PPPPPPPP

GGGGGGGGG

HANDBOOK
ON ARCHITECTURES
OF INFORMATION
SYSTEMS

Volume |

International Handbooks on Information Systems

Series Editors
Peter Bernus, Jacek Blazewicz, Giinter Schmidt, Michael Shaw

Peter Bernus - Kai Mertins
Giinter Schmidt (Eds.)

Handbook on Architectures
of Information Systems

With 277 Figures
and 24 Tables

\% Springer

Dr. Peter Bernus

Griffith University

School of Computing and Information Technology
Brisbane

Queensland 4111

Australia

Prof. Dr. Kai Mertins

Fraunhofer Institute for Production Systems and
Design Technology

Pascalstr, 8-9

D-10587 Berlin

Germany

Prof. Dr. Giinter Schmidt

University of Saarland

Information and Technology Management
Postfach 151150

D-66041 Saarbriicken

Germany

ISBN 978-3-662-03528-3

Cataloging-in-Publication Data applied for
Die Deutsche Bibliothek - CIP-Einheitsaufnahme
Bernus, Peter; Mertins, Kai; Schmidt, Giinter (eds.): Handbook on Architectures of Information
Systems; with 277 figures and 24 tables / Peter Bernus et al.
(International Handbooks on Information Systems)
ISBN 978-3-662-03528-3 ISBN 978-3-662-03526-9 (€Book)
DOI 10.1007/978-3-662-03526-9

This work is subject to copyright. All rights are reserved, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, re-
citation, broadcasting, reproduction on microfilm or in any other way, and storage in data
banks. Duplication of this publication or parts thereof is permitted only under the provisions of
the German Copyright Law of September 9, 1965, in its current version, and permission for use
must always be obtained from Springer-Verlag Berlin Heidelberg GmbH.

Violations are liable for prosecution under the German Copyright Law.

© Springer-Verlag Berlin Heidelberg 1998
Originally published by Springer-Verlag Berlin Heidelberg New York in 1998
Softcover reprint of the hardcover 1st edition 1998

The use of general descriptive names, registered names, trademarks, etc. in this publication does
not imply, even in the absence of a specific statement, that such names are exempt from the
relevant protective laws and regulations and therefore free for general use.

Hardcover Design: Erich Kirchner, Heidelberg
SPIN 10679013 42/2202-5 4 3.2 1/ 0 - Printed on acid-free paper

Foreword

This book is the first volume of a running series under the title International
Handbooks on Information Systems. The series is edited by Peter Bernus,
Jacek Blazewicz, Giinter Schmidt and Mike Shaw. One objective is to give
state of the art surveys on selected topics of information systems theory and
applications. To this end, a distinguished international group of academics
and practitioners are invited to provide a reference source not only for prob-
lem solvers in business, industry, and government but also for professional
researchers and graduate students.

It seemed appropriate to start the series with a volume covering some
basic aspects about information systems. The focus of the first volume is
therefore architectures. It was decided to have a balanced number of con-
tributions from academia and practitioners. The structure of the material
follows a differentiation betweeen modelling languages, tools and method-
ologies. These are collected into separate parts, allowing the reader of the
handbook a better comparison of the contributions.

Information systems are a major component of the entire enterprise and
the reader will notice that many contributions could just as easily have been
included in another volume of the series which is on enterprise integration.
Conversely, some traditionally information systems topics, as organisational
analysis and strategic change management methods, will be treated in more
depth in the Handbook on Enterprise Integration. The two volumes will
complement each other.

The editors of this volume decided to share their work. Peter Bernus
and Giinter Schmidt put up the framework and arranged most of the chap-
ters. Kai Mertins took care of some contributions presented in parts three
and four. We think the result is a representative survey on the most im-
portant results on Architectures of Information Systems which are presented
by prominent experts. We have to thank not only the contributors for their
effort but also various colleagues who helped us by suggesting relevant top-
ics and qualified authors. The editors acknowledge the role of the advisory
board members: Andy Bond, Guy Doumeingts, Keith Duddy, Mark Fox,
Tom Gruber, Ted Goranson, Rudolf Haggenmiiller, Linda Harvey, Matthias
Jarke, Jim Melton, Chris Menzel, John Mylopoulos, Elmar J. Sinz, Riitta
Smeds, Francois Vernadat.

One of the challenges was a technical one. We had to compile text and
graphics together generated by distributed software systems from all over the
world. Jorg Winckler expertly resolved not only this problem with a number
of supporters who are too many to name them all. We sincerely thank them
for their help and support.

Contents

10

11

12

13

14

Architectures of Information Systems
Peter Bernus, Giinter Schmidt 1

Part One: Techniques and Languages for the
Description of Information Systems 11

Characterizing Information Modeling Techniques

John Mylopoulos 17
EXPRESS

Reiner Anderl, Harald John, Christian Putter 59
ORM/NIAM Object-Role Modeling

Terry Halpin e 81
Database Language SQL

Jim Melton e e 103
Petri Nets

Jean-Marie Proth e e 129

State Transition Diagrams
Jules Desharnais, Marc Frappier, Ali Mali 147

PIF The Process Interchange Format
Jintae Lee, Michael Gruninger, Yan Jin,

Thomas Malone, Austin Tate, Gregg Yost 167
GPN Generalised Process Networks

Giinter Schmiadt o . . . e 191
The IDEF Family of Languages

Christopher Menzel, Richard J. Mayer 209
The CIMOSA Languages

Francois Vernadat0 243
ConceptBase

Manfred A. Jeusfeld, Matthias Jarke, Hans W. Nissen,

Martin Staudt 265

Conceptual Graphs
John F. Sowa 287

GRALI Grid Decisional Modeling
Guy Doumeingts, Bruno Vallespir, David Chen 313

viii

15

16

17

18

19

20

21

22

23

24

25

26

27

Contents

SOM Modeling of Business Systems
Otto K. Ferstl, Elmar J. Sinz

Workflow Languages
Mathias Weske, Gotifried Vossen

Part Two: Software Engineering Methods for
Information System Construction

Software Engineering Methods
Wojtek Kozaczynski i e

Information Engineering Methodology
Clive Finkelstein

Object-Oriented Software Engineering Methods

Brian Henderson-Sellers

Euromethod Contract Management
Alfred Helmerich e

Part Three: Tools for Analysis and Design

An Integrated Enterprise Modeling Enviroment
Florence Tissot, Wes Crump o u...

WorkParty
Walter Rupietta

PROPLAN
Giinther Schuh, Thomas Siepmann, Volker Levering

ARIS
August-Wilhelm Scheer

Bonapart
Herrmann Krollmann, Gay Wood

MO2GO
Kai Mertins, Roland Jochem

IBM VisualAge
Alois Hofinger e

28

29

30

31

32

33

34

35

36

Contents

Part Four: Reference Models

TAA The IBM Insurance Application Architecture
Norbert Dick, Jirgen Huschens

Reference Models of Fraunhofer DZ-SIMPROLOG
Markus Rabe, Kai Mertins

Configuring Business Application Systems
Stefan Meinhardt, Karl Popp

The SIZ Banking Data Model
Daniele Krahl, Hans-Bernd Kittlaus

ODP and OMA Reference Models
Andy Bond, Keith Duddy, Kerry Raymond

Part Five: Selected Topics in
Integrating Infrastructures

Architectural Requirements of Commercial Products
Ted Goranson v v v v v v i i e e e e e e e e e

Integration Infrastructures for Agile Manufacturing
Systems
Richard Weston, Ian Coutts, Paul Clements

Distributed Processing: DCE, CORBA, and Java
Andy Bond, Keith Duddy, Kerry Reymond

System Integration through Agent Coordination
Mihai Barbuceanu, Rune Teigen

ix

CHAPTER 1

Architectures of Information
Systems

Peter Bernus, Ginter Schmidt

This chapter is an introduction into the scope of the Handbook on Architectures
of Information Systems. We will point out that this volume gives a comprehensive
survey of the most important aspects in this area giving not only a list of available
alternatives but providing also a guidance amidst the many proposals.

1 What is an Information System?

During the past three decades the concept of information system and the
discipline of information systems underwent an evolution, as witnessed by
definitions given by various authors.

Mader and Hagin in 1974 [MH74] defined the information system as the
system which provided “... transaction processing and decision support ...”.
Brookes et al [BGJL82] defined it as “... all forms of information collection,
storage, retrieval, processing and communication ...” as “... the organiza-
tion’s instrumentation ... informing decision makers of the state of the or-
ganization ... including computer based and human implemented systems”.
Inmon [Inm86] defines “... information systems architecture: [as] the mod-
elling of the data and processes of a company and how that model relates to
the business of the company ...”. Tatnal et al [TDM95] define an information
system as “... [a system] comprising hardware, software, people, procedures,
and data, integrated with the objective of collecting, storing, processing,
transmitting and displaying information” and elaborate further by defining
“functional information systems” which support specific business functions,
e.g. accounting, human resource management, manufacturing, marketing,
etcrvand “integratedrinformationssystems” which provide information flow
across all areas of application. Sandstrom [San88] proposes that the infor-
mation system ... is a designed tool, the purpose of which is to serve people

2 Peter Bernus, Giunter Schmidt

in active work with information and in an organization. It is an organized
construction with subsystems for collecting, processing, storing, retrieving,
and distributing information together, influenced by people. It becomes an
abstraction of a service function when studied”. In [SK92] it is proposed
that “... the field is known now as Information Systems. ‘Systems’ is the
operative word, since the field includes not only technologies, but people,
processes, and organizational mechanisms as well ...”. All of these definitions
contribute to our understanding of information systems.

The main requirement that an information system must satisfy is to pro-
‘vide and maintain an integrated information flow throughout the enterprise,
so that the right information is available whenever and wherever needed, in
the quality and quantity needed. This generic requirement defined differ-
ent tasks for information systems practitioners in the past. The first focus
of information systems research and development emerged from the need of
physically enabling the information flow, a level of integration that we call
today physical integration. As physical integration became reality through
the installation of networks and adoption of standards it became possible
to concentrate efforts on the interoperability of applications, i.e. to enable
the various business applications to be combined and interconnected for new
tasks, without having to re-design them. Interoperability is not yet achieved
in many business areas, but practice of the 1990s brought success in some
of them, such as database interoperability. The next challenge after appli-
cation integration is business integration, which is the question how various
business functions can be interconnected and efficiently combined through
information systems.

An information system is a system for collecting, processing, storing, re-
trieving, and distributing information within the enterprise and between the
enterprise and its environment. The information system is a functionally
defined subsystem of the enterprise, i.e. it is defined through the services it
renders. It may be implemented by the enterprise’s own resources (automated
equipment and humans), but parts of the information system’s services may
be provided to the enterprise by other enterprises.

2 What is an Information System
Architecture?

An architecture is the integrated structural design of a system, its elements
and their relationships depending on given system requirements. The notion
of an architecture is widely used in the context of buildings and computers.
When applied to information systems we follow the definition of Wall [Wal96]
and assume that an architecture is the abstract plan including the correspond-
ingydesigningyprocess;of thesystem’sistructure appropriate to the goals of the
system based on design principles and a methodological framework.

Below, we treat the required components of information system archi-

Architectures of Information Systems 3

tecture according to the Generalized Enterprise Reference Architecture and
Methodology (GERAM) [TF97], defining the information system within the
context of the enterprise (see Figure 1 for an overview on GERAM). GERA,
the Generalized Enterprise Reference Architecture is one component and de-
fines several important ingredients of architectures for any enterprise entity,
including the information system.

GERA EEMs EMLs
Enterprise Modelling Languages
Generalised Enterprise Em’r‘prlse Engineering i
identifies concepts of describe process of modalling of human rofs,
enterprise infegration enterprise engineering processes and technologies
prmeess
[implemented in
GEMCs
Generic Enterprise Modelling \
Concepts (Theories and Definifions)
PEMs enterprise modelling constructs _
Partial Enterprise EHWB;DEDI?MQ
Models : i
provide reusable reference —I—l——'—_. support enterprise engineering
models of human roles, support
processes and technologies
EMs
Enterprise Models
enterprise designs, and models to
is and :
EMOs support analysis and operation
nﬁw rr:;m used to implement
modules of human
professions, operational
‘ u EOS
Enterprise Operational
Systems
support the operation of the
particular enferprise

Figure 1: GERAM framework components

Entltles involved in the information system’s architecture are the enter-
onsidered for the purposes of informa-
and operation, especially when more
ual enterprises. Thus the information

4 Peter Bernus, Gunter Schmidt

system must support the information flow

¢ which integrates the value chain, i.e. the business process involved in
producing the product(s) and service(s) of the enterprise,

o which integrates the development of the enterprise throughout its entire
life.

Both entities, i.e. the enterprise and the product have a life history, which
is the history in time of all relevant events, transformations and milestones
that happened or are planned to happen to the entity. Life histories are
unique and particular, therefore a functional abstraction is used to describe
the common functional elements of life histories, called life-cycle. The life-
cycle model is defined to contain “phases”, which are regarded as types of
transformation rather than as temporal sequences. E.g. GERA defines the
life-cycle phases: identification - concept - requirements - design - detailed
design - implementation - operation and decommissioning. For more details
about the relationships among life-cycles of enterprise entities see [TF97].

