raymond

2.1.3 Cell Directory Service

A directory service enables servers, components, and other information of a
distributed environment to be identified and located by a logical user-friendly
name. The DCE directory service is a White Pages service which stores and
retrieves names, types and addresses.

A DCE cell is a set of nodes, grouped together as a single domain for
administrative purposes; the use of cells is a scaling mechanism within DCE.
The DCE directory service is divided into inter-cell and intra-cell parts which
combine to provide a global White Pages service. The Cell Directory Service
(CDS) uses a hierarchical naming scheme within each cell. Inter-cell naming
is handled through the Global Directory Service (GDS). The GDS uses either
X.500 or the Domain Name Service (DNS) to locate remote cells and interact
with their local CDS.

A CDS name uses a shortcut prefix to specify the local cell

/. :/servers/addition

while GDS names include either a DNS or X.500 component to specify the
cell of origin. An example of a DNS-based name is:

/ ... /paladine.dstc.edu.au/server/addition

while an example ofaX.500-based name is:

/ ... /C=AU/O=DSTC/OU=Architecture/server/addition

2.1.4 Security Service

Security is an important aspect of distributed computing, and DCE's inter
operable security infrastructure [Hu95] is one of its strengths. DCE's au
thentication is based upon MIT's Kerberos authentication service which uses
private key technology to verify the identity of resources and allocate tickets
based on that identification. DCE has extended this technology to include
access control through a privilege service. This uses access control lists (ACL)
to specify resource access for both local users (within a cell) and also foreign
users (from other cells). The ACL data structure used by DCE is a superset
of POSIX 1003.6 [Posix-10036, Posix-10036a]. Servers use an ACL manager
to determine whether an authenticated client has permission to access the
named resource. DCE can protect the on-the-wire communications between
client and server by using private-key encryption. Future releases of DCE
will incorporate public key technology.

2.1.5 Time Service

Synchronised time is critical for the DCE's security service to ensure non
repudiation and valid access management. DCE's distributed time service

www.manaraa.com

Distributed Processing 769

provides synchronised time to each node within a DCE cell. The synchroni
sation algorithm sets thE(system clocks of the nodes of the cell based on the
average time computed by a quorum of reliable time keepers within the cell
and (optionally) external time providers. DCE's Time Service supports both
local area networks and time management across wide area networks within
the same cell.

2.1.6 Distributed File Service

DCE's Distributed File Service (DFS) provides a single, consistent, global
namespace for all file access, both within a cell and beyond to other cells. An
example of a fully qualified DFS file name is:

/ ... /paladine.dstc.edu.au/fs/home/kerry/foo.c

while the local reference for the same file would be:

/:/home/kerry/foo.c

DFS is not part of the core DCE services; instead, it is an additional
service relying on a DCE environment for its distributed system services. File
replication is supported in addition to full Unix file semantics, such as file and
record locking. Access control is integrated with the security service providing
consistent access control similar to that provided for all DCE applications.
Administration is also a strong feature of DFS. The file system is logged to
provide efficient failure recovery, and backups can be taken as the system is
being used. Since DFS is implemented using DCE services, it benefits from
the portability and interoperability features for which DCE is known.

2.2 Application Development

The first step in developing a DCE application is to design the interfaces of
the server processes.

2.2.1 Interface Definition Language (IDL)

Interfaces in DCE are defined using DCE IDL. This is a C-like notation for
defining interface signatures. Figure 2 shows a bank teller interface with
three operations to obtain the balance, deposit money, and withdraw money
from a customer account.

The primitive data types supported by DCE cover at least the set available
in C. The basic data types include:

• boolean

• byte, char, ISO-LATIN_l, ISO_UCS, ISO~LTI-LINGUAL

www.manaraa.com

770 Andy Bond, Keith Duddy, Kerry Raymond

[

• integers: small (8 bits), short (16 bits), long (32 bits), hyper (64
bits), signed by default, but optionally unsigned

• float (32 bits), double (64 bits)

• void, void *

uuid(15bl1683-01b3-11dl-bf88-08002bbceeee),
version(1.0)

]interface BankTeller
{

}

import types.idl

Result Balance ([in]Customer c, [in]Account a,
[out] Dollars balance, [out] text error);

Result Deposit([in]Customer c, [in]Account a, [in]Dollars d,
[out]Dollars new_balance, [out]text error);

Result Withdraw([in]Customer c, [in]Account a, [in]Dollars d,
[out]Dollars new_balance, [out]text reason);

Figure 2: The interface definition for a bank teller service

ISO..LATIN_l, ISO_UCS, and ISO...MULTI..LINGUAL are the internationalised
character types. void is used when no return types is required by an opera
tion while void * is used to pass arbitrary pointers. handle_t is a binding
handle, which is used for specifying a particular server.

DCE includes a number of type constructors:

• Arrays. These can be of fixed size or of varying length. In addition slices
of arrays can be specified and are referred to as conformant arrays. An
operation can have only one conformant array parameter, and it must
be the last parameter of the operation.

• Enumerated types.

• Structures.

• Discriminated unions. The typed discriminator selects the current data
type used in the union. This differs from the C use where no explicit
discriminator type is provided. The discriminator is required for type
safety.

www.manaraa.com

Distributed Processing 771

• Pipes. A pipe delivers an arbitrary-length stream of typed data. Pipes
are defined as being either input pipes or output pipes. Programmers
provide functions to generate and consume data depending on the di
rection of the data stream of the pipe. All input pipe processing must
be completed before output pipe processing begins.

Attributes are used in 1DL to define additional semantics for operations,
parameters, or the interface as a whole. The attributes on 1DL types include:

• full and reference pointers

• string

• size_is, max_is (for varying-length arrays)

• first_is, length-is, last_is (for conformant arrays).

DCE distinguishes itself amongst other distributed environments by provid
ing full pointer support allowing complex pointer-linked structures such as
recursive linked lists to be used as operation parameters. While full point
ers implement normal C-semantics for pointers, there is a heavy overhead for
their use. Reference pointers incur less overhead than full pointers, but are
subject to a number of simplifying restrictions. Reference pointers can never
be NULL, cannot change in value during an RPC call, and are assumed to
reference separate memory from other pointer parameters in the same RPC
call.

The string attribute is used to indicate a NULL-terminated string as
distinct from a pointer to a single character, char * or char []. The C
language does not make this important distinction, essential for type safety.

The flexibility of DCE as a distributed programming environment is illus
trated by the range of attributes that can be applied to IDL descriptions to
customise interaction semantics. For example, DCE 1DL attributes provide
idempotent, broadcast, and one-way announcement RPCs as well as pre- and
post- marshalling of parameter values.

Operation parameters can be input only, output only or both input and
output. Operations can return a result type; or void when no result is
required. Operations are synchronous unless a maybe attribute is included
and the return value is void. Timeouts on synchronous RPCs are selectable
through ten stages between a minimum value favouring response time over
correctness and an infinite timeout which will attempt to communicate for
ever.

DeE provides some support for exception handling. There are two kinds
of exceptions, communication errors arising during the RPC (comm_status)
and exceptions generated by the server code (faultJStatus). These are
optionally returned as output parameters, but are not visible in the IDL.

DCE supports a limited form of subtyping between interface definitions
based on the use of version numbers. However, this mechanism depends on

www.manaraa.com

772 Andy Bond, Keith Duddy, Kerry Raymond

the careful decision of the application programmer, and is not checked to
determine if the interfaces are actually subtypes based on their definitions.

2.2.2 Building the Application

The IDL file is compiled using the IDL compiler to produce a header file and
client and server stub files. The header file defines types for use by client and
server applications while the stub files are responsible for the marshalling
and unmarshalling of data as well as the maintenance of the communication
connection.

In order for a client to invoke the operations of a server, the client must
establish a binding to the server. A server makes itself available for binding
by exporting one or more of its interfaces to the name service (CDS). Clients
can access the server interfaces after binding to the service. The client may
choose one of three biIiding mechanisms.

• Automatic binding is the default and is provided by the client stub.
The client names the required server through the environment variable
RPC..DEFAULT..ENTRY, and the stub uses the CDS to find and bind to a
correspondingly-named server. If the connection to that server is lost,
then another server with the same name is automatically selected for
subsequent interaction.

• Implicit binding requires the client programmer to specify a server bind
ing. All client RPC calls will be directed to that server until another
server is specified. In this case, the programmer is responsible for re
establishing a lost server connection.

• Explicit binding allows the programmer to bind to many servers si
multaneously by specifying a binding handle at each RPC call. This
provides both the most flexibility but also the most work for the pro
grammer.

The client/server infrastructure defines an extensive application program
ming interface (API) covering all aspects of application interaction and man
agement [HS94, Loc94]. Some work has been done to extend the C API to
work in the C++ and Java worlds to provide an object-oriented interface
to the DCE run-time to minimize the complex steps required to register a
service interface. These extensions have not gained widespread popularity;
DCE continues to be primarily used in C programming environments.

2.3 Infrastructure

The priority for DCE has been interoperability of mature technology. As a
consequence, DCE components provide an API-based infrastructure rather
than using the more popular object/interface based approach. DCE servers
can be considered as objects, since a server encapsulates its state and makes

www.manaraa.com

Distributed Processing 773

it accessible only through well-defined interfaces. However, DCE does not
support the features generally expected of an object-oriented system (e.g.
inheritance). DCE is better described as an object-based system.

DCE is available on a wide range of platforms, e.g. Unix, PC, and several
mainframe systems including MVS and VMS. As a product, DCE consists of
three parts.

• The DCE run-time is required on each computer running DCE appli
cations.

• The DCE development environment (primarily the IDL compiler) is
required only on computers used for DCE applications development.

• DCE services (e.g. Security, Naming, and Time) need only be installed
on one computer per DCE cell, unless replication is required for greater
availability and reliability.

Note that some vendors supply the DCE run-time as part of their standard
operating system.

All DCE implementations support TCP and UDP transport protocols,
while some also support additional proprietary protocols, e.g. DECnet. The
common code base used to develop DCE products ensures that DCE is highly
interoperable, even between such disparate platforms as PCs and mainframes.

The promise of distributed systems is transparent access to resources,
both local and remote. In DCE, IDL-generated stubs mask the difference in
data representations between systems, while the CDS masks the need to be
aware of the location of resources. DFS makes the location and replication
of data transparent to the application programmer.

DCE is a robust distributed environment. Components are tightly cou
pled, and critical services employ caching and replication to ensure avail
ability. The security service is pervasively used in the DCE infrastructure,
thus ensuring secure access to the administrative interfaces of DCE services.
Errors in remote invocation are handled through exceptions which are ulti
mately managed by the calling process.

The cell as a grouping of nodes provides a strong basis for scalability. Cells
partition a possibly worldwide set of nodes into manageable groups. Cells
are usually created to reflect administrative and/or geographical domains.
Within each cell, security and name services provide essential distributed
system functionality. A cell can be subdivided into smaller cells, but, in
practice, it is often more effective to replicate the DCE services within a
single cell than to create a hierarchy of cells.

2.4 Administration

Administration covers the planning, installation, configuration, maintenance,
and evolution of a distributed environment. The cell defines the administra
tive domain for DCE. Users within that cell are given privileges (through

www.manaraa.com

774 Andy Bond, Keith Duddy, Kerry Raymond

ACL managers) to administer components of the DCE run-time and ser
vices. Installation and configuration of a DCE cell must initiate the required
services (naming, security, and time), register the users, and assign privileges
for those users.

Ongoing maintenance will adjust DCE performance through the system
APIs and management utilities. Typical maintenance tasks include modifying
the acceptable inter-node time difference, adjusting the frequency of security
replica updates, or flushing the caches of the directory service. DCE is highly
configurable, and users typically require some training to become proficient
in its administration.

2.5 Summary

OSF DCE is a layered distributed environment supporting the development
and management of distributed applications. The environment is tailored
toward C with an object-based architecture rather than an object-oriented
application development framework. It provides several distributed system
services including naming, security, and time. Key contributions from DCE
include a proven scalability architecture based on administrative cells, inter
operable private key security through Kerberos, and support for threaded
applications.

3 CORBA

The Object Management Group (OMG) [OMG] was formed in 1989 to pro
vide a common development environment for distributed object-oriented ap
plications. Its aim was to provide open specifications in a programming
language neutral notation that could be implemented independently by its
members. The OMG had over 700 members at the beginning of 1997, making
it the largest computer industry consortium in the world.

CORBA [CORBA95] is the acronym for Common Object Request Broker
Architecture. This is the central "communication bus" for distributed object
oriented method invocations within the Object Management Architecture
(OMA) [SoI95]. However, CORBA is the name commonly used to denote the
whole family of specifications produced by the OMG.

The OMA, as depicted in Figure 3, reflects the Technical Committee orga
nization [OMG-TC] within the OMG. There are two Technical Committees:
the Platform Technical Committee (PTC) and the Domain Technical Com
mittee (DTC). The PTC specifies common infrastructure standards. In terms
of the OMA, this consists of the ORB itself, the Object Services, and the Ob
ject Modelling methodology. The DTC specifies Domain Interfaces that are
for use in particular vertical industry domains, e.g. Transport, Health-care,
Telecommunications and Finance. The Application Interfaces are specified by
ORB users according to the needs of their application; these are not subject

www.manaraa.com

Distributed Processing 775

Application Objects Domain Facilities

Object Request Broker

Object Services

Figure 3: The Object Management Architecture

to standardisation by the OMG.
Working groups within the Technical Committees called Task Forces is

sue Requests for Proposals (RFPs), that solicit specifications of technology.
OMG member companies submit specifications that satisfy the particular
requirements identified in the RFP. The Task Force provides feedback to
submitters on the merits of their proposals, and often this results in a merger
of the original proposals to combine their best features. After revised submis
sions are presented, registered Task Force members vote to select a proposal
to recommend to the OMG as a whole. The final stage is an adoption vote
to confirm that the recommended technology is acceptable to the majority
of OMG members. The submitters of an adopted proposal are expected to
produce commercial implementations of their specification within 12 months
of adoption.

3.1 Domain Technology

The DTC has many Task Forces that focus on specifying interfaces to objects
for use in their particular domain. Some examples of Domain Technology
Specifications include:

• Control of Audio/Visual Streams, specified by the Telecommunications
DTF

www.manaraa.com

776 Andy Bond, Keith Duddy, Kerry Raymond

• Patient Identification Service, specified by the CORBAmed (Health
care) DTF

• Electronic Payment Facility, specified by the Electronic Commerce DTF.

Although the initial emphasis of the OMG was on the platform technologies
in order to establish the basic infrastructure, it is anticipated that the domain
technologies will be the focus in the longer term.

3.2 Components

There are three main areas of standardisation in the CORBA platform:

• CORBA Core

• Object Services

• Object Analysis and Design.

3.2.1 CORBA Core

The Object Request Broker is essentially a mechanism for the location
transparent invocation of object methods. Object references are opaque data
types that encapsulate a CORBA object's type and location information.
Object references can refer to objects in the same process, in another pro
cess, or in a process On a remote machine. Object references can be used
as if they were pointers to local objects. They can be passed as parameters,
and can be used to invoke methods On objects regardless of their location
or state of activation. The ORB performs all binding, network connection
maintenance, and activation of servers transparently to the client using the
object reference.

The OMG Interface Definition Language (IDL) is used to define the
CORBA object types. As the IDL is designed to be architecture-neutral,
CORBA programming can be supported in many different programming lan
guages and machine environments. The OMG defines standard mappings be
tween types in IDL and types in programming languages including C, C++,
Ada, Smalltalk, Java and even COBOL. Many more non-standard mappings
exist for other languages.

IDL compilers generate stub code (for use in clients) and skeleton code (for
use in servers) that marshall the programming language parameter values
into network packets and convey them as a request to the server object which
replies with results, as illustrated in Figure 4. Typically, objects playing a
"server" role will also act as clients to other objects, making the system truly
peer-to-peer.