In the early phases the enterprise and its strategies, objectives, mission,
vision, values, policies etc. are defined, and at this stage the separation of
the information system from the rest of the enterprise is not always possible.
Rather, this separation is only one of the possible outcomes of the identi-
fication of involved enterprise entities; it happens if the enterprise decides
to outsource information system services to an external provider. Conse-
quently (1) methodologies developed for strategic information systems man-
agement and strategic management are very similar - both essentially man-
aging change, and (ii) information system considerations are important but
not exclusive ingredients in that process. However, if it is demonstrated early
in a change process that it is the information system of the enterprise that
needs change (which is often the case), then specialized information systems
planning methodologies may be utilized. In the ensuing enterprise life-cycle
phases the information system becomes more and more a separate compo-
nent; thus information systems specific design and implementation methods
and tools can be made available.

3 Modelling Framework and Views

An architecture has to represent all relevant aspects of a system. These
aspects are defined by models representing different system views. They are
derived from the goals the system has to fulfil and the constraints defined
by the system’s environment. The GERA modelling framework describes
what modelsiof theenterprise mayneed to be created and maintained during
the enterprise’s life history. The following views on information systems are
considered essential to be represented by the models of an architecture.

Architectures of Information Systems 5

1. Information, Functions, Co-ordination and Synchronisation. The ma-
jor elements of information systems are the data, the functions using or
producing the data, and relationships describing how functions relate
to data and other functions. The modelling framework therefore needs
to represent

o the structure of data,
o the structure and behaviour of functions, and

e the rules for co-ordination and synchronisation (defining the dy-
namic properties of a system).

Depending on the actual selection of a modelling language these three
views may or may not be separate.

2. Organization. Information systems are invariably integrated into orga-
nizations. Thus an organizational view needs to describe the relation
between the users and the system. It shows how the information system
is used by an organization in terms of collecting, processing, storing, re-
trieving, and distributing information. There are two important issues
which have to be covered: (i) the structure of the organization where
the information system is used has to be represented, i.e. which depart-
ment, group, and individual takes over the responsibility for correct
usage of the system, and (ii) how the flow of information is organized
to meet the requirements of the organization.

3. Resources. Resources are used to physically implement and to run
the information system. The most important information processing
resources are software, hardware, and humans to carry out innovative
or otherwise not automated information processing tasks.

Each of these views are represented by models belonging to a life-cycle phase,
such as described in Figure 2. Accordingly

o the models of the “management and control” of the enterprise describe
the service of the information system traditionally rendered by a man-
agement information system.

¢ the models of the enterprise’s “service to the customer” describe the
information exchange requirements among the business processes, sup-
porting business transactions with product related information.

The purpose of an information system is derived from the mission of the
enterprise which it needs to serve. Requirements level models of the system
describe-its functionality-(necessarytasks) while design level models propose
a solution to how these tasks can be performed. Design level models are more
detailed and concrete in the phases of detailed design and implementation.

6 Peter Bernus, Gunter Schmidt

; Generic Subdivision
Views \,,“ Wy Partial according
] Particular) to genericity
Instantiation
i O
Identification : : : Subdivision
' — i Customer service according
Concept [5 f s i Management- to purpose
| ! 7 | and control of activity
Requirements | L §.|. Software Subdivision

o) - f i according to physical

Preliminary design | | . |:J E |~ Hardware J o @ on
4l il
Desi s :

2’,'“] (EIEE- { Resource Subdivision
Detailed design / Organisation according to
Implementation Information wdeling

Function ViSWa
Operation
Decommission Machi Subdivision according
ne } to means of
l Human implementation

Life-cycle /;
phases

Figure 2: GERA modelling framework

The first part of the handbook describes a representative selection of
modelling languages supporting the analysis and the design of information
systems, while the third part presents tools which are suitable for model rep-
resentation and analysis at each of these levels. It is to be noted, that the
model categories of GERA are not only meant for information systems rep-
resentation, but for the modelling of the entire enterprise, and the handbook
describes only those languages which are most important from the point of
view of the integrated information flow in the enterprise, i.e. information
system models. For this reason there is no chapter in this handbook about
“languages to describe functional models of technological equipment”, “lan-
guages to model factory layouts (detailed design level resource models)” or
“financial models of the resources”. Not that these models would be less
important, but because they are beyond the scope of this volume. Even or-
ganizational and resource modelling languages are treated less prominently,
for exactly the same reason.

3.1 Models and Methodologies

Using the modelling framework and associated tools information systems
models are built. An architecture has to guarantee that the mission of the

Architectures of Information Systems 7

enterprise is taken into account in the process of design, and that the sys-
tem will support the enterprise in achieving its objectives. The models of
the information system should provide sufficient evidence for the designer to
believe that this will indeed be the case. From the models the system prop-
erties should be derivable and conversely, the models have to be designed
so that the system requirements can be fulfilled. The second part describes
methodologies for information system construction which are intended to en-
sure that the system is consistent and supportive of the enterprise mission.
We also plan to amalgamate enterprise engineering and information systems
engineering methodologies in a forthcoming volume, the Handbook on Enter-
prise Integration to broaden the scope of methodologically supported change.

Information systems design methodologies should safeguard that basic
modelling requirements are met. Among these are the following:

e correctness, integrity, consistency, completeness,
o low level of complexity through modularity,

e clarity and ease of communication,

¢ adequacy, as a basis for system development,

e provision of a guideline for research.

It would be impossible to design good quality models without relying on suit-
able reference models. Typical models, or reference models of the information
system are presented in the fourth part. Such models are also often called
“Type 1 Reference Architectures” [BNW96]. Information system architec-
tures are defined for the long term and thus have to cope with continuous
change: they must be stable, open, flexible, extendible and should be sup-
ported by standards. These properties also ease the re-use of different models,
methods and techniques within the same architectural framework.

Reference models may be provided for certain classes of enterprises on
certain levels. This property is referred to as granularity in [Sch96]. Thus
there exist generic reference models of good practice which are general enough
to cover a broad spectrum of applications, while a more specific model may
be related to a certain class of enterprise, so that all companies belonging
to this class might use the enterprise model as a guideline for more detailed
model building. The most specific model refers to a particular enterprise and
its information system integrating its business functions.

3.2 Building Blocks of Information Systems

Significantyresourcesyof the implementation of the information system are:
humans (individuals, groups, and higher level organizational units), and com-
puter software and hardware systems.

8 Peter Bernus, Giunter Schmidt

From these this handbook treats in its last part some basic modules, or
product types which are likely to play very significant roles in the build-
ing of any information system. The treatment includes a strategic analysis
of the direction of information technology in the enterprise, as well as an
overview of the latest distributed system technologies, and the requirements
and examples for an information integration infrastructure.

Readers familiar with information systems literature will be missing from
this handbook a chapter on organizational analysis, agent modelling, or on
information system evaluation methods. After all the human organization
plays a significant part in the information system, both as user and as pro-
ducer of information. Hirschheim et al [HS88] state that “Organizations are
complex social and political entities which defy purely objective analysis. As
information systems form part of organizational reality (i.e. the gestalt) they
cannot be viewed in isolation.”. We therefore plan to treat the social or-
ganizational domain of information systems, combining analysis and design,
using interpretive approaches in the larger context of enterprise engineering,
including it in a forthcoming volume, the Handbook on Enterprise Integra-
tion.

References

[BNW96] P. Bernus, L. Nemes, T. J. Williams (eds.), Architectures for Enter-
prise Integration, Chapman and Hall, 1996

[BGJL82] Brookes, C. H. P., Grouse, Ph. J., Jeffrey, D. R., Lawrence, M. J.,
Information Systems Design, Prentice Hall, 1982

[HS88] Hirschheim, R., Smithson, S., Critical analysis of is evaluation, in: N.
Bjorn-Andersen, G. B. Davis (eds.), Information Systems Assessment;:
Issues and Challenges, North Holland, 1988, 17-37

[Inm86) Inmon, W. H., Information Systems Architecture: A System Devel-
oper’s Primer, Prentice Hall, 1986

[MH74] Mader, C. H., Hagin, R., Information Systems: Technology, Eco-
nomics, Applications, Science Research Associates, 1974

[San88] Sandstrom, G., Pragmatic quality of information systems, in: N.
Bjorn-Andersen, G. B. Davis (eds.), Information Systems Assessment:
Issues and Challenges, North Holland, 1988, 195-206

[Sch96] Schmidt, G., Informationsmanagement - Modelle, Methoden, Tech-
niken, Springer, 1996

[SK92] Stohr, E. A., Konsynsky, B. R., Information Systems and Decision
Processes, IEEE Comp. Soc. Press, 1992

[TDM95] Tatnal, A., Davey, B., Mcconville, D., Information Systems: Design
and Implementation, Data Publishing, 1995

Architectures of Information Systems 9

[TF97] GERAM Version 1.5, IFIP-IFAC Task Force on Enterprise Integration,
1997

[Wal96] Wall, F., Organisation und betriebliche Informationssysteme, Gabler,
1996

PART ONE

Techniques and Languages for
the Description of Information
Systems

This part is about those techniques and modelling languages which are typi-
cally used to specify and design information systems. A modelling language
is a set of constructs for building models of systems, such as an information
system. Models can be prepared of a system at various stages of the sys-
tem life-cycle (e.g. specification, design, implementation), and from various
viewpoints (e.g. information, function, resources). Depending on the goal of
modelling the selected modelling language should be adequate or competent
for the purpose of the modelling task. From the point of view of the user of
the language it must be understandable, easy to use, and models developed
using the language must be presentable and easy to interpret for the intended
audience. From the point of view of the use of the language it must have
sufficient expressive power to be able to capture all the information that the
required type of model needs to contain. E.g., if the model of the system
must be used for calculating the minimum time necessary to perform a pro-
cess, then a pure functional modelling language which has no notion of time
is inadequate [Sch97].

Modelling languages can be described by their syntax and semantics. The
syntax of a language defines what are the legal constructs of that language.
The most often used form of syntax definition is the Bacus-Naur Form (BNF).
The definition of the language’s syntax defines all legal constructs of the
language, including terminal symbols which have no further structure and
expressions, i.e. structures which can be built out of these symbols. The
syntax definition of a language is useful for being able to build a parser
that will examine an arbitrary expression and accept or reject it as a legal
expression of the language. Furthermore, if the expression is legal, then the
parser is ableto analyse the structure of the expression and present it in the

12 Giinter Schmidt, Peter Bernus

form of a parse tree or of parse trees determining how the expression is built
using structure definitions given in the BNF.

The semantics of a language defines the meaning of the expressions writ-
ten in that language. There are several ways to define the meaning of a
language. Denotational semantics is used to define how expressions formed
in the given language can be mapped to an interpretation or model which
may be a real world or a symbolic system. If the language is mapped to
an equivalent representation in a suitably selected logic (mostly first order
logic) then the model theory of that logic will be suitable for the definition
of the semantics. It is also customary to define a proof theory that allows
reasoning about the constructs of the language, in particular proving prop-
erties of expressions. The meaning of expressions in the language will then
be determined by what possible models are described by those expressions.
E.g., the meaning of an Entity Relationship Schema is what is common in all
possible implementations of that schema. For further details on denotational
semantics refer to [Sch86].

For languages that describe operations the definition of the semantics can
be using operational semantics. This can be done, for example, by defining
an abstract machine and describing the effect of operations on the state of
that abstract machine. Depending on the reason why the operational seman-
tics is developed operations may be described by their pre-conditions and
post-conditions i.e. statements that must be true to be able to execute the
operation, and statements that will be true after the execution as well as
invariants i.e. properties that are not effected by the execution of the oper-
ation. Some languages developed for the purpose of specifying the meaning
of languages especially programming languages are the Vienna Definition
Language [Weg72] and Z [Spi8§].

The formal specification of the operational semantics for a language can
be used for the unambiguous definition allowing compatible and certifiable
implementations of interpreters for the language. However, for any language
of appreciable size this is a complex matter and due to the nature of these
definitions other more simple definitions of the semantics are also necessary
for end users. Users will still wish to verify the models developed in the
language, but the verification will use several independent means, such as
(i) execution of the models using test examples, (ii) in certain cases formal
proofs, (iii) informal means, such as discussions. Even if the formal speci-
fication of the language’s semantics was used only by the implementors or
interpreters and not used by the end users of the language, it will be en-
sured that the evaluation of these models across different implementations
will produce identical results.

Informal specification of the language semantics is usually given by for-
mal-presentationsof-the-language-syntax accompanied by natural language
description of the intended meanings of the constructs (both in case of de-
notational and operational semantics). This is the approach that authors of

Techniques and Languages for the Description of Information Systems 13

this part have taken. The focus is on the question which languages are avail-
able to support information modelling and systems description. There is not
one language which is equally suited for all purposes; each language has its
individual strength to meet specific modelling requirements. Some languages
might be applicable for a broad range of applications while others are more
specialised and purpose oriented.