Because ORBs are developed by many companies, using many implemen
tation techniques, they require a commOn protocol to ensure that objects
developed for one ORB can interoperate with objects developed for another

www.manaraa.com

Client
Object
Reference

Distributed Processing

Server

Communication Channel

Figure 4: A CORBA Operation Invocation

777

ORB. The OMG has specified a General Inter-ORB Protocol (GlOP) which
specifies the layout of messages for CORBA types, regardless of the network
protocol used to convey them. The OMG's Internet Inter-ORB Protocol
(HOP) uses GIOP over TCP lIP, and all conformant CORBA systems must
support HOP. ORBs can also support other inter-ORB protocols. One that
is currently standardised by the OMG is the DCE Common Interoperability
Protocol. This uses the DCE RPC wire format to make CORBA operation
invocations.

3.2.2 Object Services

Object Services provide the basic services commonly required in most ap
plications. The OMG has produced many Object Service specifications, but
not all ORB vendors offer all of them in their product suites. Some object
services have become widely available, others are available only from specific
vendors, while a few may never be commercially available. The specifica
tions are collectively known by the brand name CORBAservices. These are
published as [CORBA96], with regularly issued additional chapters for new
services. All the services described below are found in this document, unless
other citations are given.

Naming and Security can be viewed as the most fundamental object ser
vices. The Naming Service is a simple context-relative hierarchical naming
service that allows applications to identify objects by human-readable names,
rather than by object references (which print as a very long sequence of dig
its).

The Security Service [CORBAsecur) allows a large range of security poli
cies to be implemented to ensure that authentication, access restriction and
auditing can be tailored to the needs of most environments. The interfaces
to administer these policies are separate from the security mechanism itself,
allowing a range of public and private key security implementations to be

www.manaraa.com

778 Andy Bond, Keith Duddy, Kerry Raymond

used without impacting on the application code.
Other important object services are:

• Trading Service which is a Yellow Pages service to allow selection of
objects based on type and requirements rather than by name [TOS96].

• Transactions Service which facilitates the batching of method calls into
transactions with commit and rollback capabilities. It also allows nested
transactions.

• Event Service which allows objects to send asynchronous messages via
interconnected Event Channels. This forms the basis of a publish/sub
scribe event service known as the Notification Service.

• Query Service which enables standardised queries to be made on het
erogeneous databases and a standardised way to return the results of
those queries.

• Property Service which manages sets of name/value pairs.

• Life Cycle Service which provides standard interfaces to create, move,
copy and destroy objects. This service is really a template or pattern
for applications to employ when implementing object life cycle man
agement.

3.2.3 Object Analysis and Design

Current work within the Object Analysis and Design Task Force hopes to
achieve a convergence of the major object modelling languages and techniques
that have emerged since the mid 1980s, including Booch, OMT and OOSE.
The outcome will become the OMG standard for Object Modelling.

3.3 Application Development

ORB vendors provide a range of tools and environments for development of
CORBA-based applications. These vary from fully integrated environments
including IDL and language compilers with visual debuggers, profiling tools
and many CORBAservices to simple tool suites containing only an IDL com
piler, a run-time agent/daemon and simple server administration tools.

3.3.1 Interface Definition Language (IDL)

Developers start by defining interfaces to the CORBA objects they will use in
their application using CORBA IDL. IDL supports a rich set of data types,
loosely based on C++, which do not include any implementation constructs
such as pointers. Figure 5 shows the CORBA IDL for a bank account inter
face with two operations to deposit money and withdraw money, and a read
only attribute to obtain the balance.

www.manaraa.com

Distributed Processing

#include "types.idl"

module Banking {
interface Account {

exception InsufficientFunds {
Dollars available_balance;

};

readonly attribute Dollars Balance;

779

void Deposit (in Dollars d, out Dollars new_balance);

}
}

void Withdraw (in Dollars d, out Dollars new_balance)
raises (InsufficientFunds);

Figure 5: The interface definition for a bank account object

The basic types include long and short integers, floating and fixed point
numbers, octets, characters, strings, enumerations and a container type called
any. "Anys" can contain any CORBA value and are tagged with a type
description, known as a TypeCode to ensure type safety.

CORBA IDL provides a struct type, a discriminated union, fixed-length
arrays, and variable length sequences. Named modules provide a means of
grouping IDL definitions in a new name scope, thereby providing structure
and reducing name clashes.

IDL uses the interface for object-oriented encapsulation of data type
declarations, operations and attributes. An operation is similar to a C++
method. Any data types or interface types can be used as parameters or
results of operations. Operation parameters are always tagged as in, out, or
inout to indicate whether the arguments will be supplied by the client, or
returned by the server (or both). IDL specifies the user-defined exceptions
that can be raised by each operation. An attribute is shorthand for a pair
of operations, one to access a value in the object's state, and another to set
the value.

Normally, CORBA operations require the client to wait for either a valid
reply or a raised exception. However, oneway operations can immediately
return to the caller without waiting. One way operations cannot return
any information. Therefore, they must must have a void return type, they
must have no inout or out parameters, and they must have no user-defined
exceptions.

An interface type can inherit from existing interface types. Inheritance

www.manaraa.com

780 Andy Bond, Keith Duddy, Kerry Raymond

allows the derived interface to add new types, operations and attributes,
but not to overload or override existing declarations in the base interfaces.
However, programming language mechanisms for overriding methods may be
employed in implementations of these interfaces. IT interface type X inherits
from interface type Y, then X is said to be a sub-type of Y. Subtyping of
interface types enables polymorphism, in which an object reference of a de
rived interface type2 may be used where the base interface type is required.
That is, an object reference of type X may be passed wherever one of type
Y is required. The semantics are those of dynamic late-binding. That is, the
implementation of X will always be used when an X reference is passed, even
when it is being used as a Y.

IDL definitions are compiled by an IDL compiler, which implements the
language mappings supported by the ORB. For object-oriented language
mappings, the IDL compiler generates a number of skeleton and stub classes
which perform the network connection management and marshalling from
programming language data types into network packets and back again. Non
object-oriented languages are at some disadvantage, as they have no obvious
mappings for some of CORBA's object-oriented concepts. This can result
in very inelegant stub and skeleton code, combined with greater reliance
on programmers to handle issues such as object reference management and
exception handling. Most stubs and skeletons also require the linking of li
braries into the application to support standard CORBA types, marshalling,
and communication with the ORB run-time environment.

3.3.2 Building an Application

Having completed the IDL definitions, the developer implements the appli
cation semantics of the server objects by writing the methods (or functions)
using the data types and invocation mechanisms defined in the mapping
of CORBA IDL to the particular programming language. These method
implementations are associated with the generated skeleton class either by
inheritance or by delegation (commonly known as the "tie" mechanism). De
velopers must also implement the main routine for a server that will create
its initial object instances, and notify the ORB of the readiness of the server
and its objects for CORBA interaction.

Servers are registered with an Implementation Repository, which allows
the ORB to activate server processes on demand when the references to their
objects are used by a CORBA client. Clients can obtain object references in
many ways. Object references can be obtained by querying a Naming Service
with a name, or from a Trader Service by specifying the interface type and
desired characteristics. Object references can be returned as the result of
other invocations, or might be stored in a file in a string format. Some ORBs
provide additional proprietary mechanisms for obtaining object references.

2 Confusingly, the type of an object reference is an interface type. Unfortunately, the
OMG does not always clearly distinguish between the concepts of ,iobject" and "interface".

www.manaraa.com

Distributed Processing 781

Finally, the developer creates the client programs. A simple CORBA
client does not contain any CORBA object implementations, but rather uses
object references and stub code to invoke operations on server objects. How
ever, many CORBA clients are themselves CORBA servers, and do contain
CORBA object implementations.

3.4 Infrastructure

The abstract infrastructure components shown in Figure 6 are supported by
all compliant CORBA implementations. The ORB Core is the basic protocol
engine that supports the interaction between clients and server objects. The
OMG mandates that the ORB Core supports at least the nop protocol.

DII

Client

lDL
Stub

Interface

Repository

ORB
Interface

ORB Core
(GIOPIIlOP)

CORBA Server

JDL [DSJ]
Skeleton

Object Adapter

Figure 6: The Components of the Object Request Broker

3.4.1 ORB Interface

Implementation

Repository

The ORB interface is used by CORBA applications to obtain bootstrap ob
ject references and manage object references. The functionality of the ORB
is typically implemented through a combination of library code linked into
applications and run-time agents (often known as daemons). The ORB in
terface is standardised by the OMG and expressed in IDL.

www.manaraa.com

782 Andy Bond, Keith Duddy, Kerry Raymond

3.4.2 Object Adapter

The Object Adapter allows servers to manage the lifecycle of objects and their
references. CORBA 2.0 defined an under-specified Basic Object Adapter
(BOA) which has been implemented differently by all ORBs. In 1997, the
Portable Object Adapter (POA) specification was adopted, allowing server
code to be written portably for all ORBs. The POA allows servers to map ob
ject references to actual implementation instances in a flexible, scalable and
policy-driven manner. Object Adapters are also responsible for activating
and deactivating servers, which they do in cooperation with the Implemen
tation Repository (see section 3.4.5). The Object Adapter is defined using
IDL.

3.4.3 IDL Stubs

These generated classes act as proxies for remote CORBA server objects,
thereby allowing clients to invoke local methods on the proxies, which then
perform the remote invocations on the remote server objects. Using the
underlying ORB infrastructure, the stubs marshall the parameters for oper
ations on specific IDL interface types, and unmarshall the results returned
from CORBA servers.

IDL stubs are not defined using IDL, but their implementation must con
form to the mapping rules defined between CORBA IDL and the particular
programming language.

3.4.4 IDL Skeletons

These generated classes are used as base classes for implementing CORBA
server objects. Together with the Object Adapter, the skeletons are used
to convey incoming requests to the actual method implementations and re
turn results to clients. They contain the code to unmarshall the incoming
parameters and to marshall the results of method calls for particular IDL
interfaces.

IDL skeletons are not defined using IDL, but their implementation must
conform to the mapping rules defined between CORBA IDL and the partic
ular programming language.

3.4.5 Implementation Repository

The function of the Implementation Repository is to name servers (as opposed
to server objects) and to activate a server (if required) when a client attempts
to interact with one of the server's objects. The Implementation Repository
is typically a registry of executable code for each server (usually maintained
by the programmers or system administrators) and a registry of currently
running servers (maintained through interaction with the Object Adapter of
the servers).

www.manaraa.com

Distributed Processing 783

Although the purpose of the Implementation Repository is well-defined
in CORBA, no specific interfaces or semantics are prescribed by the OMG,
to enable a wide variety of implementations.

3.5 Infrastructure for Dynamic Clients and Servers

Some clients must invoke operations of interfaces not known to the client
program at compile-time, e.g. a generic browser. Therefore, such client
programs cannot use the stubs generated by the IDL compiler.

Similarly, some servers must provide interfaces of a type not known to the
server program at compile-time, e.g. object wrappers and bridges between
ORBs and/or other middleware. Therefore, such server programs cannot use
the skeletons generated by the IDL compiler.

Such clients and servers require "dynamic" mechanisms for making and
handling invocations at run-time.

3.5.1 Interface Repository

The Interface Repository is a registry of CORBA type information, which
can be used to support "dynamic" clients and servers. CORBA types can
always be described using IDL. However, the textual form of IDL is not well
suited to run-time processing. Instead, the Interface Repository stores type
information as a set of linked objects, which can be more easily queried and
navigated at run-time. For example, from a nominated interface, the Interface
Repository can reveal the operations of that interface. From an operation,
the names, types, and direction of its parameters can be determined. Note
that IDL and the Interface Repository contain the same information; it is
simply in a different format.

All object references support a built-in operation that returns an object
reference within the Interface Repository, which acts as a starting point for
learning about the interface type of that object reference.

Dynamic clients and servers use the Interface Repository to learn about
interface types not known to them at compile-time.

3.5.2 Dynamic Invocation Interface (DII)

The DII allows CORBA clients to construct and issue an invocation without
the use of a stub.

Having learnt about the interface type (via the Interface Repository or
some other mechanism), the client can use the operations of the DII to con
struct a Request containing the name of the operation and the values of the
in and inout parameters (held inside "any" types). The DII can be used
to invoke that Request at a nominated object reference, and to receive the
values returned.

www.manaraa.com

784 Andy Bond, Keith Duddy, Kerry Raymond

The DII is specified using IDL, and is implemented by library code which
is linked into the dynamic client application.

Note that a server is not aware whether an invocation has been made via
a stub or via the DII.

3.5.3 Dynamic Skeleton Interface (DSI)

The DSI allows a server to process invocations for any interface type without
the use of a skeleton for that interface type.

Again, the server learns about the interface type (via the Interface Reposi
tory or some other mechanism). Using the operations of the DSI, the dynamic
server can receive the invocation, access the operation name and supplied pa
rameter values, and return the outgoing parameters and return value.

Again, a client is not aware whether its invocations are being handled
via a skeleton or via the DSI. Both client and server are free to use dynamic
mechanisms without affecting the other.

3.6 Administration

The administration of CORBA applications can be considered at three levels:

• administering the ORB and its object services

• administering the IDL and other type information

• administering the application implementation.

Each ORB product has its own administration requirements, and usually
includes a set of proprietary tools for ORB administration. These range
from simple installation and removal scripts to suites of GUI utilities. The
OMG does not standardize an interface for administering an ORB.

Some object services have IDL interfaces to support their administration,
e.g. the Trader Service has administrative interfaces which enable both the
configuration and tuning of both an individual trader and of a federation of
cooperating traders. Other object services depend entirely on proprietary
solutions for their administration.

Even when the OMG provides a standard interface for administration,
ORB vendors provide very different user tools to access those interfaces, e.g.
command-line tools versus GUI tools.

The administration of IDL types primarily involves the population of
Interface Repositories with type information. This task is typically done
as a by-product of the IDL compiler. The OMG does standardise the IDL
for the Interface Repository to create and retrieve type information, but
does not provide any IDL for administrative functions such as maintaining
consistency between a number of Interface Repositories. Other aspects of
type administration include the registration of Trader service types, Object
Analysis and Design classes, and Naming Service conventions. During 1997,

www.manaraa.com

Distributed Processing 785

the OMG is standardising the Meta-Object Facility, which is a framework
for defining repositories for types and other meta-data to provide a more
complete and pervasive management of type information.

Typically the administration of applications will involve:

• registering servers in the Implementation Repository

• registering the server's object references in the Naming Service

• registering the server's object references in the Trader Service.

The OMG does not standardise the means by which servers are registered in
the Implementation Repository.

By registering with the Naming Service, a server's object references can be
obtained using some logical name. The Naming Service provides operations
defined in IDL to link cooperating Naming Services together. In 1998, the
OMG is expected to define standard naming conventions to further assist in
the administration of a group of cooperating Naming Services.

By registering with the Trader Service, object references can be retrieved
using their interface type and characteristics. While the Trader Service pro
vides administrative interfaces defined in IDL, it may take some experimen
tation to determine the most appropriate policy choices and thresholds for
optimal performance in a particular environment.

3.7 Summary

CORBA is a term used to collectively describe technology based on the Ob
ject Management Architecture and standardised by the OMG. The main
components of CORBA are:

• CORBA Core

• Object Services

• Object Analysis and Design

• Vertical Industry Domain Facilities.

CORBA IDL is an architecture-neutral and object-oriented notation for defin
ing data types and interface signatures. It is syntactically similar to C++,
but supports only simple multiple inheritance, and ignores pointers and other
programming level constructs. CORBA IDL and its many mappings to dif
ferent programming languages allow object-oriented distributed applications
to be developed despite the heterogeneity of programming languages and
hardware platforms involved.