A model of an information system must represent all relevant views on
the system. These are related to the system’s elements and their relationship,
i.e. the data and the objects of the application domain, the processes and
activities to be carried out, the organizational environment and the commu-
nication needs. This part contains three groups of techniques and languages
according to their purpose or intended use:

¢ Data and object modelling languages — intended for the modelling of
the information view, i.e. the information that is stored or processed
by the information system at various phases of the system life-cycle,

o Activity and process modelling languages — intended for the specifi-
cation, design, and implementation modelling of the function of the
information system,

o Multi view languages — those languages which are suitable for the repre-
sentation of multiple views of the information system, possibly serving
the modelling needs of multiple levels of the system life-cycle.

The choice of languages for information system modelling is so great that to
select a few that will get prominent exposition in this book was extremely
hard. We intended to provide examples of languages which can cover the
life-cycle phases of the information system, from initial specification to im-
plementation and operation.

Some languages are defined together with a modelling method or tech-
nique. A modelling method gives guidance for the user regarding how models
are best built using the language. For example a modelling method would give
specific instructions for information gathering, model building, model quality
control etc. Information systems design methodologies would in turn incor-
porate such modelling methods or techniques as components of the method-
ology.

This part starts with a contribution by John Mylopoulos. It gives a state
of the art survey on information modelling techniques for knowledge repre-
sentation, data modelling, and requirements analysis. It also offers a com-
parative framework for information modelling approaches classifying them
according to ontologies, abstraction mechanisms, and available tools.

The next three contributions are related to the group of data and object
modelling-languages=Reiner-AnderlzHarald John and Christian Piitter give
a description of Express which is a formal modelling language for the specifi-
cation of static aspects of information representation. Terry Halpin presents

14 Ginter Schmidt, Peter Bernus

Object-Role Modelling also known as ORM or NIAM. This is a language de-
signed for modelling and querying an information system at the conceptual
level. Jim Melton surveys the main features of the database language SQL,
in fact SQL2. We did not include SQL3 in this handbook because we felt that
the SQL3 standard was still in developing stage and therefore its description
would better wait until a next edition.

Although the editors were keen to include contributions on the Entity
Relationship (ER) data model, and on the Object Database Management
Group’s (ODMG) data model, the contributions did not make this edition.
The extended ER data model is prevalently used as a requirements and design
level data model and is usually followed by a mapping to the relational data
model on the detailed design and implementation levels. The ODMG data
model serves as the common data model of many objectoriented database
management systems. For details of the ER data model the reader is referred
to [Elm94, Bat92] and for ODMG to [ODMGI7].

The next four contributions belong to the group of activity and process
modelling languages. Jean-Marie Proth gives an introduction into the the-
oretical background of Petri Nets. They are widely used for the evaluation
and simulation of discrete event systems. State Transition Diagrams have
the same focus and are discussed by Jules Desharnais, Marc Frappier, and
Ali Mili. This language has a long tradition being expanded in the recent
past to include features to represent hierarchy, timing, and communication.
Jintae Lee, Michael Gruninger, Yan Jin, Thomas Malone, Austin Tate and
Gregg Yost present PIF, the Process Interchange Format. It is designed
to help automatically exchange process descriptions among different process
tools using a single interface. Recent developments regarding PIF should be
mentioned, especially the likely merger of PIF with the Process Specification
Language (PSL) effort currently underway at the US National Institute of
Standards (NIST). PSL has the ambitious objective to describe manufactur-
ing processes such that the semantics of the language is axiomatised in form
of ontological theories. Giinter Schmidt gives a survey on GPN, a language
especially developed for planning and scheduling of processes. GPN is mainly
used for the optimisation of business processes in terms of time and cost. It
directly relates to the framework of scheduling theory. It is possible to build
models which match to the application of optimisation algorithms.

The third group is related to multi view languages and contains seven
contributions. Christopher Menzel and Richard J. Mayer describe the IDEF
family of languages. They cover the syntax and the semantic rules of the
three most widely used IDEF0, IDEF1X, and IDEF3. Note that the lan-
guages are used in conjunction with a modelling method, thus the authors
refer to IDEF0, 1X and 3 as modelling methods, not languages only. The
CIMOSA-languages-are presented-by-Francois Vernadat. These languages are
based on an event driven process model and cover functional, information,
resource and organisational aspects of an enterprise and are defined for all

Techniques and Languages for the Description of Information Systems 15

life-cycle phases. It is expected that this wide scope approach to modelling
would eventually get harmonised with many of the languages less wide in their
coverage, or based on the formal definition of the semantics of these modelling
languages more and more semantic translators would become available. Man-
fred A. Jeusfeld, Matthias Jarke, Hans W. Nissen, and Martin Staudt write
on ConceptBase. This is a meta data management system intended to sup-
port the cooperative development and evolution of information systems with
multiple interacting formalisms. ConceptBase, which is the implementation
of a version of the Telos specification language, allows its user to extend the
basic modelling formalism, because of the ability of the language to specify
meta-schemas on arbitrary levels (meta, meta-meta, etc.). In spite of the
seemingly higher order nature of the language it has a first order semantics,
which is important for efficiency reasons. The next contribution is on Con-
ceptual Graphs (CGs) given by John F. Sowa. These graphs show the logic
designed for the visualization of knowledge represented in computer systems.
Conceptual graphs can be thought of as a graphical notation for First Order
Logic, which determines the expressive power of CGs. In fact CGs have been
proposed as graphical representation of KIF (Knowledge Interchange For-
mat) [GF92]. One important application is the possibility to use KIF for the
formal specification of the meaning of different modelling languages through
the expression of their semantics in form of ontological theories. Guy Doume-
ingts, Bruno Vallespir, and David Chen describe a language called the GRAI
Grid which has been developed for the modelling of the management system
of enterprises. As the paper shows management is best described in terms
of decisions, thus the name decisional modelling. The uniqueness of this lan-
guage lies in the fact that it has been developed on the basis of an ontology
which has proven correct in systems theory and control system theory. This
ontological underpinning, though not fully formalised, gives the language an
advantage over other languages in which the user needs to develop a theory of
what the best representation of management may be. The approach defines
decision centres and their relationships defined by information links and de-
cision frameworks. The Semantic Object Model (SOM) is described by Otto
K. Ferstl and Elmar J. Sinz. SOM supports modelling of business systems
on multiple levels of the life-cycle, such as planning, analysis, and design.
The last contribution of this part is given by Mathias Weske and Gottfried
Vossen discussing workflow languages. They survey the requirements, con-
cepts, and usage patterns of such languages which are used in commercial
workflow management systems.

Giinter Schmidt, Peter Bernus

16 Giinter Schmidt, Peter Bernus

References

[Bat92] Batini, C., Ceri, S. Navathe, S. B., Conceptual Database Design: An
Entity-Relationship Approach, Benjamin Cummings, 1992

[Elm94] Elmashri, N. S., Fundamentals of Database Systems, Benjamin Cum-
mings, 1994

[GF92] Genesereth, M. R., Fikes, R. E., Knowledge Interchange Format, Ver-
sion 3.0 Reference Manual, Stanford University, Knowledge Systems
Laboratory, KSL-92-86, June 1992

[ODMG97] Object Database Standard ODMG 2.0, Edited by R. G. G. Cattell, D.
Barry, D. Bartels, M. Berler, J. Eastman, S. Gamerman, D. Jordan,
A. Springer, H. Strickland, D. Wade, Morgan Kaufmann, 1997

[Sch86] Schmidt, D., Denotational Semantics, Allyn and Bacon, 1986

[Sch97] Schmidt, G., Prozeimanagement - Modelle und Methoden, Springer,
1997

[Spi88] Spivey, J. M., Understanding Z : a specification language and its for-
mal semantics, Cambridge University Press, 1988

[WegT2] Wegner, P., The Vienna Definition Language, ACM Computing Sur-

veys 4, 1972, 5-63

CHAPTER 2

Characterizing Information
Modeling Techniques

John Mylopoulos

Information modeling is concerned with the construction of symbolic structures
which capture the meaning of information and organize it in ways that make it
understandable and useful to people. Given that information is becoming a ubiqg-
uitous, abundant and precious resource, information modeling is serving as a core
technology for information systems engineering. We present a brief history of infor-
mation modeling techniques in Computer Science and survey such techniques de-
veloped within Knowledge Representation (Artificial Intelligence), Data Modeling
(Databases), and Requirements Analysis (Software Engineering and Information
Systems). The presentation then offers a comparative framework for information
modeling proposals which classifies them according to their ontologies, i.e., the type
of application for which they are intended, the set of abstraction mechanisms (or,
structuring principles) they support, as well as the tools they provide for building,
analyzing, and managing application models. Examples of ontologies include static
worlds consisting of entities and relationships, or dynamic ones consisting of pro-
cesses. Generalization, aggregation, and classification are three of the best known
abstraction mechanisms, adopted by many information models and used widely in
information modeling practice. The final component of the paper uses the com-
parative framework proposed earlier to assess well known information modeling
techniques, both from a user and a designer perspective.

1 Introduction

Information modeling constitutes a cornerstone for information systems en-
gineering and management. To build, operate and maintain an information
system, one needs to capture and represent the meaning and inherent struc-
ture of a variety of rich and multi-faceted information, including the system’s
subject matter, its internal structure, its operational environment and its
development history. Once captured, the information can be used for com-
munication between people — say, the information system owners, users and
developers — but also for building tools which facilitate their management
throughout their lifetime.

18 John Mylopoulos

Tﬁd‘
Usage World

Development World

Figure 1: The Four Worlds of Information Systems Engineering

The DAIDA project [JMSV92], whose aim was the development of an en-
vironment for building information systems, characterized this information
in terms of four “worlds”, illustrated in Figure 1. The subject world con-
sists of the subject matter for an information system, i.e., the world about
which information is maintained by the system. For instance, the subject
world for a banking system consists of customers, accounts, transactions,
balances, interests rates and the like. The system world, on the other hand,
describes the information system itself at several layers of implementation
detail. These layers may range from a specification of functional require-
ments for the system, to a conceptual design and an implementation. The
usage world describes the (organizational) environment within which the sys-
tem is intended to function and consists of agents, activities, tasks, projects,
users, user interfaces (with the system) and the like. Finally, the development
world describes the process that created the information system, the team
of systems analysts and programmers involved, their adopted methodology
and schedule, their design decisions and rationale. All of this information is
relevant during the initial development of the system but also later on during
operation and maintenance. Consequently, all of this information needs to be
represented, somehow, in any attempt to offer a comprehensive framework
for information systems engineering. This is precisely the task of information
modeling.

Information modeling has been practiced within Computer Science since
the first data processing applications in the '50s, when record and file struc-
tures were used to model and organize information. Since then, there have
been literally thousands of proposals for information models, covering many
different.areas.of Computer.Science.and Information Systems Engineering.

The purpose of this paper is to propose a comparative framework which
characterizes information modeling techniques and practice and also to hint

Characterizing Information Modeling Techniques 19

Information Base Application

Figure 2: Modeling an application with an information base

at some directions for further research. Section 2 of the paper introduces basic
definitions, while section 3 presents a brief (and admittedly biased) history
of the field. Section 4 offers a comparative framework for information models
in terms of the ontologies and abstraction mechanisms they support, also the
tools they offer for modeling, analysis and management. Section 5 assesses
particular information modeling techniques, while section 6 summarizes the
basic thesis of the paper and suggests directions for further research.

2 Preliminaries

Information modeling involves the construction of computer-based symbol
structures which model some part of the real world. We will refer to such
symbol structures as information bases (generalizing the term from others
terms in Computer Science, such as database and knowledge base). More-
over, we shall refer to the part of the real world being modeled by an infor-
mation base as its application. Figure 2 illustrates the fundamental nature
of information modeling. Here, the information base is modeling some real-
world situation involving several individuals. The atoms out of which one
constructs the information base are assumed to denote particular individuals
in the application, while the associations within the information base denote
real world relationships, such as physical proximity, social interaction, etc.
The information base is queried and updated through special-purpose lan-
guages, analogously to the way databases are accessed and updated through
query and data manipulation languages.

It should be noted that an information base may be developed over a
long timerperiodyaccumulating:detailsiabout the application, or changing to
remain a faithful model of a changing application. In this regard, it should be
thought of as a repository that contains accumulated, disseminated, structured

20 John Mylopoulos

information, much like human long-term memory, or databases, knowledge
bases, etc., rather than a mere collection of statements expressed in some lan-
guage. Consequently, the organization of an information base should reflect
its contents and its use, not its history. This implies that an information base
can‘t be simply a collection of statements about the application, added to the
information base over time. Rather, these statements have to be organized
according to their subject matter and interrelated according to their content.

As indicated earlier, an information base used during the development of
an information system will contain models of one or more of the four worlds of
Figure 1. Some of these models may be used during the definition of databases
and applications programs which are part of the information system under
development. Others may be used for operation and maintenance purposes,
e.g., explaining to users how to use the system, or to maintenance personnel
how the system works.

What kinds of symbol structures does one use to build up an information
base? Analogously to databases, these symbol structures need to adhere to
the rules of some information model. The concept of an information model
is a direct adaptation of the concept of a data model. So is the following
definition.

An information model® consists of a collection of symbol structure types,
whose instances are used to describe an application, a collection of operations
which can be applied to any valid symbol structure, and a collection of general
integrity rules which define the set of consistent symbol structure states, or
changes of states. The relational model for databases [Cod70] is an excellent
example of an information model. Its basic symbol structure types include
table, tuple, and domain. Its associated operations include add, remove,
update operations for tuples, and/or union, intersection, join, etc. op-
erations for tables. The relational model supports a single integrity rule: No
two tuples within a table can have the same key.

Given this definition, one can define more precisely an information base
as a symbol structure which is based on an information model and describes
a particular application.

Is an information model the same thing as a language, or a notation? For
our purposes, it is not. The information model offers symbol structures for
representing information. This information may be communicated to differ-
ent users of an information base (human or otherwise) through one or more
languages. For example, there are several different languages associated with
the relational model, of which SQL is the most widely used. In a similar spirit,
we see notations as (usually graphical) partial descriptions of the contents of
an information base. Again, there may be several notations associated with
the same information model, e.g., the graphical notations used for data flow
diagrams.

The information models proposed and used over the years have been clas-

! Adopted from Ted Codd’s classic account of data models and databases [Cod82]

Characterizing Information Modeling Techniques 21

sified into three different categories. These, roughly speaking, reflect a his-
torical advance of the state-of-the-art on information modeling away from
machine-oriented representations and towards human-oriented models which
are more expressive and can cope with more complex application modeling
tasks.

Physical information models. Such models employed conventional
data structures and other programming constructs to model an application
in terms of records, strings, arrays, lists, variable names, B-trees, and the
like. The main drawback of such models is that they force on the program-
mer/modeler two sets of conflicting concerns, one related to computational
efficiency, and the other to the quality of the application model. For exam-
ple, if one chooses to model persons in the application in terms of 8-character
strings and structure an information base in terms a B-tree, these choices are
driven by efficiency considerations and have nothing to do with the applica-
tion.

Logical information models. The early ’70s saw several proposals for
logical data models which offered abstract mathematical symbol structures
(e.g., sets, arrays, relations) for modeling purposes, hiding the implementa-
tion details from the user. The relational and network models for databases
are good examples of logical models. Such models free the modeler from im-
plementation concerns, so that she can focus on modeling ones. For instance,
once the modeler has chosen the relational model, she can go ahead and use
tables to build an information base, without any regard to how these tables
are physically implemented. Unfortunately, logical symbol structures are flat
and unintuitive as to how they should be used for modeling purposes.

Conceptual information models. Soon after logical information mod-
els were proposed, and even before relational technology conquered the data-
base industry, there were new proposals for information models which offered
more expressive facilities for modeling applications and structuring informa-
tion bases. These models (hereafter, conceptual models) offer semantic terms
for modeling an application, such as Entity, Activity, Agent and Goal.
Moreover, they offer means for organizing information in terms of abstrac-
tion mechanisms which are often inspired by Cognitive Science [CS88], such
as generalization, aggregation and classification. Such models are supposed
to model an application more directly and naturally [HM81]. In the sequel,
we focus the discussion on conceptual models, since they constitute the state-
of-the-art in the field for more than two decades.

3 Brief History

Over the years, there have been thousands of proposals for conceptual models,
most defined and used once, within a single research project. We note in this

22 John Mylopoulos

section some of the earliest models that launched fruitful lines of research
and influenced the state-of-practice. Interestingly enough, these models were
launched independently of each other and in different research areas within
Computer Science.

Ross Quillian [Qui68] proposed in his PhD thesis semantic networks as
convenient directed, labeled graphs for modeling the structure of human
memory (1966). Nodes of his semantic network represented concepts (more
precisely, word senses). For words with multiple meanings, such as “plant”,
there would be several nodes, one for each sense of the word, e.g., “plant”
as in “industrial plant”, “plant” as in “evergreen plant”, plant as in “I plant
my garden every year”, etc. Nodes were related through links representing
semantic relationships, such as isA (“A bird is a(n) animal”, “a shark is a
fish”), has (“A bird has feathers”), and eats (“Sharks eat humans”). More-
over, each concept could have associated attributes, representing properties,
such as “Penguins can’t fly” (Figure 3).

There are several novel ideas in Quillian’s proposal. Firstly, his infor-
mation base was organized in terms of concepts and associations. Moreover,
generic concepts were organized into an isA (or, generalization) hierarchy,
supported by attribute inheritance. In addition, his proposal came with a
radical computational model termed spreading activation. Thus, computa-
tion in the information base was carried out by “activating” two concepts
and then iteratively spreading the activation to adjacent, semantically re-
lated concepts. For example, to discover the meaning of the term “horse
food”, spreading activation would fire the concepts horse and food and then
spread activations to neighbors, until the two semantic paths

horse —isA— animal —eats— food
horse —isA—+ animal -made0f— meat —isA— food

are discovered. These paths correspond to two different interpretations of
“horse food”, the first amounts to something like “the food that horses eat”,
while the second to “food made out of horses”.

Animal
isa isa
Bird-canfly = Fish- can swim
Featfiér , = Mamma l
Penguin- can't fly = },,/Shark
Human

Figure 3: A simple semantic network

Characterizing Information Modeling Techniques 23

Ole-Johan Dahl proposed in 1966 Simula, an extension of the program-
ming language ALGOL 60, for simulation applications which require some
“world modeling”. Simula [DH72] allows the definition of classes which serve
as a cross between processes that can be executed and record structures. A
class can be instantiated any number of times. Each instance first executes
the body of the class and then remains as a passive data structure which
can only be operated upon by procedures associated to the class. For exam-
ple, the class histo defined in Figure 4 is supposed to compute frequency
histograms for a random variable, i.e., how often the random variable falls
within each of 7 + 1 intervals (-, X 1), (X, X5), ..(X), -).

Each histogram will be computed by an instance of the class.

histo
class histo (X,n);array X;integer n;
begin integer N; integer array T[0;n]
procedure tabulate (Y); real Y;
begin integer i; i :=0; ... end;
procedure frequency (i); integer i;
~ frequency := T[i]/N;
integer i;
for i := 0 step 1 until n do
T[i] ;;_62 N :=0

end
end.

Figure 4: A Simula class definition

When the class is instantiated, the array T is initialized. Then each instance
keeps count of a random variable’s readings through use of the procedure
tabulate, while procedure frequency computes the frequency for interval i.

Simula advanced significantly the state-of-the-art in programming lan-
guages, and has been credited with the origins of object-oriented program-
ming. Equally importantly, Simula influenced information modeling by rec-
ognizing that for some programming tasks, such as simulating a barber shop,
one needs to build a model of an application. According to Simula, such
models are constructed out of class instances (objects, nowadays). These are
the basic symbol structures which model elements of the application. Classes
themselves define common features of instances and are organized into sub-
class hierarchies. Class declarations can be inherited by subclasses through
some form of (textual, actually) inheritance.

Jean-Raymond Abrial proposed the semantic model for databases in 1974
[Abr74], shortly followed by Peter Chen’s entity-relationship model ? [Che76].

2The model was actually first presented at the First Very Large Databases (VLDB)
Conference in 1975.

24 John Mylopoulos

Places/
— i P!acedBy e
[Customer <>y Order]
| Contains/
] isContained
™M
Book

Figure 5: An entity-relationship diagram

Both were intended as advances over logical data models, such as Codd’s
relational model proposed only a few years earlier.

The entity-relationship diagram of Figure 5 shows entity types Customer,
Order and Book, and relationship Places/PlacedBy, Contains/isContai-
ned. Roughly speaking, the diagram represents the fact that “Customers
place orders” and “Orders contain books”. The Places relationship type is
one-to-many, meaning that a customer can place many orders but each order
can only be placed by a single customer, while Contains is a many-to-many
relationship type (“an order may contain many books, while a book may be
contained in many orders”).

Novel features of the entity-relationship model include its built-in types,
which constitute ontological assumptions about the intended modeling appli-
cations. In other words, the entity-relationship model assumes that applica-
tions consist of entities and relationships. This means that this conceptual
model is not appropriate for applications which violate these assumptions,
e.g., a world of fluids, or ones involving temporal events, state changes, and
the like. In addition, Chen’s original paper showed elegantly how one could
map a schema based on his conceptual model, such as that shown on Figure
5, down to a logical schema. These features made the entity-relationship
model an early favorite, perhaps the first conceptual model to be used widely
world-wide.

On the other hand, Abrial’s semantic model was more akin to object-
oriented data models that became popular more than a decade later. His
model also offers entities and relations, but includes a procedural component
through which one can define procedures for performing four operations on
instances of a class and can attach these to classes.

Douglas Ross proposed in the mid-'70s the Structured Analysis and De-
sign Technique (SADTTM) as a “language for communicating ideas” [RS77,
Ros77b]. The technique was used by Softech, a Boston-based software com-
pany;-in-order. to-specify. requirements-for software systems.

According to SADT, the world consists of activities and data. Each ac-
tivity consumes some data, represented through input arrows from left to

Characterizing Information Modeling Techniques 25

Seed & Plan &
Vege Budget Weather
Prices
Plan
Budget
Y
Farm s Buy [
Supplies " | Supplies
| ¥
Seeds _Cultivate
Y
Plants Pick
Produce glalet g
y
Vegetables Extract
|'." Seeds
Grow Vegetables |

Figure 6: An SADT activity diagram

right, produces some data, represented through output arrows from left to
right, and also has some data that control the execution of the activity but
are neither consumed nor produced. For instance, the Buy Supplies activ-
ity of Figure 6 has input arrow Farm Supplies, output arrows Fertilizer
and Seeds and control arrows Prices and Plan & Budget. Each activity
may be defined through a diagram such as that shown in Figure 6 in terms
of sub-activities. Thus Growing Vegetables is defined in terms of the sub-
activities Buy Supplies, Cultivate, Pick Produce and Extract Seeds.

One of the more elegant aspects of the SADT conceptual model is its
duality: Data are described in-terms of diagrams with input, output and
control arrows too, but these now represent activities which can produce,
consume or affect the state of a given datum.

Ross’ contributions include a conceptual model with some advanced on-
tological assumptions. Unlike the entity-relationship model, for SADT ap-
plications consist of a static and a dynamic part. He also was influential
in convincing software engineering researchers and practitioners alike that it
pays to have diagrammatic descriptions of how a software system is to fit
its intended operational environment. This contributions helped launch Re-
quirements Engineering as an accepted early phase in software development.

After these pioneers, research on conceptual models® and modeling broad-

SThe term ”conceptual modelling” was used in the 70s either as a synonym for seman-
tic data modelling or in the technical sense of the ANSI /X3/SPARC report [ANSI75]
where it referred to a model that| allows the definition of schemata lying between external

26 John Mylopoulos

ened considerably, both in the number of researchers working on the topic,
and in the number of proposals for new conceptual models. In Databases,
dozens of new semantic data models were proposed, intended to ”capture
more of the semantics of an application” [Cod79]. For instance, RM/T
[Cod79] attempts to embed within the relational model the notion of en-
tity and organize relations into generalization hierarchies. SDM (Seman-
tic Data Model) [HM81], offers a highly sophisticated set of facilities for
modeling entities and supports the organization of conceptual schemata in
terms of generalization, aggregation, as well as a grouping mechanism. Tazis
[MBW&0] adopts ideas from semantic networks and Abrial’s proposal to orga-
nize all components of an information system, even exceptions and exception-
handling procedures, in terms of generalization hierarchies (taxonomies).
[TL82] presents an early but thorough treatment of data models and model-
ing, and [HK87, PM88] survey and compare several semantic data models.

The rise of object-oriented programming as the programming paradigm
of the ’80s (and ’90s) led to object-oriented databases, which adopted some
ideas from semantic data models and combined them with concepts from
object-oriented programming [ABDDMZ89, ZM89]. Early object-oriented
data models supported a variety of sophisticated modeling features (e.g.,
Gemstone was based on the information model of Smalltalk), but the trend
with recent commercial object-oriented database systems seems to converge
towards the information model of popular object-oriented programming lan-
guages, such as C++. As such, object-oriented data models seem to be
taking a bold step backwards with respect to conceptual modeling. The rise
of the internet and the World Wide Web has created tremendous demand
for integrating heterogeneous information sources. This has led to an em-
phasis on metamodeling techniques in Databases, where one is modeling the
meaning and structure of the contents of different information sources, such
as files, databases, digitized pictorial data etc., rather than an application
[KS94, Wid95].

Within Artificial Intelligence (AI), semantic network proposals prolifer-
ated in the seventies [Fin79], including ones that treated semantic networks
as a graph-theoretic notation for logical formulas. During the same period,
[Min75] introduced the notion of frames as a suitable symbol structure for
representing common sense knowledge, such as the concept of a room or
an elephant. A frame may contain information about the components of the
concept being described, links to similar concepts, as well as procedural infor-
mation on how the frame can accessed and change over time. Moreover, frame
representations focus specifically on capturing common sense knowledge, a
problem that still remains largely unresolved for Knowledge Represntation
research. Examples of early semantic network and frame-based conceptual
models include KRL [BW77], KL-ONE [Bra79] and PSN [LM79].

views, defined for different user groups, and internal ones defining one or several physical
databases. The term was used more or less in the sense discussed here at the Pingree Park
workshop on Data Abstraction, Databases and Conceptual Modelling, held in June 1980

Characterizing Information Modeling Technigues 27

Since the early eighties there have been attempts to integrate ingredients
from semantic networks, logic and procedural representations. An early ex-
ample of this trend is Krypton [BFL83] and later terminological languages
such as CLASSIC [BBMR89]. A CLASSIC information base consists of two
components: a terminological component where terms are described, and
an assertional one including assertions about the application. For exam-
ple, a CLASSIC information base may include a description for the term
Bachelor, which uses other more primitive terms such as Married, Male,
and Person, along with an assertion involving a particular bachelor, for ex-
ample, Bachelor(John). The ’80s also witnessed a growing interest in the
study of tradeoffs between the expressiveness and the tractability of knowl-
edge representation techniques [BL85]. Such studies are now serving as major
methodological vehicles in Knowledge Representation research. Knowledge
Representation is thoroughly presented in [BL85b], reviewed in [Lev86] and
overviewed in [KM91].