CORBA applications, the CORBA infrastructure and the CORBA ser
vices all appear as distributed objects, whose interfaces are specified using
CORBA IDL.

www.manaraa.com

786 Andy Bond, Keith Duddy, Kerry Raymond

4 Java

Java [GM95, JavaOverview, AG96) is a new object-oriented language from
Sun which has being popularised through its use in creating dynamic informa
tion content for pages on the World Wide Web (WWW). The Java language
is similar in flavour to C++ but has additional features such as garbage
collection and multi-threading. Some aspects such as pointers and operator
overloading were removed to make Java a safer language for programmers to
use.

Java has had a diverse past. Originally called Oak, it was first used
in an experimental SGML editor. Later Java moved into the domain of
consumer electronics, and was used for a set-top box operating system for
pay television. Finally, Java found its niche in the WWW with the creation
of the first HotJava browser [GM96, HotJava).

This rich history has cemented some interesting features in the Java lan
guage. It is

• object-oriented

• architecture-neutral

• type-safe

• garbage-collected and

• multi-threaded.

Java is designed to enable easier development of bug-free code by eliminating
many of the "unsafe" features of C++. Java permits only single-inheritance
for implementations. Memory management is controlled by the Java language
run-time system and not by the programmer. The removal of pointers is a
major contributor to type-safety. As a consequence, the use of the Java
language enhances the security [SecureJava] and reliability of applications.

Java programs are usually interpreted, making them highly portable, as
only the interpreter itself has to be ported to each new platform. As inter
preted programs usually run more slowly than native-compiled code, there
might be a trend towards compilation for production versions of large Java
applications (and now the use of Java chips for native silicon execution).

Java is not a distributed environment in itself, but it is a language whose
characteristics make it attractive for distributed system development. Its
marriage with the WWW has highlighted the benefits of an adaptable, portable
and safe distributed systems language.

4.1 Components

The Java environment consists of two main components, the Java pre-compiler
and the Java interpreter.

www.manaraa.com

Distributed Processing 787

4.1.1 Java Pre-Compiler

Java source code is first pre-compiled into an intermediate form called Java
bytecodes. These Java bytecodes are then interpreted by the Java inter
preter 3.

Java
Source

Java
Compiler

Figure 7: Compiling Java source to bytecodes

Java
Bytecodes

The Java compiler (Figure 7) acts as the first step in the multi-stage
security infrastructure [FM97] supported by the Java language. The compiler
checks for illegal operations such as pointer arithmetic and forged access
through casts.

4.1.2 Java Interpreter

The Java language definition defines a Java Virtual Machine (JVM) [LY97]
which provides a platform-independent software architecture for executing
Java compiled applications (Figure 8).

Java bytecodes are JVM instructions, and pre-compilation produces the
same bytecodes, irrespective of the platform on which the Java source was
compiled.

As the Java interpreter executes the bytecodes, it may find references to
other Java classes. The interpreter loads the bytecodes for the additional
classes and continues execution. Typically, the interpreter loads only those
classes needed for the specific execution of the Java application.

4.2 Java Applets

It is the WWW and, in particular, Web browsers that have promoted the use
of Java.

Java Applets are a restricted form of Java applications. They limit the
allowable functionality so that the programs can be confidently provided by
an untrusted party and executed in a local interpreter. This local execu
tion "sandbox" ensures limited file and network access so that rogue applets
cannot abuse the local resources.

3It is possible to compile other languages into Java bytecodes and this is being actively
undertaken by many research and commercial groups. For example, see [AppletMagic]
using ADA-95 to generate Java bytecodes.

www.manaraa.com

788 Andy Bond, Keith Duddy, Kerry Raymond

Java Interpreter (JVM)

Solaris indow MacOS AIX

C Intel:=::> ~ <£QwerPp ---==.;:.=----

Figure 8: The Java Virtual Machine

The majority of Web browsers now include a restricted Java bytecode
interpreter as depicted in Figure 9. When an applet is downloaded to a Web
browser (as part of a WWW page), a bytecode verifier performs another
stage of security checking. The verifier checks that the applet conforms to the
Java language specification as well as looking for illegal data type casts and
memory management violations such as stack underflows or overflows. It is
necessary for the verifier to redo some checks performed by the Java compiler
since there is no guarantee that the bytecodes were generated by a conforming
compiler. The bytecodes are then interpreted and results displayed within a
browser environment.

Applets load classes on demand at run-time. If the required class is not
one of the natively supported Java classes, the class will be requested from the
source ofthe applet (Le. the Web server). A class loader checks for namespace
violations and prevents the masquerading of built-in classes. Figure 10 shows
a simple applet loaded over HTTP obtaining an additional Java class at
run-time. Digital signatures can be attached to classes to authenticate the
provider of a class. Java Archives (JARs) include a digital signature based
on the contents of the JAR and give the software user confidence as to the
provider of the entire archive.

Java applets are a mechanism to execute a remotely stored program on
a local computer. However, the Java applet is not a distributed application.

www.manaraa.com

Web

Browser

----- , ,

Java Applet

Java Bytecode

Interpreter

Distributed Processing

HTIP

Applet kequest

Applet dytecodes

Figure 9: Java and the World Wide Web

789

Web

Server

It is a single program executing on a single local computer. Java must be
used in conjunction with some distributed systems infrastructure to build
true distributed applications.

4.3 Infrastructure

There are a number of distributed systems mechanisms which can be used
by Java programmers to build distributed applications.

4.3.1 Sockets

Sockets are a traditional building blocks of distributed systems, and are avail
able to Java programmers through a socket library. Sockets provide a simple
stream interface to deliver data to and from a remote process. Sockets are
a very low-level mechanism, and any large application will justify the use of
more sophisticated distributed systems mechanisms, such as remote proce
dure calls.

The following sections consider a number of ways in which remote pro
cedure calls can be used in Java programs. Note that these mechanisms are

www.manaraa.com

790 Andy Bond, Keith Duddy, Kerry Raymond

Figure 10: Java class access

applicable to both Java applications and the restricted Java applets.

4.3.2 Remote Method Invocation

One of the first RPC mechanisms to be provided for Java is Remote Method
Invocation (RMI) [RMI96]. This allows Java applications to invoke other Java
applications (possibly on different hosts) using a similar paradigm to local
object method invocations. A local proxy object is responsible for passing
the method invocation to the remote object. The parameters of the remote
invocation can be any Java type that is serialisable (i.e. can be marshalled
into a sequential bit stream).

public interface BankAccount
extends remote

{

public Dollars balance;

public void Deposit(Dollars d)
throws java.rmi.RemoteException;

public void Withdraw(Dollars d)
throws InsufficientFunds, java.rmi.RemoteException;

}

Figure 11: The interface definition for a bank account

Figure 11 shows a simple banking account interface. It appears very
similar to a local interface definition except for the additional exceptions

www.manaraa.com

Distributed Processing 791

that must be handled on a remote method call (and of course the extension
of the Java remote class).

A simple bootstrap name server is provided to bind to remote objects.
This is URL-based (Uniform Resource Locator) and the naming class provides
methods to bind, unbind, and lookup names. It is expected that the majority
of remote object references will be obtained as a return value in a method
call.

4.3.3 Java and CORBA

The OMG has adopted a language mapping for Java [Java-Map), and several
products are available that implement this mapping. Java is perhaps the
most straightforward of the mappings from IDL, as Java has the concept of
interfaces that simply specify the abstract signatures of object classes. The
Java data types and standard language classes also correspond closely to IDL
types.

Seen only as a programming language, Java is simply another object
oriented programming language that can be used to develop CORBA appli
cations [DV97]. However, the use of Applets in conjunction with CORBA
produces an interesting hybrid. The typical scenario involves an applet pro
viding a graphical user interface with minimal application semantics, which
acts as a CORBA client to a number of CORBA servers, which perform com
putation intensive tasks and access data stores. The applet is downloaded to
the user's Web browser and runs on the user's workstation.

There are a number of benefits to this approach. The computational load
of running the GUI is handled locally by the applet. The network traffic is
restricted to the application interactions defined in CORBA IDL and not the
more numerous GUI updates. As the CORBA servers are not downloaded to
the user's site, the server code cannot be stolen through reverse engineering
at the user's site. The data accessed by the server is accessible only to the
extent permitted by the server.

The combination of Java applets and CORBA is so attractive that most
Web browsers now include the Java classes needed by CORBA applets. Mak
ing these classes locally available avoids the need to down-load these classes
over the WWW for each CORBA applet. Problems that have arisen due to
the restrictions placed on applets running in Web browser "sand boxes" , such
as only making network connections to the machine from whence they were
loaded, are being overcome by firewall software at the applet provider that
redirects CORBA requests to other machines.

4.3.4 Java and DCE

The Java language does not readily integrate with DCE. DCE is primarily
designed for C programmers, although DCE version 1.2.1 has included a C++
interface. This provides class encapsulation of various components from DCE

www.manaraa.com

792 Andy Bond, Keith Duddy, Kerry Raymond

as well as extending the IDL to provide support for C++ concepts such as
references.

No native Java mapping for DCE exists but there are products to gateway
between Java and DCE (for example see [DCE-Java]). The gateway exports
a simplified distributed computing interface accessed through a number of
Java classes. The gateway then acts as an intermediary constructing calls to
the selected DCE server and filtering results back to the Java application.

In theory, the use of DCE in Java applets should have similar benefits
to the use of CORBA. CORBA's more object-oriented approach makes it
a more natural choice for combining with Java. However, developers with
existing DCE applications should consider the advantages of creating Java
clients to encourage Web-based use of their applications.

4.4 Summary

The Java programming language has emerged from its start in embedded
systems to provide a portable language for distributed system programming.
Java as a language does not provide true distributed processing but offers
an attractive environment for distributed computing when combined with
a distributed infrastructure such as CORBA or Remote Method Invocation
(RMI).

Language safety is an important trait of the language and is exploited
in a marriage with the World Wide Web and the provision of Java Applets.
These programs use a restricted Java subset designed to provide trusted shar
ing of programs on the untrustworthy Internet. The Java Virtual Machine
(JVM) incorporated in Web browsers interprets the Java subset and provides
a portable application environment across multiple platforms. The niche for
Java in the distributed systems world is the provision of a "safe" language
and a widely available virtual machine.

5 Comparing DCE, CORBA, and Java

DeE is the oldest and most mature of the three technologies.· DCE exhibits
a high degree of interoperability between products, arising from its common
code base. Its disadvantage is its close-coupling with the C programming lan
guage, the consequent lack of support for object-orientation, and difficulty of
supporting fine-grained objects. However, it is the only one of the three tech
nologies that currently has a truly interoperable security mechanism across
multiple platforms, and that will continue to be its strongest selling point
until other technologies achieve a comparable level of security. In addition,
DCE has a very scalable architecture based around the administration cell
which is used as the basis for scalability throughout the environment. DCE
has been stable for some time, and there do not appear to be any plans for
a significant extension of DCE's scope in the near future. For that reason

www.manaraa.com

Distributed Processing 793

alone, CORBA is likely to overtake DCE, once the CORBA products achieve
a similar level of maturity.

CORBA set itself a much more ambitious scope than DCE, and gave
initial emphasis to the provision of an object-oriented infrastructure using
multiple programming languages on multiple platforms. The result was a
more elegant approach than DCE, and capable of supporting finer-grained
objects than DCE. However, issues such as interoperability between ORBs
and security infrastructure were addressed relatively late in the OMG stan
dardisation process. As a result, many ORB products today do not fully
interoperate and many do not implement the OMG security infrastructure,
leading to doubts about CORBA's readiness for industrial-strength applica
tions. However, there is significant user and vendor impetus behind CORBA
which should result in superior products in the near future with a wider range
of services available compared with DCE.

Java is a safe and easy-to-use programming language with the attraction
of being downloadable into Web browsers for execution. To build distributed
applications, Java needs to be married with another technology to provide
the interaction between the components of a distributed application. Java
Remote Method Invocation is likely to be popular for simple distributed
applications, but more complex applications will need a more extensive in
frastructure making Java-with-CORBA the more appropriate choice. There
are near-term proposals to integrate Java and CORBA more closely. Such an
integration will only strengthen the benefits of combining these technologies,
making their combination ideally positioned to be the technology best placed
to exploit the Internet phenomenon.

References

[AG96]

[AppletMagic]

[CORBA95]

[CORBA96]

[CORBAsecur]

[DCE-Java]

Arnold, K., Gosling, J., The Java Programming Language,
Addison-Wesley, 1996

http://www.appletmagic.com. Intermetrics

The Common Object Request Broker: Architecture and Speci
fication, Revision 2.0, OMG, 1995

CORBAservices: Common Object Services Specification, Re
vised Edition - Updated, OMG, 1996

Security Service Specification, Version 1.0, OMG Documents
97-07-23 and 97-07-24, November 1996

Transarc DCE Encina Lightweight Client, http:
/ /www.transarc.com/afs/transarc.com/public/www/Public/
ProdServ /Product/DELight/index.html

www.manaraa.com

794

[DV97]

[FKR92]

[FM97]

[GM95]

[GM96]

[HotJava]

[HS94]

[Hu95]

[Java-Map]

[JavaOverview]

[Loc94]

[LY97]

[OMG]

[OMG-TC]

[Posix-10036]

[Posix-10036a]

[RMI96]

Andy Bond, Keith Duddy, Kerry Raymond

Duddy, K., Vogel, A., Java Programming with CORBA, John
Wiley & Sons Inc., 1997

Fisher, G., Kenny, D., Rosenberry, W., Understanding DCE,
O'Reilly & Associates Inc., 1992

Fritzinger, J. S., Muller, M., Java Security, http://java.sun.
com/security/whitepaper.ps, Sun Microsystems, 1997

Gosling, J., McGilton, H., The Java Language Overview: A
White Paper, Sun Microsystems Technical Report, 1995

Gosling, J., McGilton, H., The Java Language Environment: A
White Paper, http://java.sun.com/docs/white/langenv/, Sun
Microsystems, 1996

HotJava Browser, http://java.sun.com/products/hotjava/, Sun
Microsystems

Hu, W., Shirley, J., Guide to Writing DCE Applications (Sec
ond Edition), O'Reilly & Associates Inc., 1994

Hu, W., DCE Security Programming, O'Reilly & Associates
Inc., 1995

IDL/Java Language Mapping, OMG TC Document orbos/97-
03-01, 1997

The Java Language: An Overview, http://java.sun.com/docs/
overviews/javafjava-overview-l.html, Sun Microsystems

Lockhart, H. W., OSF DCE: Guide to Developing Distributed
Applications, McGraw Hill, 1994

Lindholm, T., Yellin, F., The Java Virtual Machine Specifica
tion, Addison-Wesley, 1997

Object Management Group, http://www.omg.org

OMG - Technical Committee Work in Progress, http://www.
omg.org/schedule/

IEEE Std 1003.1-1990 Standard for Information Technology -
Portable Operating System Interface (POSIX) - Part 1: System
Application Programming Interface (API)

P1003.1a Draft Revision to Information Technology - POSIX
Part 1: System Application Program Interface (API) [C Lan
guage]

Remote Method Invocation Specification, http://www.javasoft.
com:80/products/jdk/1.1/docs/guide/rmi/spec/rmiTOC.doc.
html

www.manaraa.com

[SecureJava]

[SoI95]

[TOS96]

Distributed Processing 795

Secure Computing With Java: Now and the Future, http) /
java.sun.com/marketing/collateral/security.html, Sun

Soley, R. M., Object Management Architecture Guide, Third
Edition, John Wiley & Sons, 1995

Trading Object Service, OMG TC Document orbos/96-07-26,
1996

www.manaraa.com

CHAPTER 36

System Integration through
Agent Coordination

Mihai Barbuceanu, Rune Teigen

Agents are software components that support the construction of distributed in
formation systems as collections of autonomous entities that interact according to
complex and dynamic patterns of behavior. A major problem of multi-agent struc
tured information systems is the coordination of these interactions and behaviors to
achieve the goals of the participants and coherence of the system as a whole. This
paper articulates a precise conceptual model of coordination based on a represen
tation of coordination knowledge as plans described in a special planning language
enhanced with communicative actions. The execution of these plans by agents re
sults in multiple structured 'conversations' taking place among agents. The model
is extended to a complete language design that provides objects and control struc
tures that substantiate its concepts and allow the construction of real multi-agent
systems in industrial domains. To support incremental, in context acquisition and
debugging of coordination knowledge we provide an extension of the basic repre
sentation and a visual tool allowing users to capture coordination knowledge as it
dynamically emerges from the actual interactions. The plan-action organization
exhibited by the coordination language departs in several ways from the standard
object orientation of computational languages and is, we argue, more appropriate to
modeling coordination. The language has been fully implemented and successfully
used in several industrial applications, the most important being the integration of
multi-agent supply chains for manufacturing enterprises. This application is used
throughout the paper to illustrate the introduced concepts and language constructs.