Requirements Engineering was born around the mid-"70s, partly thanks
to Ross and his SADT proposal, partly thanks to others such as [BT76]
who established through empirical study that “the rumored ’requirements
problems’ are a reality”. The case for world modeling was articulated elo-
quently by Michael Jackson [Jac78], whose software development methodol-
ogy [Jac83] starts with a “model of reality with which [the system] is con-
cerned.” The use of conceptual models for information systems engineering
was launched by [Sol79], while Bubenko’s Conceptual Information Model, or
CIM [Bub80] is perhaps the first comprehensive proposal for a formal re-
quirements modeling language. Its features include an ontology of entities
and events, an assertional sublanguage for specifying constraints, including
complex temporal ones. Greenspan’s RML (Requirements Modeling Lan-
guage) [GMB82, Gre84, BGM85, GBMS&6]. Attempts to formalize SADT by
using ideas from knowledge representation and semantic data models. The
result is a formal requirements language where entities and activities are orga-
nized into generalization hierarchies, and which in a number of ways predates
object-oriented analysis techniques by several years.

During the same period, the GIST specification language [BGW82], de-
veloped at ISI over the same period as Taxis, was also based on ideas from
knowledge representation and supported modeling the environment; it was
influenced by the notion of making the specification executable, and by the
desire to support transformational implementation. It has formed the basis
of an active research group on the problems of requirements description and
elicitation (e.g., [JFH92]). ERAE [DHLPR&6] was one of the early efforts
that explicitly shared with RML the view that requirements modeling is a
knowledge representation activity, and had a base in semantic networks and
logicmThedkAOS projecticonstitutesranother significant research effort which
strives to develop a comprehensive framework for requirements modeling and
requirements _acquisition methodologies [DFL93]. The language offered for

28 John Mylopoulos

requirements modeling provides facilities for modeling goals, agents, alter-
natives, events, actions, existence modalities, agent responsibility and other
concepts. KAOS relies heavily on a metamodel to provide a self-descriptive
and extensible modeling framework. In addition, KAOS offers an explicit
methodology for constructing requirements which begins with the acquisi-
tion of goal structures and the identification of relevant concepts, and ends
with the definition of actions, to be performed by the new system or existing
agents in the system’s environment.

The state-of-practice in Requirements Engineering was affected by SADT
and its successors. Data flow diagrams (e.g., [DeM79]) adopt some of the
concepts of SADT, but focus on information flow within an organization,
as opposed to SADT’s all-inclusive modeling framework. The combined
use of data flow and entity-relationship diagrams has led to an information
system development methodology which still dominates teaching and prac-
tice within Information Systems Engineering. Since the late ’80s, however,
object-oriented analysis techniques [SM88, CY90, RBPEL91, Bo094] have
been introduced and are becoming increasingly influential. These techniques
offer a more coherent modeling framework than the combined use of data
flow and entity-relationship diagrams. The framework adopts features of
object-oriented programming languages, semantic data models and require-
ments languages. A recent proposal, the Unified Modeling Language (UML)
[UMLY7] attempts to integrate features of the more pre-eminent models in
object-oriented analysis, thereby enhancing reusability.

An early survey of issues in Requirements Engineering appears in [Rom85]
and the requirements modeling terrain is surveyed in [Web87]. [TD90] in-
cludes a monumental in volume tutorial on Requirements Engineering. Sev-
eral recent textbooks on the same topic, e.g., [Dav93], touch on modeling and
survey a broad range of techniques.

The histories of conceptual modeling within the areas reviewed here did
not unfold independently of each other. An influential workshop held at Pin-
gree Park, Colorado in 1980 brought together researchers from Databases,
Al Programming Languages and Software Engineering to discuss conceptual
modeling approaches, compare research directions and methodologies [BZ81].
The workshop was followed by a series of other interdisciplinary workshops
which reviewed the state-of-the-art in information modeling and related top-
ics ([BMS84, BM86, ST89]). The International Conference on the Entity-
Relationship Approach?, held annually since 1979, has marked progress in
research as well as practice on the general topic of conceptual modeling.

Several papers and books provide surveys of the whole field of Concep-
tual Modeling, or one or more of its constituent areas. [LZ92] includes a fine
collection of papers on conceptual modeling, most notably a survey of the
field [RC92], while [BBJW97] offers a more recent account. [MB88] surveys
the interface between AI and Databases, much of it related to conceptual

4Recently renamed International Canference on Conceptual Modeling(ER)

Characterizing Information Modeling Techniques 29

modeling. Along a similar path, [Bor90] discusses the similarities and differ-
ences between knowledge representation in AI and semantic data models in
Databases.

It should be acknowledged that this discussion leaves out other areas
where conceptual modeling has been used for some time, most notably En-
terprise Modeling (e.g., [Ver84, BN96, Ver96]) and Software Process Modeling
(e.g., [MP93]).

4 A Comparative Framework for Conceptual
Models

The proliferation of proposals for new conceptual models calls for some form
of a comparative framework, so that one can classify new proposals, or evalu-
ate whether a particular candidate is appropriate for a particular information
modeling task. This section proposes such a framework structured along three
dimensions:

Ontologies. As we saw from the previous section, each conceptual model
makes some assumptions about the nature of the applications it is intended
to model. Such ontological assumptions determine the built-in terms offered
by a conceptual model, and therefore its range of applicability.

Abstraction mechanisms. These determine the proposed organization
of an information base using a particular conceptual model. This is a funda-
mental concern for conceptual models because organizations that are natural
and intuitive lead to more usable information bases which can be searched
effectively and can grow without users losing track of their contents.

Tools. If an information base is to scale up and remain useful for a long
time, it needs tools which perform information base operations efficiently,
also ones that support analysis of its contents, to give users confidence that
they are correct and consistent.

The reader may have noticed that the proposed characterization ignores
the methodologies supported by a particular conceptual model. This omission
is deliberate. All methodologies that have been proposed, including ones used
in practice, are specific to particular uses one intends for an information base.
Forrinstanceyusingranvinformationsbase for requirements engineering, e.g.,
[CY90], calls for a very different methodology than, say, one used for data
modeling [BLN92], or knowledge engineering in AT [HWL83].

30 John Mylopoulos

4.1 Ontologies

Ontology is a branch of Philosophy concerned with the study of what ex-
ists. General ontologies have been proposed since the 18th century, including
recent ones such as [Car67] and [Bun77]. For our purposes, an ontology
characterizes some aspects of a class of applications. For instance, an ontol-
ogy for time may characterize the temporal aspect of many applications in
terms of points and temporal relations among them. Likewise, an ontology
for manufacturing, may consist of (industrial) processes, resources and the
like. Research within AI has formalized many interesting ontologies and has
developed algorithms for generating inferences from an information base that
adopts them (e.g., [VKV89]). Along a very different path, [Wan89, WW90]
study the adequacy of information systems to describe applications based on
a general ontology, such as that proposed in [Bun77].

Note that a conceptual model offers built-in generic symbol structures, or
terms for modeling applications. For instance, the entity-relationship model
offers two built-in, generic terms: entity and relationship for modeling
applications which are assumed to consist of entities and relationships. The
reader should note that comparison of conceptual models on the basis of the
terms they offer is highly dependent on problems of synonymy, homonymy
etc. In other words, two different models may be appropriate for the same
class of applications, but use different terms to talk about them. We’d like to
have a framework which deems these conceptual models as being comparable
with respect to the intended subject matter. Ontologies help us achieve
precisely this objective.

In order to give some structure to a broad and highly multidisciplinary
topic, we focus on four rather coarse-grained ontologies, based on a broad
survey of conceptual models and the primitive terms they support.

Static Ontology. This encompasses static aspects of an application, by
describing what things exist, their attributes and interrelationships. Most
conceptual models assume that the world is populated by entities which are
endowed with a unique and immutable identity, a lifetime, a set of attributes,
and relationships to other entities. Basic as this ontology may seem, it is by
no means universal. For instance, [Hay85] offers an ontology for material
substances where entities (say, a litter of water and a pound of sugar) can
be merged resulting in a different entity. Also note that very successful
models, such as Statecharts [Har87], don’t adopt this ontology, because they
are intended for a very different class of applications (real-time systems).
Nor is this ontology trivial. For certain applications it is useful to distinguish
between different modes of existence for entities, including physical existence,
such as that of the author of this paper, abstract existence, such as that of
thepnumbern7pnon=existenceyycharacteristic of Santa Claus or my canceled
trip to Japan, and impossible existence, such as that of the square root of -1
or the proverbial square circle [Hir89].

Characterizing Information Modeling Techniques 31

Spatial information is particularly important for applications which in-
volve the physical world. Such information has been modeled in terms of 2-
or 3-dimensional points or larger units, including spheres, cubes, pyramids
etc. (for instance [Dav86]). A hard modeling problem for spatial information

is its inherently approximate nature, calling for special modeling provisions
[TM96].

Dynamic Ontology. Encompasses dynamic aspects of an application in
terms of states, state transitions and processes. Various flavors of finite state
machines, Petri nets, and more recent statecharts have been offered since the
'60s as appropriate modeling tools for dynamic discrete processes involving a
finite number of states and state transitions. Such models are well-known and
well-understood and they have been used successfully to describe real-time
applications in telecommunications and other fields.

A popular alternative to state transition ontologies is founded on the no-
tion of process. A process is a collection of partially ordered steps intended
to achieve a particular goal [CKO92]. Processes are executed by agents, hu-
man or otherwise. Under different guises, processes have been modeled and
studied in several different areas, including software processes (Software En-
gineering), activities (Requirements Engineering), plans (AI), tasks (CSCW),
office procedures (Office Information Systems), and business processes (Man-
agement Studies). Depending on their intended use, process models generally
focus on “how” or “what” information. Models intended to support the exe-
cution of the process focus on the “how”, while models intended for analysis
(such as consistency checking) focus on the “what”.

Temporal information is fundamental to the nature of dynamic worlds.
Such information, for example “Maria graduated before her 20th birthdate”
can be modeled in terms of points and associated relations. The tempo-
ral dimension of events, such as Maria’s graduation, can be represented in
terms of a single time point (for instantaneous events) or two time points.
These points can then be related through relations such as before, after.
[Al184] proposes a different ontology for time based on intervals, with thir-
teen associated relations such as overlap, meet, before and after. A
related concept is that of causality. Causality imposes existence constraints
on events: if event A causes event B and A has been observed, B can be
expected as well, possibly with some time delay. Within AI, formal models
of causality have been offered as far back as [McC68] and [Rie76].

Intentional Ontology. Encompasses the world of agents, and things
agents believe in, want, prove or disprove, and argue about. This ontology
includes concepts such as agent, issue, goal, supports, denies, subgoalOf, etc.
Thesubjectrof agents-having beliefs;and goals and being capable of carrying
out actions has been studied extensively in Al, e.g., [MS82] addresses the
problem of representing propositional attitudes, such as beliefs, desires and

32 John Mylopoulos

intentions for agents. The importance of the notion of agents, especially for
situations involving concurrent actions, has a long tradition in requirements
modeling, beginning with the work of Feather [Fea87] and continuing with
recent proposals, such as [DFL93].

Modeling the issues which arise during complex decision making is dis-
cussed in [CB88]. The application of such a framework to software design,
intended to capture the arguments pro and con, and the decisions they result
in, has been a fruitful research direction since it was first proposed in [PB88],
with notable refinements described in [MYBM91] and [LL91]. For example,
[MYBM91] models design rationale in terms of questions (Q), options (O)
and criteria (C). Figure 7 shows the structure of a decision space concern-
ing the design of an Automated Teller Machine (ATM). The four questions
raised, have associated options. Choice among them will be done by using
an associated list of criteria. For example, for the question of what range of
services will be offered (by the ATM under design), there are two options, full
range and cash only, and two criteria for choosing among them. The cash-
only option raises an auxiliary question, whether services can be restricted
by having switchable machines, where services can be “masked out”, or by
having machines which are inherently limited in the services they offer. On a
complementary front, [GF95] studies the types of contributions a stakeholder
can make to an argumentation structure such as the one shown in Figure 7.

More recently, [Chu93] proposes softgoals as a suitable concept for model-
ing software non-functional requirements, such as software usability, security
or user-friendliness. Softgoals are supposed to be ill-defined goals, without
a clear-cut definition of when they have been satisfied (hence their name).
Nevertheless, they play an important role in many applications and many
information system development projects.