1 Introduction

1.1 What's in an Agent?

Traditionally, computing has been viewed as 'data processing', essentially
transforming data from some form into another. The increasing complex
ity, the globalization and the acceleration of business and social processes
together with the wide availability of networking and communication infras
tructures at all levels of society is quickly changing this perception. More

www.manaraa.com

798 Mihai Barbuceanu, Rune Teigen

and more what we are interested in is not the mere transformation of data,
but rather the integrated support for complex patterns of interaction and be
havior among autonomous, proactive, goal oriented entities. Software agents
are the main technology behind this shift. Although the notion of agent is
still debated [MW J97], there exist clear aspects that distinguish agents from
other current models of software systems.

• First, agents encapsulate complex and dynamic patterns of behavior, in
teraction and communication that increasingly characterize businesses
and social processes in general. The state-of-the-art object oriented or
gani~ation is more preoccupied with structural representations of static
or steady state domains, where consistent and repetitive processing of
structured data is more important than dynamic interactions and be
havior.

• Agents promote autonomous action and decision making. This re
quires peer-to-peer interaction, while the object oriented organization
still supports a client-server model where servers only respond to client
requests.

• Because of their autonomous and interactionist behavior, agents are
best described and understood using notions like beliefs, goals and
plans. Object models on the other hand are best described and un
derstood in structural terms like attributes, relations, generalizations,
etc.

• Finally, the highly interactionist nature of agents has also led to more
powerful models of communication and interaction. Agent communica
tion languages (ACL-s) for example [Fin92] are based on well-defined,
small sets of 'communicative actions' that are ammendable to declara
tive semantics. Object communicate through unrestricted and idiosyn
cratic messages with ad-hoc semantics. This creates communication
barriers and increases communication costs by requiring multiple se
mantic translations. Moreover, based on ACL-s, several higher level
coordination languages have been developed that are able to describe
abstract coordination protocols that encompass distributed problem
solving knowledge allowing agents to efficiently cooperate for solving
complex tasks. One such language forms the subject of this paper.

Focusing on the agent level of system (de)composition brings to attention a
number of specific issues that are not adequately dealt with at other levels
of system organization. Some of these are:

• Agent interaction: How do agents communicate? How do agents coor
dinate in joint work, such as to achieve the individual and joint goals
of the participants? How are problems stemming from dynamically
occuring events and partial knowledge about the environment handled

www.manaraa.com

System Integration through Agent Coordination 799

during coordinated behavior? How do we model the patterns of inter
action and interoperation that characterize coordinated behavior? How
do capture these patterns during the on-line operation of the system?

• Representation: How do agents represent their local views of the do
main? How is the local view updated or maintained as a consequence
of interaction? How are the semantic problems related to conflicting
or different meanings of the exchanged terms solved? How do agents
revise their beliefs due to exchanged information? How do agents share
models and how does the shared model change? How do agents model
each other in a cooperative community? How are common-sense issues,
e.g. time, action, causality, handled?

• Reasoning: How do the requirements for communication and coordi
nation impact the internal reasoning of agents? How do agents handle
contradictory information, and how is consistency maintained across
agents that may have diffeirent goals, views, preferences?

• Legacy integration: How can pre-existing (legacy) applications be inte
grated into agents and thus used in agent communities?

From the practical standpoint, any solutions to the above issues must pro
vide the ability to reuse descriptions of coordination mechanisms, system
components, services and knowledge bases. Based on this recognition we
have developed a multi-agent coordination language that, without address
ing the above issues in totality, provides a number of reusable constructs and
services for agent construction and interaction, relieving developers from the
effort of building agent systems from scratch and guaranteeing that essential
interoperation, communication and cooperation services will always be there
to support applications.

1.2 Coordination

Coordination has been defined as the process of managing dependencies be
tween activities [MC91]. An agent that operates in an environment holds
some beliefs about the environment and can use a number of actions to affect
the environment. Coordination problems arise when (i) there are alternative
actions the agent can choose from, each choice affecting the environment and
the agent and resulting in different states of affairs and/or (ii) the order and
time of executing actions affects the environment and the agent, resulting
in different states of affairs. The coordination problem is made more diffi
cult as agents usually have incomplete knowledge of the environment and of
the consequences of their actions and the environment changes dynamically
making it more difficult to evaluate the current situation and the possible
outcomes of actions. In a multi-agent system, the environment is populated
by other agents, each pursuing their own goals and each endowed with their

www.manaraa.com

800 Mihai Barbuceanu, Rune Teigen

own capabilities for action. In this case, the actions performed by one agent
constrain and are constrained by the actions of other agents. To achieve their
goals, agents will have to manage these constraints by coordination.

In this paper we adhere to the view that the coordination problem can
be tackled by recognizing and explicitely representing the knowledge about
the interaction processes taking place among agents. As such, Fox [Fox87]
has proposed that it be studied as an "organization level" and applied Orga
nization Theory concepts to characterize this level. More recently, Jennings
[Jen92] has coined the term "cooperation knowledge level" to separate the
social interaction know-how of agents from their individual problem-solving
know-how and to help focus efforts on coming with principles, theories and
tools for dealing with social interactions for problem solving. We also believe
that principles and theories must be put to work in real applications, and a
major and often neglected way of doing this is by consolidating them into
usable languages and tools.

Our contribution in this sense is the articulation of a model of "agent in
teractions" as execution by the interacting agents of coordination knowledge
intensive plans. As plans contain specifications of communicative actions to
be performed at different stages of the interaction process, plan execution
results in structured conversations carried out amongst agents. This model
has been consolidated into a practical language design and implementation.
A visual knowledge acquisition tool supports users in incrementally acquir
ing and modifying coordination knowledge as it dynamically emerges from
interactions. We argue that the plan-action orientation of this language dif
fers in important respects from the standard object orientation and is more
appropriate for modeling coordination. The language, named COOL (from
COOrdination Language), has been used in several industrial multi-agent sys
tems, the most important of which is suppply chain integration, thoroughly
used in this paper to illustrate the concepts and constructs of our system.

2 Background on Coordination Knowledge

Previous work in Distributed Artificial Intelligence (DAI) [Huh87] can be
seen as investigating various facets of this level of knowledge. One direction
is concerned with devising useful structures for cooperative problem solv
ing. Thus, the Contract Net protocol [Smi80] provided a way of coordinating
agents without global control, by means of a contracting model compris
ing dynamic task decomposition, negotiation of subtask assignments among
agents and the commitment of agents to their assigned subtasks. In the Par
tial Global Planning method (PGP) [DL91] and its Generalized PGP form
[DL95], agents maintain their own subjective views of the tasks, task depen
dencies and the responsibilities of agents. Various coordination mechanisms
(like exchanging private views of tasks, communicating results, handling vari
ous types coordination relationships) enable agents to modify their subjective

www.manaraa.com

System Integration through Agent Coordination 801

view of the task structure and their commitments to tasks in the task struc
ture, ultimately improving performance. The Joint Responsibility model
[JM92] prescribes when and how agents should form teams and how team
members should behave during joint action. The code of conduct imposed
by Joint Responibility ensures that the group will operate in a coordinated
and efficient manner and that it is robust in face of changing circumstances.

Given the diversity of such cooperation structures, how can ~e identify,
analize and formalize the essential elements cooperation structures are com
posed of? This is the focus of a second major direction of work in DAI.
We make several distinctions here. The first is between what happens inside
an agent when it coordinates with other agents and what happens between
agents when cooperative behavior occurs. The second is between explaining
how human agents behave and how programmed agents behave. Although in
this paper we are solely concerned with artificial agents, insights into human
agenthood will help us build agents that are understandable and thus easier
to integrate as partners for human users.

Talking about what happens inside human agents, many researchers be
lieve that mental states, like intentions and commitments are the central
notion here. Intentions and commitments have been studied for example in
[CL90, Bra87, Sea91]. These studies uncovered a number of essential prop
erties of intentions. Intentions must be consistent with each other and with
the beliefs of the agent, the latter meaning that if the intended actions are
executed and the agent's beliefs hold in the world, then the desired state
of affairs should follow. Also, intentions should have a degree of stability,
however without being totally inflexible. Agents should not spend all their
time considering and reconsidering intentions. At the same time, they should
be able to drop intentions if changes in the situation makes it impossible or
undesirable to achieve the intended state of affairs. The reexamination of
agents' intentions should be "regulated" by known policies or conventions
[Jen93] stating under what circumstances intentions should be reconsiderd.
In the Cohen and Levesque [CL90] model for example, an agent should re
consider its commitment to a goal G if any of the following happens: G is
already satisfied, G will never be satisfied, the motivation for G does not
exist any more.

The above approach has been extended to the modeling of inter-agent
phenomena. Levesque, Cohen and Nunez [LCN90] have proposed for exam
ple necessary and sufficient conditions for having Joint Persistent Goals that
would allow agents to form teams: (i) agents mutually believe G is currently
not true, (ii) they mutually believe they all want G to become true (iii) until
they all come to mutually believe either that G is true, that G will never
be true or that the motivation for G is false, they will continue to mutually
believe that they each have G as a weak achievement goal (roughly either a
normal goal, or a goal whose achievement status has to be mutually believed
by all team members). The last condition allows agents to undertake actions

www.manaraa.com

802 Mihai Barbuceanu, Rune Teigen

knowing that if a problem with goal satisfaction occurs, the agents detecting
it will inform the others. In order to act cooperatively, a number of other
conditions have been discussed, including the mutual desire of agents to co
operate [CL91] (otherwise agents may for example compete) and the need for
a common plan to achieve the goal that will determine the contributions of
participants (otherwise inconsistent action may result even if there is a com
mon goal). The latter issue has been dealt with by distributed or multi-agent
planning research, including for example [Dur88, Geo84]. Monitoring the ex
ecution of joint action has been investigated as a way of determining what to
do when things go wrong or unexpectedly [Jen95]. Another approach to co
ordinating multiple agents is to restrict their activities in a way that enables
them to achieve their goals without interfering with each other. Shoham and
Tennenholtz [Sho95] have proposed social laws as the means to specify these
restrictions and have studied how such laws can be designed to guarantee
certain behaviors from the multi-agent system.

From a sociological perspective, Castelfranchi [Cas95] has shown that in
ternal commitments of agents (commitments of individual agents to certain
actions) are not enough to explain social phenomena. He discusses social
commitments as basic relations between two or more agents with respect to
executing some actions. This is different from having several agents shar
ing the same internal commitment. This notion uncovers the dependence
and power relations among people that form the objective basis of social
interaction and has important normative consequences, like obligations and
expectations, that pertain to the notions of Group and Organization.

Given work like the above, how do we brigde the gap between the logical,
sociological and psychological analysis and the engineering of practical multi
agent systems, performing in real environments and bringing real services
to people? There aren't too many answers to this question, but a few of
them deserve mentioning. A first answer is represented by the applicative
work of Jennings [Jen95] who started with the Cohen and Levesque model
for joint intentions, extended it to better fit the need for a common plan
and then implemented it with state of the art AI technologies. The result
was an industrially applied multi-agent system that comprised the results of
theoretical work on joint intentions.

The second answer lies in developing generic agent architectures that in
tegrate the results of theoretical investigations into practical languages and
tools. This is the path taken by Agent Oriented Programming [Sho93] where
a generic notion of agent was proposed, using speech-act based communica
tion, rule-based behavior and encapsulation into object-like structures. This
approach talks about an agentification process in which real systems are
casted in terms of mental states and the other concepts provided by the ap
proach. Other work in the same direction focuses on specific aspects that
are perceived as important when developing practical systems. The ARPA
sponsored Knowledge Sharing Effort [PFPKFGN92] attempts to build tech-

www.manaraa.com

System Integration through Agent Coordination 803

nologies for inter-agent communication by proposing a language for content
communication based on logic, KIF [GF92), and a language for intention
communication, based on communication acts, KQML [Fin92]. Together,
these form an Agent Communication Language (ACL), and approaches like
Genesereth's define an agent as anything that communicates using the ACL
[GK94].

As far as our approach to coordination is concerned, we take the above
investigations as revealing the nature of the knowledge that is involved in
social behavior and interactions. Our aim is to provide generic tools for
the capture, representation and use of this knowledge in multi-agent sys
tems. As previously noted by Jennings [Jen95), the evolution of applicative
DAI systems follows the evolution of applicative knowledge based AI systems
in the following sense. Initially, knowledge based systems were encoded in
more or less ad-hoc ways, such that a lot of relevant knowledge about e.g.
the task structure and problem solving methods were buried into the code
once systems were implemented, hence could not be explicitely analyzed and
reasoned about. This created growing problems with explanation, reusabil
ity and maintainability. In response to these problems, emphasis has later
shifted onto explicit ely characterizing the problem solving task at a higher
level, for example in terms of generic problem solving methods [Der88] like
heuristic classification [Cla85] or distinguishing between the various types of
knowledge used to model the domain, the inferences, the task structures and
the higher order strategies for resolving impasses [WSB92]. With this empha
sis came a new generation of tools that are now able to explicitely represent
such higher level types of knowledge and assist users in building systems in
more principled and accountable ways.

In an essential way we are trying to do the same for the coordination
knowledge agents must posess to interact successfully. In other words we are
trying to come up with higher level constructs for describing coordination pro
cesses and to fully support these constructs in a programming environment
for building multi-agent systems. The insights into the nature of social in
teraction, from sociological or psychological sources, described semantically
in logic systems, give us principles and background knowledge for under
standing and modeling interactions. Together with domain and application
knowledge, they are used by developers to design the coordination structures
that would be actually used by applications. These coordination structures,
encoded into our coordination language, then guide the interactions among
agents. Even if structures of human social interaction may be a source of in
spiration for some agent coordination structures, note that they are not our
object of study and we do not aim in any way at building programs that be
have similarly. Our goal is to build clear, understandable, reusable models of
interaction for artificial multi-agent systems and to support their engineering
as far as we can.

www.manaraa.com

804 Mihai Barbuceanu, Rune Teigen

3 Integrating the Supply Chain

Before presenting our approach in detail, it is useful to review the appli
cation context in which this research is taking place, by presenting a brief
characterization of the supply chain.

The supply chain of a modern enterprise is a world-wide network of
suppliers, factories, warehouses, distribution centres and retailers through
which raw materials are acquired, transformed into products, delivered to
customers, serviced and enhanced. In order to operate efficiently, supply
chain functions must work in a tightly coordinated manner. But the dynam
ics of the enterprise and of the world market make this difficult: customers
change or cancel orders, materials do not arrive on time, production facili
ties fail, workers are ill, etc. causing deviations from plan. In many cases,
these events can not be dealt with locally, i.e. within the scope of a single
supply chain "agent", requiring several agents to coordinate in order to re
vise plans, schedules or decisions. In the supply chain, our ability to enable
timely dissemination of information, accurate coordination of decisions and
management of actions among people and systems is what ultimately deter
mines the efficient achievement of enterprise goals and the viability of the
enterprise on the world market.

We address these coordination problems by organizing the supply chain
as a network of cooperating agents, each performing one or more supply chain
functions, and each coordinating their actions with other agents. Figure 1
shows a multi-level supply chain. At the enterprise level, the Logistics agent
interacts with the Customer about an order. To achieve the Customer's
order, Logistics has to decompose it into activities (including for example
manufacturing, assembly, transportation, etc.). Then, it will negotiate with
the available plants, suppliers and transportation companies the execution of
these activities. If an execution plan is agreed on, the selected participants
will commit themselves to carry out their part. If some agents fail to satisfy
their commitment, Logistics will try to find a replacement agent or to nego
tiate a different contract with the Customer. At the plant level, a selected
plant will similarly plan its activities including purchasing materials, using
existing inventory, scheduling machines on the shop floor, etc. Unexpected
events and breakdowns are dealt with through information dissemination and
solution negotiation among the interested parties.

In the recent virtual organization framework, systems like the supply
chain exhibit features that impose even more difficult requirements to the
coordination capability. Virtual organizations are temporary consortiums
where members have associated to pursue some common opportunity, and
will normally disband when the opportunity ceases to exist. In such an
organization, participants retain a high degree of autonomy and reveal less
or more selective information about themselves. This increases the level of
uncertainty and the stochastic nature of interactions that will have to be
coordinated.

www.manaraa.com

System Integration through Agent Coordination 805

enterprise level

Figure 1: Multi-level supply chain

4 Assumptions and Basic Ideas

While coordination can be defined as before, without making assumptions
about the ways to achieve it, building a practical language for representing
coordination can not be done without clearly stating such assumptions as its
foundation. The assumptions on which our language is built are as follows.

1. Autonomous agents have their own plans according to which they pur
sue their goals.

2. Being aware of the multi-agent environment they are in, agents plans
explicit ely represent interactions with other agents. Without loss of
generality, we assume that this interaction takes place by exchanging
messages and that all messages consist of communicative actions.

3. Agents can not predict the exact behavior of other agents, but they can
delimitate classes of alternative behaviors that can be expected. As a
consequence, agents plans are conditional over possible actions/reactions
of other agents.

4. Agents plans may be incomplete or inaccurate and the knowledge to
extend or correct them may become available only during execution.
For this reason, agents are able to extend and modify their plans during
execution.

The most important construct of the language is the conversation plan. Con
versation plans are general plan descriptions that specify states and associ
ated rules that receive messages, check local conditions, transmit messages
and update the local status. Each COOL agent may posess several conversa
tion plans which can be instantiated simultaneously to drive interactions with
other agents. Instances of conversation plans, called conversations, hold the
state of execution with respect to the plan. Agents can have several active
conversations in the same time and control mechanisms are provided that

www.manaraa.com

806 Mihai Barbuceanu, Rune Teigen

allow agents to suspend conversations while waiting for others to reach cer
tain stages and to dynamically create conversation hierarchies in which child
conversations are delegated issues by their parents and parents will handle
situations that children are not prepared for.

Multi-agent systems built with this language operate on the assumption
of mutual comprehensibility. This means that they are designed in such a
way that, normally, an agent can retrieve a conversation or a conversation
plan that handles a message received from another agent. This guarantees
that, normally, conversations would not get stuck because agents can not
understand a message. This assumption is weaker than the assumption of
cooperative systems, because it does not presuppose any intentional stance
of the agents. On the other hand, we are aware of the limitations of this
assumption and we provide mechanisms that allow agents to continue even
when mutual comprehensibility is not satisfied. These come as recovery rules
(which can modify the execution status or the plan) and much more im
portantly, as support for direct, in context, user guidance which is used for
debugging and knowledge acquisition.

5 The Coordination Language

5.1 Communication

COOL has a communication component that uses an extended version of
the KQML language [Fin92]. Essentially, we keep the KQML format for
messages, but we leave freedom to developers with respect to the allowed
vocabulary of communicative action types. Also, we do not impose any con
tent language. This makes our approach practically independent of KQML
(any message language with communicative actions would do), although a
standard would be a marked advantage. The following example illustrates
the form of extended KQML we are working with.

(propose
:sender A
:receiver B
:language list

II new communicative action

:content (or (produce 200 widgets)
(produce 400 widgets))

: conversation Cl ;; two new slots
:intent (explore fabrication possibility))

5.2 Agents and Environments

An agent is a programmable entity that can exchange messages within struc
tured conversations with other agents, change state and perform actions. A

www.manaraa.com

System Integration through Agent Coordination 807

COOL agent is defined by giving it a name, specifying the conversation plan
for its initial conversation and specifying the variables that form its local
persistent data base:

(def-agent 'customer
:initial-conversation-plan'initial-conversation-plan).

When an agent is created, its initial conversation starts running and while
it runs, the agent is "alive". Any other conversation is created as a descen
dant of this conversation. Agents are run as lightweight processes inside
environments that execute on local or remote sites. TCP lIP is used at the
transport level.

5.3 Conversation Plans

Conversation plans are rule based descriptions of how an agent acts and reacts
in certain situations. COOL provides ways to associate conversation plans to
agents, thus defining what sorts of interactions each agent can handle. A con
versation plan specifies the available conversation rules, their control mech
anism and the local data-base that maintains the state of the conversation.
The latter consists of a set of variables whose persistent values (maintained
for the entire duration of the conversation) are manipulated by conversation
rules. Conversation rules are indexed on the values of a special variable, the
current-state. Because of that, conversation plans and actual conversations
admit a graph representation where nodes represent states and arcs transi
tions amongst states.

Figure 2 shows the conversation plan governing the Customer's conversa
tion with Logistics in our supply chain application. Figure 3 shows the associ
ated graph of this conversation plan. Arcs indicate the existence of rules that
will move the conversation from one state to another. As it will became clear
immediately, conversation plans are general plan specifications not restricted
in any way to exclusively describing interactions amongst agents by message
exchange. They can equally describe any local behavior of the agent that
does not involve interaction with other agents. In our applications we also
use conversation plans to describe local decision making, for example based
on using local solvers (e.g. constraint based schedulers) or other decision
making tools available to agents.

Error recovery rules are another component of conversation plans (not
illustrated in Figure 2). They specify how incompatibilities among the state
of a conversation and the incoming messages are handled. Such incompati
bilities can be caused by both planning and execution flaws. Error recovery
rules are applied when conversation rules can not handle the current situa
tion. They can address the problem either by modifying the execution state
(e.g. by discarding inputs, changing the conversation current-state or just
reporting an error) or by executing new plans or modifying the current one
(e.g. initiating a new clarification conversation with the interlocutor).

www.manaraa.com

808 Mihai Barbuceanu, Rune Teigen

(def-conversation-plan 'customer-conversation
:content-language 'list
:speech-act-language 'kqml
:initial-state 'start
:final-states '(rejected failed satisfied)
:control 'interactive-choice-control-ka
:rules '«start cc-l)

(proposed cc-13 cc-2)
(working cc-5 cc-4 cc-3)
(counterp cc-9 cc-8 cc-7 cc-6)
(asked cc-l0)
(accepted cc-12 cc-ll)))

Figure 2: Customer-conversation

Actual conversations instantiate conversation plans and are created when
ever agents engage in communication. An actual conversation maintains the
current-state of the conversation, the actual values of the conversation's vari
ables and various historical information accumulated during conversation ex
ecution.

Each conversation plan describes an interaction from the viewpoint of an
individual agent (in Figure 2 the Customer). For two or several agents to
"talk" , the executed conversation plan of each agent must generate sequences
of messages that the others' conversation plans can process (according to the
mutual comprehensibility assumption). This raises two problems. The first
is how an agent that received the first message in a new conversation can
select the appropriate conversation plan that will handle this and the next
messages in the conversation. We adopt the convention that the first message
in a new conversation has to have attached a specification of the purpose
of the conversation. The receiver will then use this specification to find a
conversation plan that can sustain a conversation with that purpose. This is
done by having in each conversation plan a predicate that determines if the
stated purpose matches the current conversation plan. This shows that plan
selection is dynamic and that agents that carry out an actual conversation
C will instantiate specific and different conversation plans internally (neither
being aware of what plan the other has selected). The second problem is
a naming one. When a message for a conversation C is sent, internally the
conversations will have unique names (e.g. Customer-C for a conversation C
with the Customer agent) inside each agent, allowing the system to direct
messages appropriately.

www.manaraa.com

System Integration through Agent Coordination 809

Figure 3: Graph representation of customer-conversation

5.4 Conversation Rules

Conversation rules describe the actions that can be performed when the con
versation is in a given state. In Figure 2 for example, when the conversation
is in the working state, rules cc-5, cc-4 and cc-3 are the only rules that
can be executed. Which of them actually gets executed and how depends on
the matching and application strategy of the conversation's control mecha
nism (the: control slot). Typically, we execute the first matching rule in
the definition order, but this is easy to change as rule control interpreters
are pluggable functions that users can modify at will . Figure 4 illustrates a
conversation rule from the conversation class that Logistics uses when talking
to Customer about orders.

(def-conversation-rule 'lep-l
:current-state 'start
:received '(propose :sender customer

: content (customer-order
:has-line-item ?li))

:next-state 'order-received
:transmit '(tell :sender ?agent

:receiver customer
:content '(working on it)
: conversation ?convn)

:do '(update-var ?conv '?order ?message))

Figure 4: Conversation rule

Essentially, this rule states that when Logistics, in state start, receives a
proposal for an order (described as a sequence of line-items), it should inform
the sender (Customer) that it has started working on the proposal and go to

www.manaraa.com

810 Mihai Barbuceanu, Rune Teigen

state order-received. Note the use of variables like?li to bind information
from the received message as well as standard variables like ?convn always
bound by the system to the current conversation. Also note a side-effect
action that assigns to the ?order variable of the Logistics' conversation the
received order. This will be used later by Logistics to reason about order
execution. Among possibilities not illustrated, we mention arbitrary predi
cates over the received message and the local and environment variables to
control rule matching and the checking and transmission several messages
in the same rule. Also note that both the : recei ved and : transmi t slots
are optional, which means that local behavior that does not involve message
passing is equally representable in the language.

Our typology of rules also includes timeout, on-entry and on-exit rules.
Timeout rules have a : timeout slot filled with a value representing a number
of time units. These rules are tried after the specified number of time units
has passed after entering the current state. Such rules enable agents to
operate in real time, for example by controlling the time spent waiting for a
message or by ensuring actions are executed at well determined time points.
On-entry and on-exit rules are always executed when a conversation enters
(exits) a state. They are useful for both mundane things like set-ups, clean
ups or instrumentations and non-mundane activities like strategic reasoning.
In a next section we will illustrate their use to evaluate the current state of
plan execution and dynamically determine new criteria for which execution
is to be optimized.

5.5 The Initial Conversation

When an agent is created, its initial conversation starts running. As long
as this conversation is not terminated, the agent is alive and active. All in
coming messages are dispatched by the initial conversation. Sometimes they
are dispatched to existing conversations, sometimes new conversations are
created to handle them (for example we define an : intent slot of messages
to help identify the conversation plans that can handle messages with given
intents). The initial conversation is the ancestor of any conversation in the
system. As new conversations are created, they can later create their own
child conversations, incrementally building trees of conversations. The mes
sage dispatch mechanism allows direct dispatch to known conversations, or
various forms of top-down or bottom-up forwarding of the message (possibly
with annotations added along the way) to several conversations. This can
emulate Brooks-like or hierarchical architectures. Figure 5 illustrates one rule
from one initial conversation plan. This rule checks if there exists a conver
sation (immediately) runnable or waiting for messages and, if so, forwards it
the messages addressed to it and then executes it.

www.manaraa.com

System Integration through Agent Coordination

(dei-conversation-rule 'iccl-l
:current-state 'process
:such-that '(exists-runnable-or-waiting ?agent ?conv)
:next-state 'process
:do '(progn

(move-msgs-to-addressee-conv ?conv ?runnable)
(execute-conversation ?runnable)))

Figure 5: Conversation rule of the initial conversation

5.6 Synchronized Conversation Execution

811

Normally, a conversation may spawn another one a~d they will continue in
parallel. When we need to synchronize their execution, we can do that by
freezing the execution of one conversation until several others reach certain
states. This is important in situations where an agent can not continue along
one path of interaction unless some conditions are achieved. In such cases,
the conversation that can not be continued is suspended, the conversations
that can bring about the desired state of affairs are created or continued,
and the system ensures that the suspended conversation will be resumed as
soon as the condition it is waiting for becomes true. The specification of this
condition is as an arbitrary predicate over the state of other conversations.

6 Situated Acquisition and Debugging of
Coordination Knowledge

Coordination structures for applications like supply chain integration are
generally very complex, hard to specify completely at any time and very likely
to change even dramatically during the lifespan of the application. Moreover,
due to the social nature of the knowledge contained, they are better acquired
and improved in an emergent fashion, during and as part of the interaction
process itself rather than by off-line interviewing of users, which for widely
distributed systems will be hard to locate and co-locate anyway. Because of
this the coordination tool must support (i) incremental modifications of the
structure of interactions e.g. by adding or modifying knowledge expressed
in rules and conversation objects, (ii) system operation with incompletely
specified interaction structures, in a manner allowing users to intervene and
take any action they consider appropriate (iii) system operation in a user
controlled mode in which the user can inspect the state of the interaction and
take alternative actions.

We are satisfying these requirements by providing a subsystem that sup
ports in context acquisition and debugging of coordination knowledge. Using

www.manaraa.com

812 Mihai Barbuceanu, Rune Teigen

(dei-conversation-rule 'cc-13
:current-state 'proposed
:received '(ask :sender logistics)
:next-state 'proposed
:transmit '(tell :receiver logistics

:sender ?agent
:conversation ?convn)

: incomplete t)

Figure 6: Incomplete conversation rule

this system execution takes place in a mixed-initiative mode in which the
human user can decide to make choices, execute actions and edit rules and
conversation objects. The effect of any user action is immediate, hence the
future course of the interaction can be controlled in this manner.

Essentially, we allow conversation rules to be incomplete. An incomplete
rule is one that does not contain complete specifications of conditions and
actions. Since the condition part may be incomplete we don't really know
whether the rule matches or not, hence the system does not try to match the
rule itself. Since the action part may be incomplete, the system can not apply
the rule either. All that can be done is to let the user handle the situation.
Interaction specifications may contain both complete and incomplete rules in
the same time. Assuming the usual strategy of applying the first matching
rule in the definition order, we can have two situations. The first is when
a complete rule matches. In this case it is executed in the normal way.
The second is when an incomplete rule is encountered (hence no previous
complete rule matched). In this case the acquisition/debugging regime is
triggered, with the user in control over what to do in the respective situation,
as explained further on.

Figure 6 shows an example incomplete rule from the customer-conversation
that allows a user interacting with the Customer agent to answer (indeter
minate) questions from the Logistics agent.

The rule is incomplete in that it does not specify how to answer a question
- the : transmi t part only contains the generic part of the response message.
It is designed to work under the assumption that once a question is received,
the user will formulate the answer interactively, using the graphical interface
provided by the acquisition tool. When the knowledge acquisition interface
is popped up, the user will have access to the received message containing
the actual question. Using whatever tools are available, the user can de
termine the answer. Then, the user can create a copy of the rule and edit
the transmitted message to include the answer. This rule can be executed
(thUS answering the question) and then discarded. Alternatively, if the new

www.manaraa.com

System Integration through Agent Coordination 813

success
rAIL

STARt

ORDtR-RfCfIVfD

OQDfR-OEC(Nr4)OSf:D

COtnRAClORS-RAt.ftO

LARGE-TEAN-rORMED

..wJ.·lEMoI-#OIIMED

COlfTRACTOftS-Q).....-rTII>

COIITRACTOR-uUDED

AI. T(Rt'ATrvE-N££DED

ALn:R'lATJV£~ss)

c",,·G

JUU- ca"WOI"'S3t.J.an-ruie mH-1 :It'atFl.ETE Ut

cca.ent: Nil.
ltItorocUy....."..,nlm-fn Nil.
11

arrent-.:t.>te • CltITl<OCTrnS_:ED
""",Ivod-t.est Nil.
I"8Cel\'ed· HD..