Social Ontology. This ontology covers social settings, permanent orga-
nizational structures or shifting networks of alliances and inter-dependencies
([Gal73, Min79, Sco87]). Traditionally, this ontology has been characterized
in terms of concepts such as actor, position, role, authority, commitment
etc. [Yu93, YM94, YMLI6] proposes a novel set of concepts which focus on
strategic dependencies between actors.

Such a dependency exists when an actor has committed to satisfy a goal or
softgoal, carry out a task, or deliver resources to another actor. Using these
concepts, one can create organizational models which do provide answers to
questions such as “why does the manager need the project budget?”. Such
models can serve as starting points in the analysis of an organizational setting,
which precedes any reengineering of business processes, and the subsequent
development of software systems.

Figure 8:shows-a-simplesstrategic:dependency graph between two actors,
a (car) owner and a body shop. The dependencies shown on the graph
include a goal dependency, “Owner|/depends on the Body shop to fix the car”,

Characterizing Information Modeling Techniques 33

C: Variety of senvices

O: Full rangelf -
Q: What range o — - ~—ee._ |
services to offer? -
; S Cah 0.”' | @ How are O: Fixed machineg

O Tvoe services restricted
" e In amaoung -
Q: How to select| p .yp = s : W O: Switchable machirE!s_
cash amount? O: Typing & _d‘_gfa“@r e 1 C: Variety e{amoudt

' O: Defaultsff -~~~ c Ob\rihusl

C: Fast.

l

?] O: Different slotg--
Q: Where to retrieve i

cash and receipt fromp O: Samesiotas receiff --.. .-~ 1 (5 i;ow:.j\cqsﬂ
- O:Samesioff .-~~~ .. [CUEESH

How o nitiate O: Identify customefi—=—— —i rror}
t}}e transactf‘??? \‘ T el | .

O: Select cash ?'r.n.ou LG Obvisoat

Figure 7: Modeling design rationale in terms of questions, options and criteria
[MYBM91]

a resource dependency, “Body shop depends on owner to pay for repairs”,
and two softgoal dependencies, “Owner depends on Body shop to maximize
estimates”, while “Body shop depends on Owner to continue business”.

4.2 Abstraction Mechanisms

By definition, abstraction involves suppression of (irrelevant) detail. For
example, the generic concept of person can be abstracted from those of par-
ticular persons (George, Maria, Chryss,...) by suppressing personal details
such as each person’s age, preferred food, etc., so as to concentrate on com-
monalities: persons have an address, an age ranging from 0 to 120, etc.
Likewise, the concept of employee might be abstracted from those of secre-
tary, teacher, manager and clerk by suppressing particular features of these
concepts (teachers teach a subject, managers manage some group of people)
and focus on commonalties (all employees have a salary, a position, a job
description,...)

Abstraction mechanisms organize the information base and guide its use,
making it easier to update or search it. Not surprisingly, abstraction mech-
anisms have been used in Computer Science even before the advent of con-
ceptual models. For instance, abstraction was used heavily in pioneering
programming languages such as ALGOL 60 and LISP. Of course, the source
of ideas for suitablerabstractionnmechanisms has to be grounded in Cognitive
Science [CS88]. In the discussion that follows, we list for each abstraction
mechanism one reference which surveys the literature (when available).

34 John Mylopoulos

Ca’ repaired
//_ J\
Body F'av repairs

Shop Max estimate . Owner
i
Continue business

Figure 8: Strategic dependencies between actor

Classification (see [MM92]). This is a fundamental abstraction mecha-
nism for human cognition, and it has proven just as fundamental for concep-
tual models and information bases. According to this abstraction mechanism,
sometimes called instanceOf, an atom (entity, relationship, attribute, activ-
ity or whatever) within an information base is classified under one or more
generic atoms (classes), thereby making it an instance of these classes. In-
stances of a class share common properties. For example, all atoms classified
under Person, have an address and an age, while others classified under Dog,
possess a master (sometimes) and have four legs.

Classification has been used under a number of guises to support syntactic
and semantic consistency. For example, sorts in Logic [Coh89] and types
in programming languages are used mostly for syntactic checking. So do
tables or relations in the relational model. In semantic networks and object-
oriented information models, classification distinguishes between tokens or
objects, which represent particular individuals in the application, and types
or classes which represent generic concepts.

Besides syntactic and semantic consistency, classification can also lead
to more efficient search algorithms for a knowledge base. If, for instance,
the system is looking for an object whose student number is 98765432 and
it is known that only students have student numbers, then only the set of
instances of Student must be searched.

Some information models (e.g., Smalltalk) allow classification to be re-
cursive; i.e., classes may (or must) themselves be instances of other classes.
In this case the class Person might be an instance of the (meta)class Ani-
mateClass which has as instances all classes describing animate entities.

In such situations classification may be unconstrained, allowing both a
token and a class that it is an instance of to be instances of some common
class, or constrained in the sense that there is a linear order of strata (or
levels)-so-that-every-atomsin-thesinformation base belongs to a unique level
and an atom at level 7 can only be an instance of classes at level 7 + 1. To
allow for classes which have themselves as instances, such as Class, the class

Characterizing Information Modeling Techniques 35

that has all classes as instances, one needs a special w level.

Telos [MBJK90] adopts such a stratified classification scheme and uses it
to classify not only entities but all atoms in an information base, including
attributes and relationships. Figure 9 shows portions of a Telos informa-
tion base. The entity® EntityClass is a metaclass at level 2 of the Telos
stratosphere (as indicated by its superscript). Its instances include classes
Student, but also Person and Professor (the latter instanceOf arrows are
not shown on the diagram). Likewise, RelationshipClass is a binary rela-
tionship metaclass relating entity classes to other entity classes.

A=

EntityClass 2 RelationshipClass 2

Class®

Parent! ———» Person?

Student 1
T Teacher!
Professor 1
Tassos?
Father®

Chryss® Theony? George?
\ Accounting®,
Economics®
R N
Dimitris©

Figure 9: Multi-level classification of entities and relationships in Telo

Going one level down, Student is an instance of SimpleEntityClass but
also of the w-class Class (which actually, has all classes and metaclasses
shown in the figure as instances, thought this is not shown). Parent and
Teacher are relationship classes and instances of RelationshipClass. Fi-
nally, looking at level 0, Chryss is a student and has three teachers and one
parent. Note that the four relationships Chryss participates in have their
own labels (so that one can distinguish between the three teachers of Chryss

5For consistency, we are using here the terminology introduced earlier in this paper,
rather than used the one in [MBJK90]

36 John Mylopoulos

as her Theory, Economics and Accounting teachers respectively.)

A major advantage of any classification scheme which allows for meta-
classes is that it is in a strong sense extensible. If the modeler wants to use
the concept of process to the information base of Figure 9, she can do so
by adding the metaclass ProcessClass (with associated information, whose
nature depends on the information model being used) and then use it the
same way EntityClass and RelationshipClass are on Figure 9. This is
the essence of metamodeling. For more discussion on this topic, see [JINS9§]
in this volume.

Classification mechanisms offered in different conceptual models vary wide-
ly as to the features they offer and the overall structure they impose on the
information base. In most proposals, classification has only two levels (to-
kens/type, or instances/class, tuples/relation, etc.) Some proposals treat
classes like atoms which need to be classified under metaclasses (see above).
In other schemes, including Telos, everything in an information base needs
to be classified under one or more classes. Moreover, some schemes allow
multiple classifications for an atom, such as placing the token Chryss under
classes Student, Employee and HockeyPlayer, even though these classes
are unrelated to each other. Lastly, some classification schemes treat clas-
sification as an invariant property of each atom, while others allow classifi-
cations of an atom to change over its lifetime in the information base. For
instance, the entity George might be classified first under Newborn, then
Child, Adolescent, Adult during the lifetime of an information base, re-
flecting changes in the application being modeled.

Generalization (see [Bra83b]). As we have already seen from previous
sections, units in an information base which represent generic concepts have
been traditionally organized into taxonomies, referred to as isA® or general-
ization hierarchies, which organize all classes in terms of a partial order re-
lation determined by their generality/specificity. For example, GradStudent
may be declared as a specialization of Student ("Every grad student is a
student”), which is in turn a specialization of Person (”Every student is a
person”).

Inheritance is a fundamental ingredient of generalization hierarchies. In-
heritance is an inference rule that states that attributes and properties of
a class are also attributes and properties of its is-a descendants. Thus the
address and age attributes of Person, are inherited by Student and, tran-
sitively, by GradStudent. This inheritance may be strict in the sense that
constraints on attributes and properties can be strengthened but cannot be
overridden, or default, in which case overriding is allowed. For example, if the

SNote that the literature on Conceptual Modeling has generally treated isA as a se-
mantic relationship between generic atoms, such as “a shark is a fish”, rather than as a
relationship between an instance and its class, as in “Clyde is a fish”. In Al, some of the
frame-based representations used isA ambiguously to represent both generalization and
classification relationships.

Characterizing Information Modeling Techniques 37

age of persons has been declared to range from 0 to 100 years old, with strict
inheritance the age of students can be declared to range from 5 to 80 but not
from 5 to 120. Default inheritance, on the other hand, allows students to be
120 years old, though persons were declared to live only up to 100 years, or
penguins to not fly though birds were declared to do so.

Generally, the organization of classes/concepts into a generalization hier-
archy is left entirely up to the human modeler. An interesting alternative to
this practice is offered by terminological logics [BBMR&9], where term def-
initions can be automatically compared to see if one is more general (“sub-
sumes”) the other. For instance, the term “patients with age under 64” is
subsumed by “patients with age under 70” and is disjoint from “persons with
age over 72”. Within such conceptual models, generalization hierarchies can
be automatically computed, simplifying the task of extending but also search-
ing an information base.

Aggregation (see [Mot93]). This mechanism, also called partOf, views
objects as aggregates of their components or parts. Thus, a person can be
viewed as a (physical) aggregate of a set of body parts — arms, legs, head
and the like — or as a (social) aggregate of a name, address, social insurance
number etc. Components of an object might themselves be aggregates of yet
other simpler components. For example, the address of a person might be
declared as the aggregation of a street number, street name, city, etc.

There is psychological evidence that most of the information associated
with a concept is of the aggregation variety [MJ76]. Within Computer Sci-
ence, [KBG89] proposed a formalization of aggregation within his object-
oriented data model in order to move away from pointer-type references be-
tween objects. In his proposal, components may be dependent on the aggre-
gates to which they belong. This means that if an aggregate is removed from
the information base, so are its dependent components. Likewise, a com-
ponent may be ezclusive, which means that it can only be part of a single
aggregate. In addition, aggregation may be strictly hierarchical or recursive.
For instance, an employee may be defined as the aggregation of a depart-
ment, a salary and another employee who serves as the employee’s manager.
Finally, an atom in the information base may be treated as an aggregate in
more than one ways.

Figure 10 models an organization as an aggregate in two complementary
ways: as a hierarchical aggregation of different managerial levels (managerial
perspective), or as a vertical aggregation of departments serving different
functions, such as production and marketing (administrative perspective).
The notation used on Figure 10 is adopted from [EKW92] and it depicts
aggregations in terms of triangles. Moreover, the allowable (min, max) car-
dinality of reachraggregaterisrindicated by the two numbers shown next to
each aggregation link. In particular, looking at the administrative perspec-
tive, an organization may have zero to one finance, production, sales, and
administrative departments respectively.

38 John Mylopoulos

finance
01 |mumm
production
, _ 0,1 | MEEER
organization admin perspective =
- 01 cummm
1.1 .
. menagerial perspective TR ___admm;stration
top 11 midde lower workers
s mE T oo
e s [RE EE

Figure 10: Multiple decompositions of the concept of organization

Contextualization. A problem inherent in any modeling task is that
there are often differences of opinion or perception among those gathering,
or providing information. Contextualization can be seen as an abstraction
mechanism which allows partitioning and packaging of the descriptions being
added to an informafion base. In a situation where one is modeling how
patients are admitted into a hospital, this abstraction mechanism allows rel-
ative descriptions of the process, i.e., the process according to a particular
person, or even a hospital unit, rather than insisting on a description which
captures all the viewpoints in one shot.

Various forms of a contextualization mechanism have been used routinely
in advanced information system applications [NW94]. Since the early days
of Al, contexts have found uses in problem solving, as means for representing
intermediate states during a search by a problem solver in its quest for a so-
lution [Hew71], in knowledge representation, as representational devices for
partitioning a knowledge base [Hen79]. In CAD and Software Engineering,
workspaces, versions and configurations [Kat90] are by now generally ac-
cepted notions offering respectively mechanisms for focusing attention, defin-
ing system versions and means for defining compatible system components.
Database views have been traditionally used to present partial, but consis-
tent, viewpoints of the contents of a database to different user groups. More
recently;suchymechanismsshavesbeenmadopted for object-oriented databases
[SLT91, AB91, Ber92]. Programming language modules, scopes and scope
rules determine which parts of a program state are visible to a particular

Characterizing Information Modeling Techniques 39

program segment. Perspectives, have been proposed as a structuring mech-
anism for hypertext bases [PT93]. Most recently, the modeling of relative
viewpoints has emerged as a significant research issue in requirements engi-
neering as well as in distributed, heterogeneous databases. [FK92] describes
early and influence work on this issue from a Requirements Engineering per-
spective. Using viewpoints to relativize descriptions in an information base is
serving as a mechanism for dealing with inconsistency in requirements spec-
ifications [FG93, NKF93, RF94].

Materialization (see [PZMY94]). This abstraction mechanism relates a
class, such as CarModel, to a more concrete class, such as Car. Other exam-
ples of materialization include the relationship between a (theatrical) play,
say “Hamlet”, and particular productions of the play, say the one now play-
ing at the Royal Alexandra theater. These can be further materialized by
particular shows of each production, such as the matinee show on October 26,
1997. This is clearly a very useful abstraction mechanism for manufacturing
applications, which involve multiple, often indistinguishable entities, of the
same type. As argued in [PZMY94], the formal properties of materialization
constitute a combination of those of classification and generalization.

Normalization. Special, extraordinary circumstances abound in any ap-
plication, and considerably complicate its understanding, especially so during
early modeling stages. This has led to proposals for a normal-case first ab-
straction [Bor85b], where only the common/typical entities, states and events
in the application are modeled first, while successive pass(es) deal with the
special/exceptional situations and how they are to be treated. This abstrac-
tion mechanism is particularly successful if there is some systematic way to
find the abnormal cases and moreover, there is a way to specify the excep-
tional circumstances as footnotes/annotations that do not interfere with the
first reading. Similarly, it is not uncommon to find examples were general-
ization leads to over-abstraction (e.g., “all patients are assigned to rooms”),
so that a subclass may contradict some aspect of one of its ancestors {e.g.,
“emergency-room patients may be kept on stretchers in hallways”). [Bor8§]
analyzes the conflicting desiderata for subclass hierarchies that allow such
"improper specialization’, and then suggests a simple language facility to ac-
commodate them, while maintaining the advantages of inheritance, and even
subtyping.

Note however that the above papers deal with the issue of exceptions only
at the level of (database) programming languages, albeit ones supporting con-
ceptual modeling. The issue of exceptions in specifications has however been
considered in [FG93] and [Sch93], among others. It seems interesting to con-
trast and perhaps combine these approaches.

40 John Mylopoulos

Parameterization. This is a well known abstraction technique, im-
ported from Mathematics, that has been used with great success in pro-
gramming and formal specification languages such as Z [Spi89]. Among re-
quirements modeling languages, ERAE and its successors [DDR92] support
parameterization to enhance the reusability of requirements. For example,
one may define a requirement model with two parameters, resource and
consumer, which includes actions such as request and grant and constraints
such as “a grant will take place for an available resource if there is a wait-
ing consumer”. This model can then be instantiated with resource bound to
book and customer bound to libraryUser. Alternatively, the model may be
instantiated for a car rental application with different bindings for the two
parameters.

4.3 Tools

Computer-based structures, for information modeling or anything else, are
useless without tools that facilitate their analysis, design, construction and
management. Assessment of a conceptual model needs to take into account
the availability of such tools, alongside their expressiveness and support for
abstraction mechanisms.

It is interesting to note that successful tools developed in other areas of
Computer Science are founded on elaborate theoretical research, produced
over many years. For example, compilers in programming languages greatly
facilitate programming by performing various forms of syntactic and seman-
tic analysis, also by generating efficient machine-executable code. Likewise,
database management systems (DBMS) greatly simplify the task of manag-
ing databases, thanks to facilities such as query optimization, transaction
processing and error recovery. In both cases, these tools are based on the-
oretical research, such as formal languages, optimization techniques, query
optimization techniques and concurrency control concepts and algorithms.

For this paper, we focus on three basic classes of tools which we consider
basic for any technology intended to support the creation and evolution of
information bases: analysis, design and management tools.

4.3.1 Analysis Tools: Verification and Validation

Analysis tools perform various forms of checking on the contents of an in-
formation base to establish that they are consistent and accurately reflect
the application, thereby giving users confidence that the information base
is meaningful and correct. One type of checking, called verification, treats
an information base as a formal symbol structure which must satisfy syn-
tactic and semantic rules provided by its conceptual model. Verification can
takesthe formyof establishing that:syntactic rules are obeyed, checking can-
dinality constraints for entity-relationship-like models, or checking semantic
consistency of rules and constraints included in the information base.

Characterizing Information Modeling Techniques 41

Verification tools are grounded on the formal definition of a conceptual
model. There is little non-trivial analysis one can do for a conceptual model
that is only informally defined, such as SADT or data flow diagrams. There
is much analysis that can be done (but, at great computational cost) for for-
mal, and expressively powerful conceptual models which offer an assertional
sublanguage, such as RML or KAOS. In between these extremes we have
conceptual models which are formally defined, but offer no assertional sub-
language, and therefore don’t need a computationally expensive inference en-
gine. Among many others, various forms of the extended entity-relationship
model fit this in- between category.

This discussion points to a great advantage of conceptual models which
offer built-in terms that cover the ontology of a particular application over
ones that do not, but offer instead general facilities for defining the terms
that one needs for a given application: analysis tools based on the former
type of conceptual model will generally be much more efficient than analysis
tools based on the latter type.

Here is a partial list of different types of analysis that may be offered by a
particular information model, depending on the ontologies that it supports:

e Static ontology — cardinality constraints, spatial reasoning

¢ Dynamic ontology — proving that state invariants defined in terms of
assertions are preserved by processes defined in terms of pre/post-
conditions; proving termination and liveness properties, temporal rea-
soning

¢ Intentional ontology — goal satisfaction algorithms for AND/OR goal
graphs, marker-passing algorithms

e Social ontology — means-ends analysis

Whereas verification tools are concerned with the internal consistency of
an information base vis-a-vis its conceptual model, validation tools check
for the consistency of an information base with respect to its application.
Clearly, such consistency is critical to the usefulness of an information base.
Surprisingly, not much research has been done on this topic. [Pol85] is an
example of early work on validating expert system rules (here the information
base is capturing expertise in the performance of some task) by examining the
performance of the expert system and noting failures, which are then traced
back to the use of particular rules. A study on verification and validation
techniques for expert systems, with a focus on nuclear industry applications,
can be found in [SAICI1].

4.3.2 Design Tools

An information base constitutes an artifact. As such, it needs careful crafting,
or design, based on rules which guide the design process. These rules suggest

42 John Mylopoulos

when is an artifact well structured and when it is not. For information model-
ing, such rules have been proposed for the relational model [Cod72], and they
define formally various normal forms for relational schemata. Placing a rela-
tional schema in these forms eliminates the danger for certain types of anoma-
lies which can occur in the database upon the insertion/removal/update of
tuples. To the extend that this work is based on tuple attributes, it also
applies to other information models, such as the entity-relationship model,
which offer attributes and are relatively unstructured. For more expressive
conceptual models, which cover more than the static ontology and support
several abstraction mechanisms, the problem of normalization, or alternative
means for defining and practicing good information base design, has largely
been ignored.

4.3.3 Management Tools

Management tools begin with a good implementation which offers facilities
for building, accessing and updating an information base. Beyond a mere
implementation, one would like to have an efficient implementation which
scales up in the sense that primitive operations are relatively unaffected by
the size of the information base. In the case of databases, such efficiency is
derived from elaborate systems research into physical storage management,
caching and indexing techniques.

Query optimization makes it possible to efficiently evaluate queries ex-
pressed in a high level, declarative language such as SQL. Experience from
databases suggests that having such a facility broadens the class of users for
the information base. In addition, concurrency control can increase dramati-
cally the number of transactions that can be executed against an information
base per unit time. Also, error recovery can serve as safeguard against system
failure, ensuring that the information base can be returned to a consistent
state after a crash.

Of course, all these are accepted features of commercial relational DBMS
products. Much work has been done on extending the research which makes
these features a reality for relational databases to other, more advanced data
models, including object-oriented, and multimedia ones. Generally, there are
few supported management tools for conceptual models (but, see Concept-
Base [JGJSE95], and [JJNS98] in this volume for some work in the right
direction). Note also that some research has been done on the subject (e.g.,
[LNW91, MCPST96)).

5 Assessment of Conceptual Models
Therthree=dimensionalrcharacterization of conceptual models, can now be

exploited to assess different conceptual models, to guide the design of new
models so that they truly advance the state-of-the-art, also to evaluate and

Characterizing Information Modeling Techniques 43

compare candidates for a given information modeling task. We begin the sec-
tion by offering an admittedly coarse-grained evaluation of some well known
conceptual models. We then present some suggestions to those who have to
choose among conceptual models, or dare to design new ones.

5.1 Evaluating Conceptual Models

An obvious way to use the framework proposed in the previous section is
to evaluate the degree to which different conceptual models cover the four
basic ontologies, support the six abstraction mechanisms and offer the three
classes of tools. The overall “mark” for a given conceptual model is some
combination of the marks it gets with respect to each dimension. Likewise,
the overall mark for each dimension is some combination of the partial marks
for each component of the dimension.

A disclaimer is in order here. Like any other form of evaluation scheme,
this one is highly dependent on the definition of the dimensions we have
proposed, and arbitrary with respect to the actual assigned “marks”. Never-
theless, we consider it a useful coarse-grain instrument for the assessment of
conceptual models, certainly better than no evaluation scheme at all.

Let’s use the entity-relationship (ER) model as example to present and
illustrate our evaluation scheme. Firstly, the model clearly supports the static.
ontology. Secondly, the model offers minimal support for the other ontologies
in the sense that one can define activities, goals and social dependencies as
entities or relationships, but none of the semantics of these terms is embedded
in the ER model or the tools it offers. To assign marks, and keep things
simple, we will allocate a mark in the range {excellent, good, OK,
s0—so, none}, depending on how well a conceptual model supports each
ontology, abstraction mechanism or tool type. In the case of the ER model,
its mark for the static ontology might be good+, and so-so for all other
ontologies. Why only good+? Well, there is at least one other conceptual
model, [HM81], which offers a substantially more elaborate notion of entity
than the ER model. In other words, we reserve a perfect mark for the best
proposal in the literature in covering a particular ontology, supporting an
abstraction mechanism, or offering a set of tools.

Turning to abstraction mechanisms, ER supports a simple form of classi-
fication, in the sense that every entity/relationship is an instance of a single
entity /relationship type. This is clearly a long way from the sophistication
of some of the more recent proposals, so it only gets a s0~s0. Other ab-
straction mechanisms are supported circumstantially. One can define isA,
part0f, instanceOf, etc. as relationships, but the semantics of these are
not embedded either in tools, or the ER model itself. Let’s give ER, rather
generously, S0-s0-marks for all other abstractions.

Withpregardstontoolsyutheresissaswvariety of tools which perform simple
forms of analysis on ER schemata, including normalization tools. Moreover,
there are well-accepted technigues for mapping down an ER information base

44 John Mylopoulos

into a relational database. For these reasons, we give ER high marks with
respect to the tool dimension, say excellent, excellent, and good+
respectively. A few points have been taken away for management tools be-
cause whatever is available was developed specifically for the relational model.
Overall then, the ER model gets high marks for its support of the static on-
tology and the availability of management tools, but can use enhancements
in all other areas. Of course, for the time it was proposed, this conceptual
model is still a classic.

Relational Model. The model makes no ontological assumptions about
the application, so its marks on ontologies are uniformly none. For its sup-
port of a simple form of classification (tuples are members of relations) the
model gets a S0—s0, while its score for tools is perfect. Its overall score
then is perfect on tools and close to none in other areas. It should be noted,
however, that this assessment applies to Codd’s original proposal and also
the model supported by most commercial DBMS products. The literature
abounds with extensions of the model which do offer some form of an ontol-
ogy, including entities, time, and/or space. Moreover, the model has been
extended to support at least aggregation and generalization as far back as
7T [SSTT).

Extended Entity-Relationship Model. This is an extension of the
entity-relationship model (used, for example, in [BLN92]) which supports rea-
sonably sophisticated forms of generalization and aggregation, plus the simple
form of classification found in ER, so we’ll give it s0—so, good, and good
respectively for classification, generalization and aggregation. The marks for
supported ontologies don’t change, but analysis, design and normalization
tools become a bit more problematic because of the presence of the two ab-
straction mechanisms.

SADT. This model supports, to some extent, both the static and dy-
namic ontologies, though its marks in both cases are UK. Likewise, with
respect to abstraction mechanisms, SADT offers a single structuring mecha-
nism where each box (representing data or activity) can be elaborated into a
diagram. This structuring mechanism has no associated semantics, so it can
be treated as a rather primitive form of aggregation and lands a mark of OK.
Finally, the marks for tools are also OK, since SADT did come with a basic
implementation along with some, generally ad hoc, design rules.

The reader may want to apply the evaluation scheme to her favorite
conceptual model. Even though crude, the scheme points to the progress
that has been made since the mid-"70s. Specifically, pioneering conceptual
modelsssuchrassERrand:SAD T support one ontology, or less than two, re-
spectively, and offer little in terms of abstraction mechanisms. Conceptual
models of the mid-'80s, such as ones embedded in object-oriented databases

Characterizing Information Modeling Techniques 45

and requirements languages, support aggregation and generalization and im-
prove on the support of the static and dynamic ontology. Finally, in the
mid-"90s we are looking at conceptual models which begin to grapple with
the intentional ontology, treat classification with the respect that it deserves
and also support various forms of parameterization and modularization (e-g.,

[DFL93, EKW92]).