D.w:.,.. ",.....ftruk ...
r,..dtn,1)","'e) •. ut .. tt_kldu:I! pult.llllda.»'

a- ~ 7->«1IWIT (\I..UIT LlElSTltS» (~ --......
_"=... CliN-7->«7I'Wff (\I..UIT lffiISfICS)) ("COl
.I.wtIldNill

Figure 1: Inspecting, editing and applying rules

rule contains reusable knowledge, it can be retained, marked as complete and
hence made available for automated application (without bothering the user)
next time.

The facilities provided by this service can be illustrated with examples
from its graphical interface. To view the status ofthe conversation at the time
an incomplete rule was encountered, the acquisition service shows the graph
representation (like in Figure 7) . Here we have an instance of the logistics
execution process as seen by the Logistics agent. A textual presentation of the
conversation and a browser for the conversation variables are also available.

Another aspect of the conversation context is formed by the available
rules. This is also shown in Figure 7. The browser for conversation rules
allows the user to inspect the rules indexed on the current state (drawn as a
larger circle) . Rules can be checked for applicability in the current context,
with the resulting variable bindings shown so that the user can better assess
the impact of each rule. The interface allows the user to perform a number
of corrective actions like moving a rule to a different position or removing it
from the conversation class. It is also possible to invoke the rule editor, the
conversation class editor or the browser for classes and rules allowing the user
to inspect other classes and rules in the system. The effect of any of these
modifications will be immediate. Finally, the user can leave the interface and
continue execution by applying a specified rule.

When the user needs more information about the history of conversation
execution, especially with respect to message exchange, the interface also pro
vides appropriate presentation and interaction facilities. First, the history of
the conversation can be traced by viewing the sequence of past states and the
actions performed in each state (received messages, rule triggered, transmit
ted message). Second, the messages received (and not yet processed) by the

www.manaraa.com

814 Mihai Barbuceanu, Rune Teigen

conversation are also displayed. Again, here we provide means for corrective
actions, assuming that message transmission is an important source of errors.
Amongst them we mention deleting messages and reordering messages in the
conversation queue. To better access the content of messages we provide
pattern based search mechanisms.

Finally, when the action part of an existing rule is not complete or is
not what the user needs, the service allows the interactive modification of
the action part before executing it. First, a set of forms is available for
presenting and editing the various slots of the action part. They can be filled
automatically from a selected rule. The user can edit these slots and then
execute them either separatedly or together. As rule execution may remove
messages from the conversation queue, messages shown in the previous part
of the interface can be marked as to be removed (or accepted) and actually
removed when desired. Arbitrary conditions testing for any conversation
variables can be also evaluated in this context to obtain more information.
Finally, the modifications performed to the action part can be saved into a
new rule that can be "learned" by the system, replacing the original one.

7 Perturbation in the Supply Chain

Let us now apply this agent coordination technology to the integration of a
supply chain where unexpected events take place. We have designed a fictious
yet realistic enterprise manufacturing personal computers and we wish to
simulate its supply chain, measure and evaluate performance and improve
behavior in face of unexpected events taking place. The agent based design
of the supply chain is represented in COOL, and all simulation is equally
done in COOL using the above described mechanisms.

7.1 Enterprise Structure

The Perfect Minicomputer Corporation (PMC) (Figure 8) is a small manufac
turer of mother boards and personal computers situated in Toronto, Canada.
The minicomputers are sold to customers in two markets, Canada/USA and
Germany / Austria. To satisfy the different standards of keyboard and power
supply in the two markets, the computers need to be slightly differentiated,
and are regarded as two distinct products. The mother board is PMC's third
product sold to the computer industry of the Canada/USA market.

Plants and Production. PMC is a vertically integrated company. In ad
dition to the assembly of the finished computer systems (computer, moni
tor and keyboard), they assemble the motherboard and the computer boxes
(without power supply) themselves in separate plants in Toronto. Each plant
has a Planning, a Materials, a Production, and a Dispatching agent.
The Planning agent is responsible for production planning. The Materials
agent handles raw product inventory (RPI), the on-order data base for raw

www.manaraa.com

System Integration through Agent Coordination 815

Perfect Minicomputers Corp.
~--system-assembly plant ~

c::==J 6
6 (.,.._) 6
~6~6

t :
-«ulDlNr,.on:l.n>

I , I

------------------------- [-~~i---------------~=~~ ---

Figure 8: The Perfect Minicomputer Corporation

products, and all reception of raw products. The Production agent han
dles production and the work in progress inventory, and has knowledge of
the plant architecture. The Dispatching agent handles the finished goods
inventory (FGI) and all shipments from the plant. In each plant we also
have a set of workstations, bins, and stocks. The workstations are produc
tion units with a set number of lines giving the number of units that can be
processed simultaneously, a scrap rate (in percent), and a production time
for each unit of a given product. The production capacity of the workstation
will be given by the number of lines times throughput rate (1 / production
time) minus scrap. Each workstation is modeled as an agent. The storage
areas between workstations are modeled as bins. Each bin has a maximum
inventory level, which is the inventory level where the bin is full, hence no
further products can be entered. There is a single bin agent in each plant,
which is responsible for all bins in the plant. Each plant has two stocks ar
eas, the RPI for incoming components or raw materials, and the FGI on the
other end of production. Production is modelled as strictly pull production,
where workstations finish products as long as the output bin is not full, and
start products as long as the input bin is not empty. Production ceases when
weekly production goals are achieved.

Markets and Distribution Centers. PMC also owns and operates their
two distribution centers, one in Detroit for the Canada/USA market (dc-us) ,
and one in Hamburg for Germany/Austria (dc-ger). All computers are dis-

www.manaraa.com

816 Mihai Barbuceanu, Rune Teigen

tributed through these two distribution centers. All mother boards sold to
external customers are distributed through the Detroit distribution center.
Each DC is modeled as an agent.

Suppliers and Customers. Each external supplier is modeled as an agent.
PMC has a Purchasing agent which is responsible for communication with
suppliers. The Purchasing agent has knowledge of which parts to order from
which suppliers. Three types of customers are identified for each product in
each market, a, b, and c-customers, with a-customers being most important.
Customers are modeled in one Customer agent for each market. The Sales
agent in the company is responsible for communication with customers.

Transportation. A Transport agent is defined to handle transportation.
This agent has knowledge of transportation times and capacities, and damage
rates where applicable. It also keeps logs on tranports currently underway.
Deliveries from plant to distribution centers is modeled with uncertain tran
portations times (normally distributed), and in some cases limited capacity.
Three types of carriers are used; boat, truck, and plane. Internal transporta
tion from plant to plant is modeled as instantaneous, and with unlimited
capacity. All transports from external suppliers are the responsibility of the
suppliers and are therefore not addressed in the model.

7.2 Coordination Processes

Production Planning. Production is planned through lists of goals for this
week and a number of future weeks. These plans propagate upstream through
the internal supply chain, and come back downstream as plans of delivery.
On the way upstream each agent contributes with its own knowledge.

To examplify the use of conversation plans and rules, let's look at the
issuing of demand-forecasts, which start production planning. (The demand
forecast gives the expected number of units ordered for this and coming
weeks.) The Sales agent has a conversation plan for distributing demand
forecasts to the distribution centers. When a demand-forecast-conversation
is created, the first rule of the conversation plan applies a specific method to
compute the demand-forecast. The next rule of the plan prepares the data for
sending, and rule dfc-3 (Figure 9) sends the message. The ?next-dc-forecast
variable contains the demand-forecast for the market of the DC agent that
is bound to the ?next-dc variable.

A demand-forecast message from Sales creates a demand-pIan-conversa
tion in the DC's. The rules of these demand-plan-conversatio11rs use knowl
edge of the DC's inventory levels. DC-demand-plans, defining the targetted
quantity of each product arriving at the DC at the end of this and coming
weeks, are made and sent to the Transport agent (and similarly creates a
corresponding conversation in the Tranport agent). Transport knows how
much is onway to the DC, and can therefore make ship-plans, defining the
quantity of each product that should be shipped from a plant to a given DC
at the end of this week and a number of future weeks. The ship-plans are

www.manaraa.com

System Integration through Agent Coordination

(def-conversation-rule 'dfc-3
:current-state 'sending-forecasts
:such-that '(and (get-conv-var ?conv '?dc-Ieft)

(get-conv-var ?conv '?ready-to-send))
:transmit '(tell :sender ?agent

:receiver ?next-dc

817

:content (:demand-forecast ?next-dc-forecast)
:conversation ?convn)

:do-after '(progn (put-conv-var ?conv '?dc-left
(rest (get-conv-var ?conv '?dc-Ieft)))

(put-conv-var ?conv '?ready-to-send nil))
:next-state 'sending-forecasts)

Figure 9: Sending Forecasts Conversation Rule

sent to the planning agents of the plants concerned.
The aim of a plant's Planning agent is to convert the incoming ship

plan (if it has external customers) and materials-demand-plans from the next
downstream plants (if it has internal customers) to the plant's own materials
demand-plan-s for all internally supplied parts. These are sent to the next
plants upstream. A materials-demand-plan defines the number of units of a
given product the plant needs this week and a number of future weeks. To
calculate the materials-demand-plan-s the Planning agent will use data from
the other agents in the plant.

The materials-demand-plan-s will move upstream till they meet a last
planning agent in the internal supply-chain. This agent will make delivery
plan-s for each customer (next plants downstream, or transport for deliveries
to DC-s), defining the number of units the plant will deliver this week and a
number of future weeks. This is of course the total demand limited by part
availibilities and production capacities. Upon receiving delivery-plan-s from
upstream internal suppliers, a planning agent has the knowledge it needs to
decide the actual-build-plan of the plant, i.e. the production goals for this
and coming weeks. Thereby it will also make its own delivery-plan-s, and
these plans will flow down-stream to the end of the supply chain.

Materials Ordering, Delivery, and Reception. From the actual-build-plan,
via the BOM, the materials agent can calculate a materials-order-plan for
externally supplied parts. The plans are sent to the purchasing agent, who
transforms them to part orders for the suppliers. The supplier agents will
send acknowledgment messages to the materials-agents. The materials agents
update their on-order data base. Materials-shipments arriving at the plants
are modeled as a messages sent by the suppliers to the materials agents. The
materials agents update inventory and on-order.

Products Dispatching, Transportation, and Reception. Product tranpor-

www.manaraa.com

818 Mihai Barbuceanu, Rune Teigen

tation from plant to DC is started through messages from dispatching agents
to the Transport agent. Arrivals at DC are done by messages from Tranport
to the DC agent.

7.3 Dealing with Unexpected Events

Each agent within the corporation records its own relevant data every week,
building a data base that will be communicated to a Simulation agent at the
end of the simulation and saved for later analysis. We measure parameters
related to inventory levels and customer satisfaction. Examples include the
values of all inventories, the company backlog, the incoming orders, the ship
ments from plants to DC-s, the average time from order arrival till product
delivery, the percentage of shipments delivered on-time. We are especially
interested in understanding the value of various coordination structures when
unexpected disruptions occur in the supply chain and how coordination can
be used to reduce the negative consequences of these disruptions. A typical
situation is a machine breakdown during normal operation. Such an event
tends to increase the level of raw product inventory in the plant where the
breakdown occurs because the plant's ability to consume inventory is dimin
ished. The carried inventories of the upstream and downstream plants are
also affected and specific coordination is needed to atenuate these effects.
Accumulation of inventory is very costly which explains why many manufac
turing strategies focus on reducing the level of carried inventories.

To see how coordination can be used to deal with this problem, we have
performed a series of experiments involving breakdowns of workstations in
several plants and using various coordination mechanisms for dealing with
them. There are two levels at which we use coordination to atenuate the dis
ruptions produced by breakdowns. First we increase coordination inside the
plant where the breakdown occurs by notifying the plant's planning agent of
the breakdown. Knowing of the reduced capacity of its plant, the planning
agent will order less materials from its suppliers. Second, we need more in
terplant coordination to allow all plants to react to this event. We remember
that production planning takes place by a process in which first demand flows
upstream (from sales to DC-s, then to transport, then to the plants) and then
committed delivery plans flow downstream (from the motherboard plant to
the computer box assembly plant, then to the system assembly and test plant,
and then to transport). When disruptions do not occur delivery plans nor
maly satisfy the demand. But when disruptions like machine breakdowns oc
cur, soine plants will deliver less than demanded and the downstream flow of
delivery plans will be used to propagate information about the consequences
of the disruptions. To analize these possibilities we simulate breakdowns in
various plants and then run the system with the four possible combinations
of internal notification and delivery plans: (1) no delivery plans, no notifica
tion, (2) no delivery plans, notification (3) delivery plans, no notification and
(4) delivery plans, notification. In all cases we assume the breakdown occurs

www.manaraa.com

System Integration through Agent Coordination 819

in week 35 and takes 12 weeks to repair. Also, the severity of the breakdown
is high, 80% of the plant's capacity being lost.

Figure 10: Effect of system test plant breakdown notifications over inventory lev
els

Some results of these simulations are shown in Figures 10, 11, and 12.
In Figure 10 we assume that the breakdown occurs in the system test and
assembly plant (the last plant in the chain) and we show the change in the
RPI level in cases (3) and (4) above. The results show that the simple
notification introduced reduces the average value of the raw product inventory
at the system test plant (where the breakdown occured) with 26%. It also
shows that for the upstream plants there is a noticeable increase of the same
inventory, because they have to keep more inventory in their own stocks.
Globally however, the total inventory decreases with about 4% in average.
The most important consequence is avoiding the sudden take-off of the system
test plant's stock. In the non-notification case the stock is more than tripled
in the ten week period following the breakdown. The notification reduces the
magnitude of the peek by almost half.

In Figure 11 the breakdown occurs in the computer box assembly plant
(second in the chain) and we show the inventories in all four cases above
for the next plant downstream (system assembly and test). First, we notice
that the local notification has virtually no effect when delivery plans are not

www.manaraa.com

820 Mihai Barbuceanu, Rune Teigen

sent downstream. This was to be expected, since in this case the breakdown
knowledge is not shared with downstream planning agents. However, when
delivery plans are used, even without notification, there is a clear gain in RPI
reduction of about 16%. If notification is also used, the gain is as high as
26%.

No [e l iv, ' Plans INo Del. Plans. Notlfv IDellverv Plans
, VOlt ..

il ,
I '

IDel. Plans. Notify

Figure 11: Effects of coordination for dealing with computer box plant breakdown

Finally, in Figure 12 we assume the breakdown occurs in the motherboard
plant (first in the chain). We see that for the other plants only the combined
use of notification and delivery plans is able to significantly reduce the level
of inventories.

On the customer satisfaction side, although a loss of production is in
evitable, the notifications allow the enterprise to update the delivery time
quotations sent to the customer in advance and thus maintain the customer's
trust.

7.4 Evaluation

The above supply chain system has 40 agents and just about the same number
of conversation plans. The entire specification takes about 7,500 lines of
COOL code, plus about 2,000 lines for GUI-s. A typical simulation run over
100 weeks generates thousands of message exchanges and takes less than
1 hour to complete (no optimizations attempted, and the system runs in
an interpreted mode). The system was writen by one author, who hasn't a
computer science background, in less than 3 months. Learning the underlying
agent and coordination technology was done in another 2 months, during
which time a simpler supply chain was built. (Some limited code sharing
between these systems occured). We take these data as early indications
that the agent coordination model is natural, understandable and adequate
to modeling distributed agent systems like the supply chain. We are aware
that such evidence, collected from a reduced number of applications, is only
partial. Since we are dealing with evaluating a computer language, more
compelling evidence requires much more experimentation and many more
users than we could afford. We believe however that incomplete as they are,
our results show promise that our plan-action oriented coordination language

www.manaraa.com

System Integration through Agent Coordination 821

No Deli.lans INo Del. Plans. Notify IDellvery Plans 10el. Plans. Notitv
IValu8

, , ; ... ,:
~~ ,

, , , !

r\
j ••••

I~ , ;.j I:::: .
I~! , jM. V1!U8

!'<II'
" , ,

~ , , , ,
~ ,

, , ,
~~~ , ... : :.\ ... ... , , 

w,;;.< 
, '80 '90 ' 

~ ~ \WOk """,. 

Figure 12: Effects of coordination for dealing with motherboard plant breakdown 

addresses the problem of multi-agent coordination in a practically relevant 
manner. 

In terms of how far we have gone with the understanding of coordination 
as a way to cope with disruptions in a dynamic supply chain system, the 
answer is that we are in an early stage. Although we have an appropriate 
experimental setup for studying coordination in face of unexpected events, 
we have only modelled very simple situations of this kind. We expect to 
go deeper into the problem once we integrate in our setup more powerful 
scheduling solvers that agents would use to plan production locally. These 
would allow agents to develop a precise understanding of the options they 
have when responding to an unexpected event, and of the consequences of 
these options. Globally, agents would be in a position to manage change by 
negotiating about the actions and objectives of each of them. 

8 Plan-Action Versus Object Oriented 
Organizations 

A main conclusion we draw from this work is that object oriented languages 
may not provide the most appropriate organization for modelling coordina
tion. Instead, we belive that a plan-action, process oriented language of the 
type described is better. There are two main reasons for this. The first has 
to do with the local and idiosyncratic meaning of communication in object 
oriented systems. Object oriented languages allow syntactically and seman
tically arbitrary messages to be exchanged. The structure and meaning of 
messages are neither declaratively stated nor shared. Instead, meaning is 
procedurally determined by the code (method) the receiving object will ac-



www.manaraa.com

822 Mihai Barbuceanu, Rune Teigen 

tivate in response. In our plan-action language, instead of messages we use 
communicative actions (request, inform, tell, ask, etc.) that bind together 
an action and some communicated content. These communicative actions 
are taken from a shared and well defined set, so that all participants are 
aware of them and know what they mean. KQML for example, which we 
use, has some 30-40 such communicative actions. The problem for the object 
oriented organization is that the user of an object has to have knowledge 
of arbitrary, application specific messages accepted by that object, and this 
gets harder and harder as the system grows or is being changed, especially 
in a distributed environment. If one needs to interact with 100 objects for 
example, ~ach having 10 methods, one has to correctly understand 1000 po
tentially very specific behaviors. (Imagine that each method is documented 
on one page - then one has to read 1000 pages before one even starts to work 
on one application). On the other hand, if one can only use 30-40 well defined 
message types (communicative actions) no matter how many agents there are 
and who wrote them, all there is to do is initially learning this small language. 
Also note that writing translators and interface definition languages in the 
object oriented case does not address the cause of the problem, but rather 
its symptoms. 

The second reason has to do with the reactive, server model of objects 
as opposed to the active and reactive model of plans. In the standard orga
nization, objects only respond to messages from clients and can not trigger 
action at their own initiative. This is in contrast to our coordination en
hanced plans that describe long running interactions which can trigger agent 
action at any time deemed appropriate. This confers autonomy to agents and 
supports peer to peer as opposed to client-server interaction. Our model of 
an agent executing symultaneously many plans that drive interactions with 
many other agents, in each interaction the agent being allowed to behave both 
proactively and reactively, goes beyond standard object oriented capabilities. 

9 Conclusion 

We believe we have contributed in several ways to the goal of constructing 
models and tools enabling multiagent systems to carry out coordinated work 
in real world applications. First, we have contributed a model of the new 
type of coordination knowledge as complex, coordination enhanced plans in
volving interactions by communicative action. The execution by agents of 
these plans results in multiple structured conversations taking place amongst 
agents. These ideas have been substantiated into a practical, application in
dependent coordination language that provides constructs for specifying the 
coordination enhanced plans as well as the interpreter supporting their execu
tion. Our interpreter supports multiple conversation management, a diverse 
rule typology that, amongst others, provides for handling exceptional or un
expected situations, conversation synchronization, conversation initiation, as 



www.manaraa.com

System Integration through Agent Coordination 823 

well as optimization of plan execution by decision-theoretic mechanisms. 

Second, we have provided methods and interfaces for acquiring coordina
tion models in an asynchronous, situated manner. Our knowledge acquisition 
method is suited to autonomous agents that operate without central control, 
as it supports capturing knowledge as it dynamically emerges in the context 
of each agent's interactions. Together, these two enable developers both to 
reuse coordination structures and to efficiently build new ones. 

Third, in cooperation with industry partners, we have applied these mod
els and tools to industrially relevant problems, in order to keep our work in 
touch with reality and "falsify" our solutions as early as possible based on 
feedback from reality. 

With respect to the coordination model, previous work has investigated 
related state based representations [Mar92] but has not consolidated the the
oretical notions into usable language constructs, making it hard to use their 
ideas into applications. Formalizations of mental state notions related to 
agency (like [CL90]) have provided semantic models that clarify a number of 
issues, but operate under limiting assumptions that similarly make practical 
use and consolidation difficult. Some conversational concepts have been used 
by [KTBB92, SMK90, MWFF92] in the context of collaborative and workflow 
applications. We have extended and modified them for use in multi-agent set
tings and added knowledge acquisition and sophisticated control that led to 
a more generic, application independent language. Agent oriented program
ming [Sh093] similarly uses communicative action, rules and agent represen
tations. Our language differs from AOP in the explicit provision of plans and 
conversations, the more powerful control structures that emerge from them 
and the more powerful programming environment including the support for 
knowledge acquisition. 

The coordination language has been now evaluated on several problems, 
including supply chain coordination projects carried out in cooperation with 
industry. Although the number of applications we have built as well as the 
number of users of our system are both limited, the evidence we have so far 
shows that our approach is promising in terms of naturalness of the coor
dination model, effectiveness of representation and power and usability of 
the provided programming tools. In all situations, the coordination lan
guage enabled us to quickly prototype the system and build running versions 
demonstrating the required behavior. Often, an initial (incomplete) version 
of the system has been built in a few hours or days, enabling us to immedi
ately demonstrate its functionality. Moreover, we have found the approach 
and the acquisition tool explainable to and usable by industrial engineers 
who don't necessarily have a computer science background. We credit the 
knowledge acquisition approach and tool with this. Users can very quickly 
prototype an application, e.g. by copy and paste from other applications. 
The new system can be very incomplete (all rules can be empty) but will still 
run, immediately giving users a sense of what's going on and putting them in 



www.manaraa.com

824 Mihai Barbuceanu, Rune Teigen 

control of their work. Due to the active exploration allowed by the KA tool 
users can in the same time learn the system and prototype their application, 
so they do not loose time in a lenghty learning curve before doing what they 
are really interested in. 

Finally, we believe that the coordination language is a representative of 
a class of languages which we call plan-action oriented. We have shown 
that the plan-action orientation, significantly different from the standard 
object orientation, brings in new capabilities that are required for modeling 
and executing coordinated behavior among distributed agents. Thus it may 
be considered as a useful approach for addressing the new issues raised by 
building systems for the Internet. 

Acknowledgments: This research is supported, in part, by the Manufacturing Re
search Corporation of Ontario, Natural Science and Engineering Research Council, 
Digital Equipment Corp., Micro Electronics and Computer Research Corp., Spar 
Aerospace, Carnegie Group and Quintus Corp. 

References 

[Bra87] 

[Cas95] 

[ClaB5] 

[CL90] 

[CL91] 

[DL91] 

[DL95] 

Bratman, M., Intentions, Plans and Practical Reason, Harvard 
University Press, 1987 

Castelfranchi, C., Commitments: From Individual Intentions to 
Groups and Organizations, in: Proceedings of First International 
Conference on Multi-Agent Systems, AAAI Press/The MIT Press, 
1995,41-48 

Clancey, W. J., Heuristic Classification, Artificial Intelligence 27, 
1985, 289-350 

Cohen, P. R., Levesque, H., Intention is Choice with Commitment, 
Artificial Intelligence 42, 1990, 213-261 

Cohen, P. R., Levesque, H., Teamwork, Nous 15, 1991, 487-512 

Durfee, E. H., Lesser, V., Partial Global Planning: A Coordination 
Framework for Distributed Hypothesis Formation, IEEE Trans. on 
Systems, Man and Cybernetics 21 (6), 1991, 1363-1378 

Decker, K. S., Lesser, V., Designing a Family of Coordination Algo
rithms. in: Proceedings of First International Conference on Multi
Agent Systems, San Francisco, AAAI Press/The MIT Press, 1995, 
73-80 



www.manaraa.com

System Integration through Agent Coordination 825 

[Dur88] Durfee, E. H., Coordination of Distributed Problem Solvers, 
Kluwer Academic Press, 1988 

[Fin92] Finin, T., et al, Specification of the KQML Agent Communication 
Language, The DARPA Knowledge Sharing Initiative, External 
Interfaces Working Group, 1992 

[Fox87] Fox, M. S., Beyond the Knowledge Level, in: L. Kerschberg (ed.), 
Expert Database Systems, Benjamin/Cummings Publishing Com
pany, 1987, 455-463 

[Ge084] Geogeff, M. P., A Theory of Action for Multi-Agent Planning, in: 
Proceedings of National Conference on AI, Austin, 1984, 125-129 

[GF92] Genesereth, M. R, Fikes, R E., Knowledge Interchange Format, 
Version 3.0, Reference Manual, Computer Science Department, 
Stanford University, Technical Report Logic-92-1, 1992 

[GK94] Genesereth, M. R, Ketchpel, S., Software Agents, Communica
tions of the ACM 37 (7), 1994, 100-105 

[Huh87] Huhns, M. N., (ed.), Distributed Artificial Intelligence, Pitman 
Publishing, London, 1987 

(Jen92] Jennings, N. R, Towards a Cooperation Knowledge Level for Col
laborative Problem Solving, in: Proceedings 10-th European Con
ference on AI, Vienna, Austria, 1992, 224-228 

(Jen93] Jennings, N. R, Commitments and Conventions: The Foundation 
of Coordination in Multi-Agent Systems, The Knowledge Engineer
ing Review 8 (3), 1993, 223-250 

[Jen95] Jennings, N. R, Controlling Cooperative Problem Solving in In
dustrial Multi-Agent Systems Using Joint Intentions, Artificial In
telligence 75 (2), 1995, 195-240 

[JM92] Jennings, N. R., Mamdani, E., Using Joint Responsibility to Coor
dinate Collaborative Problem Solving in Dynamic Environments, 
in: Proceedings of 10-th National Conference on AI, San Jose, CA, 
1992, 269-275 

[KTBB92] Kaplan, S. M., Tolone, W. J., Bogia, D. P., Bignoli, C., Flexible, 
Active Support for Collaborative Work with Conversation Builder, 
in: CSCW 92 Proceedings, 1992, 378-385 

[KGWTG093] Kuokka, D., McGuire, J., Weber, J., Tenenbaum, J., Gruber, 
T., Olsen, G., SHADE: Knowledge Based Technology for the Re
engineering Problem, Technical Report, Lockheed Artificial Intel
ligence Center, 1993 

[LCN90] Levesque, H. J., Cohen, P. R, Nunes, J. H., On Acting Together, 
in: Proceedings of 8-th National Conference on AI, Boston, 1990, 
94-99 



www.manaraa.com

826 Mihai Barbuceanu, Rune Teigen 

[MC91] Malone, T. W., Crowston, K., Toward an Interdisciplinary Theory 
of Coordination, Center for Coordination Science Technical Report 
120, MIT Sloan School, 1991 

[Mar92] Martial., F. von, Coordinating Plans of Autonomous Agents, Lec
ture Notes in Artificial Intelligence 610, Springer Verlag Berlin Hei
delberg, 1992 

[Der88] McDermott, J., A Taxonomy of Problem solving Methods, in: S. 
Marcus (ed.), Automating Knowledge Acquisition for Expert Sys
tems, Kluwer Academic Press, 1988, 225-226 

[MWFF92] Medina-Mora, R., Winograd, T., Flores, R., Flores, F., The Ac
tion Workflow Approach to Workflow Management Technology, in: 
CSCW 92 Proceedings, 1992, 281-288 

[MWJ97] Muller, J. P., Wooldridge, M. J. Jennings, N. R., (eds.), Intelligent 