5.2 Choosing a Conceptual Model

Suppose then that you are leading a project that has an application modeling
component. How could you use the insights of the proposed characterization
to select the conceptual schema to be used in your project?

A starting point for the selection process is to consider three alterna-
tives. The first involves adopting an existing generic information base. For
example, if you are developing a banking system, there may be an existing
collection of defined banking terms available, using some conceptual or even
logical information model. Adopting it has the obvious advantage of cutting
costs and project time. No wonder reuse of generic information bases has
received much attention in AI [LG90, PFPMFGN92], as well as in Require-
ments Engineering (e.g., [LMV97, MV97)).

A second alternative is to adopt an existing conceptual model and develop
your own information base from scratch. This is clearly a preferred alternative
only if the first one does not apply. Selection of an existing conceptual model
can proceed by identifying the nature of the application to be modeled, i.e.,
answering the question “what kinds of things will we need to talk about?”, or
“does the application involve temporal or spatial information?” In addition,
one needs to make rough guesses on the size of the information base, i.e.,
“how many generic and token units?” For a project which will involve a
large number of generic terms, abstraction mechanisms are essential. For
instance, for a project involving the description of aircraft designs where the
number of generic terms may be in the tens of thousands, use of abstraction
is unavoidable. For a project which will require the construction of a very
large information base, say with billions of instances, management tools are
a must.

It is important to keep in mind during the selection process that not all
abstraction mechanisms will be equally helpful to any given project. For a
project requiring the modeling of few but very complex concepts, aggregation
is clearly most helpful and modeling through stepwise decomposition is the
most appropriate modeling strategy. If, on the other hand, the modeling task
involves many simple but similar concepts, generalization is the abstraction to
turn to. Finally, a project involving heavy use of multiple descriptions for one
and the same entity, such as multiple versions of the same design or multiple
viewsron ther same database;userof 'contextualization is recommended to
organize and rationalize these multiple descriptions.

The last, most time consuming, and least desirable alternative is for your

46 John Mylopoulos

project to develop its own conceptual model. Such an alternative is feasible
only for long term projects. Before adopting it, you may want to think twice
what is unique about your modeling task, and why it is that none of the
existing conceptual models apply. Also to think of the overhead involved
in designing and implementing your new conceptual model, before you can
actually exploit it.

The moral of this discussion is that not all conceptual models are created
equal with regard to their usefulness for your modeling task. The exercise
of identifying what is the application like, also what abstractions and tools
are most useful can greatly reduce the danger of disappointment later on.
Moreover, design of new conceptual models should be avoided at all costs
because it is rarely justified when you are trying to model an application, as
opposed to furthering the state-of-the-art in conceptual modeling.

6 Conclusions and Directions for Future
Research

We have set out to study and characterize information modeling, both in
research and practice, in different areas of Computer Science. Our study
included a brief summary of the history of the topic, a characterization of
conceptual models in terms of three orthogonal dimensions, and the assess-
ment of several conceptual models from the literature.

Clearly, there is miuch research to be done in information modeling. On
conceptual models, the study of new ontologies, and the consolidation of ex-
isting ones such as the intentional and social ontologies, will continue. Other
abstraction mechanisms will be proposed, formalized and integrated into ex-
isting or new conceptual models. The field of Databases will continue to
push the limits of database management technology so that it applies to ever
more powerful and expressive information models, including conceptual ones.
As well, new application areas will need to be explored and methodologies
will have to be developed, analogously to the state-of-practice for knowledge
engineering in Al, data modeling in Databases, and requirements engineering.

Acknowledgments: I am grateful to many colleagues who helped shape my ideas
on the topic of conceptual modeling, most notably Alex Borgida (Rutgers Univer-
sity), Sol Greenspan (GTE Laboratories), Matthias Jarke (Technical University of
Aachen), Hector Levesque (University of Toronto), Nicholas Roussopoulos (Uni-
versity of Maryland), and Eric Yu (University of Toronto). Thanks are also due
to the editors of the Handbook and the anonymous reviewers for helpful feedback.
Funding sources for the research include the Natural Sciences and Engineering Re-
search Council (NSERC) of Canada and the City University of Hong Kong, where
the paper was actually prepared.

Characterizing Information Modeling Techniques 47

References

[AB91] Abiteboul, S., Bonner, A., Objects and Views, Proceedings of the
ACM SIGMOD Internatlonal Conference on the Management of
Data, 1991, 238 - 247

[Abr74] Abrial, J-R., Data Semantics, in: Klimbie, Koffeman (eds.),
Data Management Systems, North-Holland, 1974

[All84] Allen, J. F., Towards a General Theory of Action and Time,
Artificial Intelligence (23), 1984, 123-154

[ANSI75] ANSI/X3/SPARC Study Group on Database Management Sys-
tems, Interim Report, FDT 7(2), 1975

[ABDDMZ89] Atkinson, M., Bancilhon, F., DeWitt, D., Dittrich, K., Maier,
D., Zdonik, S., The Object-Oriented Database System Manifesto,
in: Deductive and Object-oriented Databases, Elsevier Science
Publishers, Amsterdam, Netherlands, 1990

[BGW82] Balzer, R., Goldman, N., Wile, D., Operational specifications
as a basis for rapid prototyping, in: Proceedings Symposium on
Rapid Prototyping, ACM Software Engineering Notes 7(5), 1982,
3-16

[BLN92] Batini, C., Lenzerini, M., Navathe, S., Database Design: An
Entity-Relationship Approach, Benjamin Cummings, 1992

[BT76] Bell, T. E., Thayer, T. A., Software Requirements: are they really
a problem, in: Proceedings Second International Conference on
Software Engineering, 1976, 61-68

[BN96] P. Bernus, L. Nemes, (eds.), Modelling and Methodologis for En-
terprise Integration, Chapman, Hill, 1996

[Ber92] Bertino, E., A View Mechanism for Object-Oriented Databases,
International Conference on Extending Database Technologies
(EDBT’92), Vienna, April 1992, Lecture Notes in Computer Sci-
ence, 1992

[BWTT] Bobrow, D. G., Winograd, T., An Overview of KRL, a Knowledge
Representation Language, Cognitive Science 1, 1977, 3-46

[BBIW97] Boman, M., Bubenko, J., Johannesson, P., Wangler, B., Concep-
tual Modeling, Prentice Hall, 1997

[Boo94] Booch, G., Object-Oriented Analysis and Design, Benjamin-
Cummings, 1994

[BGMS5] Borgida, A., Greenspan, S., Mylopoulos, J., Knowledge Rep-
resentation as a Basis| for Requirements Specification, IEEE
Computer 18(4), April 1985, Reprinted in: Rich, C., Waters,

48

[Bor85b]

[Bor88)

[BBMRSY]

[Bor90]

[Bra79]

[BFL83]

[Bra83b]

[BLS5)

[BL85b]

[BZ81]

[BMS84]

[BMS6)

[Bub80]

[Bun77]

John Mylopoulos

R., Readings in Artificial Intelligence and Software Engineering,
Morgan-Kaufmann, 1987

Borgida, A., Features of Languages for the Development of In-
formation Systems at the Conceptual Level, IEEE Software 2(1),
January 1985

Borgida, A., Modeling Class Hierarchies with Contradictions,
Proceedings ACM SIGMOD Conference, 1988, 434-443

Borgida, A., Brachman, R., McGuiness, D., Resnick, L., CLAS-
SIC/DB: A Structural Data Model for Objects, Proceedings
ACM SIGMOD Conference, Portland, 1989

Borgida, A., Knowledge Representation and Semantic Data
Modelling: Similarities and Differences, Proceedings Entity-
Relationship Conference, Geneva, 1990

Brachman, R. J., On the Epistemological Status of Semantic Net-
works, in: N. V. Findler (ed.), Associative Networks: Represen-
tation and Use of Knowledge by Computers, Academic Press,
New York, 1979

Brachman, R. J., Fikes, R. E., Levesque, H. J., Krypton: A Func-
tional Approach to Knowledge Representation, IEEE Computer
16(10), 1983, 67-74

Brachman, R., What Is-a is and isn’t: An Analysis of Taxonomic
Links in Semantic Networks, IEEE Computer, 1983

Brachman, R. J., Levesque, H. J., A Fundamental Tradeoff in
Knowledge Representation and Reasoning (Revised Version), in:
[BL85b)

R. J. Brachman, H. J. Levesque, (eds.), Readings in Knowledge
Representation, Morgan Kaufmann, Los Altos, CA, 1985, 41-70

M. Brodie, S. Zilles, (eds.), Proceedings of Workshop on Data
Abstraction, Databases and Conceptual Modelling, Pingree Park
Colorado, Joint SIGART, SIGMOD, SIGPLAN newsletter, 1981

M. Brodie, J. Mylopoulos, J. Schmidt, (eds.), On Conceptual
Modelling: Perspectives from Artificial Intelligence, Databases
and Programming Languages, Springer-Verlag, 1984

M. Brodie, J. Mylopoulos, (eds.), On Knowledge Base Man-
agement Systems: Perspectives from Artificial Intelligence and
Databases, Springer-Verlag, 1986

Bubenko, J., Information Modeling in the Context of System
Development, in: Proceedings IFIP Congress 80, 1980, 395-411

Bunge, M., Treatise on Basic Philosophy: Ontology I — The Fur-
niture of the World, Reidel, 1977

[Car67]

[CheT6]

[Chu93]

[CY90]

[Cod70]

[Cod72]

[Cod79]

[Cod82]

[Coh89]

[CS88)

[CBS8S]

[CKO92]

[DHT72]

[DFL93]

[Dav86]

Characterizing Information Modeling Techniques 49

Carnap, R., The Logical Structure of the World: Pseudoproblems
in Philosophy, University of California Press, 1967

Chen, P., The Entity-Relationship Model: Towards a Unified
View of Data, ACM Transactions on Database Systems 1(1), 1976

Chung, L., Representing and Using Non-Functional Require-
ments: A Process-Oriented Approach, Ph.D thesis, Department
of Computer Science, U. of Toronto, 1993

Coad, P., Yourdon, E., Object-Oriented Analysis, Yourdon Press,
Englewood Cliffs, NJ, 1990

Codd, E. F., A Relational Model for Large Shared Data Banks,
Communications of the ACM 13, No. 6, 1970, 377-387

Codd, E. F., Further Normalization of the Data Base Relational
Model, in: Data Base Systems, Courant Computer Science Sym-
posia Series, Prentice Hall, 1972

Codd, E. F., Extending the Database Relational Model to Cap-
ture More Meaning, ACM Transactions on Database Systems 4,
No. 4, 1979

Codd, E. F., Relational Database: A Practical Foundation for
Productivity, Communications of the ACM, 1982

Cohn, A. G., On the Appearance of Sortal Literals: a Non Sub-
stitutional Framework for Hybrid Reasoning, in: Proceedings of
the First International Conference on Principles of Knowledge
Representation and Reasoning, Toronto, 1989, 55-66

Collins, A., Smith, E., Readings in Cognitive Science: A Per-
spective from Psychology and Artificial Intelligence, Morgan-
Kaufmann, 1988

Conklin, J., Begeman, M., gIBIS: A Hypertext Tool for Ex-
ploratory Policy Discussion, Transactions on Office Information
Systems, 6(4), 1988, 281-318

Curtis, B., Kellner, M., Over, J., Process Modelling, Communi-
cations of the ACM 35(9), September 1992

Dahl, O.-J., Hoare, C., Hierarchical Program Structures, in: O.-
J. Dahl, E. Dijkstra, C. Hoare, (eds.), Structured Programming,
Academic Press, 1972

Dardenne, A., Fickas, S., Lamsweerde, A. van, Goal Directed Re-
quirements Acquisition, in: Science of Computer Programming,
20, 1993, 3-50

Davis, E., Representing and Acquiring Geographic Knowledge,
Pitman, 1986

50

[Dav93]
[DeM79]

[DHLPRS6]

[DDR92]

[EKW92]

[ESEC93]

[Fea87]

[FN88]

[Fin79]

[FK92]

[FG93]

[Gal73]

[GF95]

[GMBS2]

John Mylopoulos

Davis, A., Software Requirements: Objects, Functions and
States, Prentice Hall, 1993

De Marco, T., Structured Analysis and System Specification,
Prentice Hall, 1979

Dubois, E., Hagelstein, J., Lahou, E., Ponsaert, F., Rifaut, A.,
A Knowledge Representation Language for Requirements Engi-
neering, Proceedings of the IEEE 74(10), 1986

Dubois, E., Du Bois, P., Rifaut, A., Elaborating, Structuring and
Expressing Formal Requirements for Composite Systems, Pro-
ceedings Fourth International Conference on Advanced Informa-
tion Systems Engineering (CAiSE-92), Manchester, 1992

Embley, D., Kurtz, B., Woodfield, S., Object-Oriented Systems
Analysis, Yourdon Press, Prentice