Agents III: Agent Theories, Architectures and Languages, Lecture 
Notes in Artificial Intelligence 1193, Springer Verlag, 1997 

[PFPKFGN92] Patil, R., Fikes, R., Patel-Schneider, P., McKay, D., Finin, T., 
Gruber, T., Neches, R., The ARPA Knowledge Sharing Effort: 
Progress report, in: B. Nebel, C. Rich, W. Swartout (eds.), Princi
ples of Knowledge Representation and Reasoning: Proceedings of 
the Third International Conference (KR'92), San Mateo, CA, Nov. 
1992 

[Sea91] Searle, J., Collective Intentions and Actions, in: P. R. Coehn, J. 
Morgan, M. E. Pollak (eds.), Intentions in Communication, MIT 
Press, 1991, 401-416 

[Sho93] Shoham, Y., Agent-Oriented Programming, Artificial Intelligence 
60, 1993, 51-92 

[Sho95] Shoham, Y., Tennenholtz, M., On Social Laws for Artificial Agent 
Societies: Off-line Design, Artificial Intelligence 73 (1-2), 1995, 231-
252 

[Smi80] Smith, R. S., The Contract Net Protocol: High Level Communi
cation and Control in a Distributed Problem Solver, IEEE Trans
actions on Computers 29 (12), 1980, 1104-1113 

[SMK90] Shepherd, A., Mayer, N., Kuchinsky, A., Strudel - An Extensible 
Electronic Conversation Toolkit, in: CSCW 90 Proceedings, 1990, 
93-104 

[WSB92] Wielinga, B. J., Schreiber, A. Th., Breuker, J. A., KADS: A Mod
eling Approach to Knowledge Acquisition, Knowledge Acquisition 
4 (1), 1992 



www.manaraa.com

List of Contributors 

• Reiner A nderl • Ian Coutts • Otto K. Ferstl 
DiK Department of Universitat Bamberg 
TU Darmstadt Manufacturing Feldkirchstr. 21 
Petersenstr. 30 Engineering D-96052 Bamberg 
D-64287 Darmstadt Loughborough Germany 
Germany University 

• Clive Finkelstein Loughborough 
Information Engineering Leics. LEU 3TU 

• Mihai Barbuceanu England Services Pty Ltd 

Enterprise Integration P.O. Box 84 

Laboratory Wes Crump 
Caulfield South, Vic 

• 3162 University of Toronto Knowledge Based Australia 4 Taddle Creek Rd Systems, Inc. 
Toronto M5S 3G9 One KBSI Place • Marc Frappier 
Canada 1500 University Drive Departement de 

East mathematiques et 

• Peter Bernus College Station, TX d'informatique 

77840-2335 Universite de Sherbrooke 
School of Computing and 

USA Sherbrooke, 
Information Technology QC J1K 2R1 
Griffith University 

• Jules Desharnais 
Canada 

Nathan (Brisbane) 
Queensland 4111 Departement • Ted Goranson 
Australia d'informatique Sirius Beta 

Universite Laval 1976 Munden Pt 
Quebec, QC G1K 7P4 Va Beach VA 23457-1227 

• Andy Bond Canada USA 
CRC for Distributed • Michael Gruninger 
Technology • Norbert Dick Enterprise Integration 
Level 7, Gehrmann IBM Deutschland Labatory 
Laboratories Informationssysteme Department of Industrial 
The University of GmbH Engineering 
Queensland Gustav-Heinemann-Ufer University of Toronto 
Brisbane, Queensland, 120-122 Toronto, M5S 1A4 
4072 D-50968 Koln Canada 
Australia Germany 

Terry Halpin • 
Visio Corporation 

• David Chen • Guy Doumeingts 520 Pike Street, Suite 
GRAI/LAP GRAI/LAP 1800 
Universite de Bordeaux Universite de Bordeaux Seattle WA 98101 
351, Cours de la 351, Cours de la USA 
Liberation Liberation 

• Alfred Helmerich 
F -33405 Talance Cedex F -33405 Talance Cedex 

FAST e.V. 
France France 

Arabellastr. 17 

• Keith Duddy 
D-81925 Miinchen 

• Paul Clements CRC for Distributed 
Germany 

Department of Technology • Brian 
Manufacturing Level 7, Gehrmann Henderson-Sellers 
Engineering Laboratories Swinburne University of 
Loughborough The University of Technology 
University Queensland John Street, PO BOX 
Loughborough Brisbane, Queensland, 218 
Leics. LEl1 3TU 4072 Hawthorn, Victoria 3122 
England Australia Australia 



www.manaraa.com

828 List of Contributors 

• Alois Hofinger • Wojtek Kozaczynski • Christopher Menzel 
IBM Deutschland GmbH SSA R&D Labs Texas A&M University 
Anzingerstr. 29 Chicago, IL 60661 College Station, TX 
D-81671 Miinchen USA 77840-2335 
Germany 

• Daniela Krahl 
USA 

• Jurgen Huschens SIZ Informatikzentrum • Kai Mertins 
der Fraunhofer Institute for IBM Deutschland GmbH 
Sparkassenorganisation Production and Design Gustav-Heinemann-Ufer 

120-122 GmbH Technology 

D-50968 Koln Konigswinterer Str. 552 Pascalstr. 8-9 

Germany D-53227 Bonn D-10587 Berlin 
Germany Germany 

• Matthias J arke • Hef'1nlann Krallmann • Ali Mili 
Lehrstuhl Informatik V Informatik Institute for Software 
RWTH Aachen TU Berlin Research 
Ahomstr. 55 Franklinstr. 28/29 1000 Technology Drive 
D-52056 Aachen D-10587 Berlin Fairmont, WV 26554 
Germany Germany USA 

• Manfred A. Jeusfeld • Jintae Lee 
• John Mylopoulos 

Infolab Department of Decision 
Department of 
Computer Science KUB Tilburg University Sciences University of Toronto Warandelaan 2 University of Hawaii 6 King's College Road Post bus 90153 2404 Maile Way Toronto M55 1A4 5000 LE Tilburg Honolulu, HI 96825 Canada The Netherlands USA 

• Hans W. Nissen 
• Yan Jin • Volker Levering Lehrstuhl Informatik V 

Denney Research GPS Prof. Schuh Kom- RWTH Aachen 
Building plexitatsmanagement Ahomstr.55 
Suite 101, 1042 W. 36th GmbH D-52056 Aachen 
Place, University Park Monnetstr. 9 Germany 
Los Angeles, D-52146 Wiirselen 
CA90089-1111 Germany • Karl Popp 
USA SAPAG 

• Thomas Malone Postfach 1461 
• Roland Jochem MIT D-69185 Walldorf 

Fraunhofer Institute for Center for Coordination Germany 
Production and Design Science 
Technology 1. Amherst St. • Jean-Marie Proth 
Pascalstr. 8-9 Cambridge, MA 02139 INRIA Lorraine 
D-10587 Berlin USA Technopole Metz 
Germany 4, rue Marconi 

• Richard J. Mayer F-57070 Metz 
• Harald John Texas A&M University France 

DiK College Station, TX 
• Christian Putter 

TU Darmstadt 77840-2335 
DiK 

Petersenstr. 30 USA 
TU Darmstadt 

D-64287 Darmstadt • Stefan Meinhardt Petersenstr. 30 
Germany SAPAG D-64287 Darmstadt 

Postfach 1461 Germany 
• Hans-Bernd Kittlaus D-69185 Walldorf 

SIZ Informatikzentrum Germany • Markus Rabe 
der Fraunhofer Institute for 
Sparkassenorganisation • Jim Melton Production and Design 
GmbH Sybase Inc. Technology 
Konigswinterer Str. 552 1930 Viscounti Drive Pascalstr. 8-9 
D-53227 Bonn Sandy, UT 84093-1063 D-10587 Berlin 
Germany USA Germany 



www.manaraa.com

List of Contributors 829 

• Kerry Raymond • Thomas Siepmann • Bruno Vallespir 
CRC for Distributed GPS Prof. Schuh GRAI/LAP 
Technology Komplexitatsmanagment Universite de Bordeaux 
Level 7, Gehrmann GmbH 351, Cours de la 
Laboratories Monnetstr. 9 Liberation 
The University of D-52146 Wiirselen F -33405 Talance Cedex 
Queensland Germany France 
Brisbane, Queensland, 

• Francois Vernadat 4072 • John F. Sowa 
Australia 21 Palmer Avenue 

LGIPM - Fac. des 
Sciences 

Croton-on-Hudson Universite de Metz 
• Walter Rupietta NY 10520 lie du Sauley 

Siemens Nixdorf USA F-57012 Metz Cedex 1 
Informationssysteme AG 

• Martin Staudt 
France 

Heinz-Nixdorf-Ring 1 
D-33094 Paderborn Swiss Life • Gottfried Vossen 

Germany Information Systems Lehrstuhl fiir Informatik 
Research, CH/IFUE Universitat Miinster 
P.O.Box Steinfurter StraBe 107 

• August- Wilhelm CH-8022 Ziirich -D-48149 Miinster 
Scheer Switzerland Germany 
IWi 
Universitat des • A ustin Tate • Mathias Weske 
Saarlandes Artificial Intelligence Lehrstuhl fiir Informatik 
Postfach 15 11 50 Application Institute Universitat Miinster 
D-66041 Saarbriicken The University of Steinfurter StraBe 107 
Germany Edinburgh D-48149 Miinster 

80 South Bridge Germany 

Gunter Schmidt 
Edinburgh EHI IHN 

• Richard Weston • UK 
ITM Department of 
Universitat des • Rune Teigen 

Manufacturing 
Saarlandes Engineering 
Postfach 15 11 50 

Enterprise Integration Loughborough 
D-66041 Saarbriicken 

Laboratory University 
Germany 

University of Toronto Loughborough 
4 Taddle Creek Rd, Leics. LE11 3TU Rosebrugh Building England 

• Gunther Schuh Toronto M5S 3G9 

University of St. Gallen Canada • Gay Wood 
Dufourstr. 50 UBIS GmbH 
CH-9000 St. Gallen • Florence Tissot Alt-Moabit 98 
Switzerland Knowledge Based D-I0559 Berlin 

Systems, Inc. Germany 
One KBSI Place 

• Elmar Sinz 1500 University Drive • Gregg Yost 
Universitat Bamberg East Ellora Software, Inc. 
Feldkirchstr. 21 College Station, TX 7 Bean St., Bldg. 2602 
D-96052 Bamberg 77840-2335 Devens, MA 01432 
Germany USA USA 



www.manaraa.com

Index 

Abstraction mechanism, 33 
Activity, 250 
ADEPT, 371 
Agent, 797 

interaction, 798 
Aggregation, 37, 60 
Agile manufacturing, 718 
Agile manufacturing systems, 733 
Agility, 712 
Applets, 787 
Application 

activity model (AAM), 73 
interpreted model (AIM), 73 
reference model (ARM), 73 

Architecture, 2, 194,314,341,394, 
546, 590, 621, 701 

data model, 674 
layer, 341 

ARIS, 544 
Arity,85 
Association, 579 
Attribute, 579 
Automaton 

Finite, 148 
Mealy, 148 
Moore, 148 

Binding, 772 
Bonapart, 567 
Business process, 191,247,343,510, 

542, 589 
automation, 351 
coordination, 346 
costing, 553 
decomposition, 346 
design, 548 
function, 192 
instance, 192 
management, 191, 551 
model configuration, 652 
modelling, 70, 226, 245, 362, 

405, 408, 482, 569 

monitoring, 554 
type, 192 
variants, 655 

Business Process Reengineering (BPR), 
415, 529, 542, 652 

CASE tool, 266, 413, 477 
Causality, 726 
Channel, 697 
CIM-BIOSYS, 733 
CIMOSA,243 
Class, 267 
Classification, 34 
Client/Server, 413 
Commercial infrastructure, 730 
Completeness, 195 
Composite part, 604 
ConceptBase, 268 
Conceptual Graphs (CGs), 287 
Conceptual queries, 95 
Consistency, 195, 593 
Consistency maintenance, 492 
Constraint, 67 
Contextualization, 38 
Continuous Process Improvement 

(CPI),547 
Contract management, 463 
Coordination, 316, 799 
CORBA, 689, 722, 774 
Coverability tree, 135 

Data, 267 
Data Definition Language (DDL), 

112 
Data Manipulation Language 

(DML),113 
level of a data model, 674 
modelling, 84, 218, 405, 625 

Data Warehouse, 413, 684 
Database 

contents, 107 
deductive, 268 



www.manaraa.com

832 

Reverse engineering, 682 
Datalog, 268 
Deadlock, 143 
Decision, 326 
Decomposition rule, 345 
Distributed Artificial Intelligence, 

800 

Index 

Distributed Computing Environment 
(DCE),766 

Distributed File Service (DFS), 769 
Distributed object technology, 736 
Dylan, 717 
DZ-SIMPROLOG, 639 

Elementary circuit, 133, 145 
Enterprise Integration Capability 

Model, 721 
Enterprise modelling, 244, 486, 722 
Entity Relationship Model, 14,24, 

678 
Entity type, 60 
ESPRIT,721 
Euromethod, 463 
Event, 193 

condition, 193 
Discrete Event Systems (DES), 

129 
Event-driven Process Chain, 542, 

652 
graph, 144 

Event-driven Process Chain (EPC) , 
652 

EXPRESS, 59 
Extranet, 423 

Financial Services Data Model (FSDM), 
670 

Flow nets, 373 
FlowMark, 369 
Formal specification, 12 
Frame, 171 
FUNSOFT nets, 372 

Gantt Chart, 417 
Generalised Process Networks, 192 

Generalization, 36 
GERA,3 
GERAM, 3 
GPN, 195 
GRAI Grid, 313 
Granularity, 195 

IAA (Insurance Application Archi
tecture), 619 

ICEIMT, 709, 712 
reference model, 712 

Icon, 579 
IDEF methods, 209 

IDEFO,211 
IDEF1X, 218 
IDEF3,226 
IDEF5,240 

Incidence matrix, 137 
Information 

base, 19 
engineering, 405 
flow, 580 
model, 20, 59 

Information flow, 246 
Information system, 1, 11 
Input, 580 
Instances of Objects, 580 
Insurance Business Architecture, 625 
Integrated Enterprise Modeling (IEM) , 

590 
Integration infrastructures, 733 
Interface Definition Language (IDL), 

769 
Internet, 423, 540 
Intranet, 423, 540 
IRDS, 267 
ISO 9000, 550, 592 

Java, 612, 722, 786 

KIF, 15, 187, 288, 803 
Knowledge representation, 17 

Lead-time reduction, 531 
Life-cycle, 4, 245, 737 



www.manaraa.com

LISA, 194 
Logic, 273 
Lower CASE, 477 

Machine 
Mealy, 148 
Moore, 150 

Marking, 130 
Materialization, 39 
Meta class, 267, 271, 275 
Meta data, 108 
Meta meta class, 267 
Meta modelling, 271, 343, 442 
Metaphor, 601 
Methodology, 385, 430, 436, 573 
Middleware, 535 
M02GO,589 
Mobile, 374 
Mobile computing, 540 
Model, 267,484,485 

constructs, 485 
correlation, 491 
enterprise, 487 
executable, 489 
integrated, 491, 499 
representation, 492 
requirements, 6, 75, 195 

Model Based Control, 477 
Modelling, 313 

method, 13, 491 
methodology, 269 
perspective, 277 
tools, 590 

Modelling language, 191, 267, 531 
multiview, 13 
properties, 11 
specification, 12 

Module, 173 

NIAM,81 
Nomenclature, 683 
Normalization, 39 

Index 

Object Database Management Group 
(ODMG),14 

833 

Object Management Architecture 
(OMA),701 

Object Management Group (OMG), 
689, 774 

Object Request Broker, 717 
Object-oriented, 722 

analysis and design, 433 
database, 292 

Object-oriented modelling, 77,429, 
578, 590, 633 

Object-Role Modeling (ORM), 81 
Ontology, 30, 171, 210 
Open Database Connectivity (ODBC), 

608 
Open Distributed Processing (ODP), 

689 
Open Software Foundation (OSF), 

766 
Organic behaviour, 746 
ORM,81 
Output, 580 

p-Invariant, 138 
Parameterization, 40 
Partially Shared Views (PSV), 184 
Pert, 418 
Petri net, 129 
PIF (Process Interchange Format), 

167 
Place, 130 

sink, 131 
source, 131 

Planning, 191 
Process optimization, 191,531,546 
Process Specification Language (PSL), 

170 
Procurement, 202, 463 
Production planning, 191, 814 
PROPLAN, 529 

Quality management system, 592 

Reachability tree, 134 
Reference model, 7, 640, 652, 669 
Referential integrity, 104 



www.manaraa.com

834 

Remote Procedure Call (RPC), 767 
Repository, 700 
Requirements model, 27 
Resource, 193, 255, 532 
Reuse, 388,432,483,605,685, 737 
Reverse Engineering, 414 
Role, 82, 176, 520 
ROOM, 159 

ROOMchart, 161 
structure diagram, 161 

'SADT,24 
SAP, 651 
Scheduling, 191 
Schema, 65, 108 
Semantic data model, 25 
Semantic network, 22 . 
Semantic plug and play, 739 
Semantics, 12, 150, 196, 209, 273 
Semaphore, 155 
SEMATECH,719 
Simulation, 581, 639 
Siphon, 133 
Situation Theory, 728 
Sockets, 789 
Soft Modelling, 727 
Software engineering 

method, 387 
process, 429 

SOM (Semantic Object Model), 339 
Specialisation, 63 
SQL, 103 
Stakeholder, 269 
State, 726 

state equation, 137 
State transition diagram, 148 

extended, 159 
Statechart, 150, 375, 455 

broadcast communication, 151 
depth, 151 
orthogonality, 151 

STEP, 59 
Suppliers' Working Group (SWG), 

711 
Syntactic plug and play, 739 

Index 

Syntax, 11, 195, 209 
System Object Model, 717 

t-Invariant, 139 
Taligent, 717 
Telos, 268 
Temporal Logic of Actions, 155 
Threads, 766 
Tracing, 681 
Transformation, 192 
Transition, 130 

sink, 131 
source, 131 

Translation language, 168 
Transparency, 700 
Trap, 133 

Uniqueness constraint, 85 
Universe of Discourse (UoD), 81 
Upper CASE, 477 
User interface, 497 

Verification tools, 163 
Vienna Definition Language, 12 
View, 4, 13, 69, 194, 691 
Virtual enterprise, 726 
Visual programming, 601 
VisualAge, 601 

WASA, 370 
Workflow, 247, 359, 477, 513, 555, 

628 
activity, 519 
aspects, 363 
development process, 361 
graph, 518 
infrastructure, 526 
languages, 368 
modeling, 361 
Workflow Management Coali

tion (WfMC) , 187, 510, 
555 

WorkParty, 509 

Z, 12 




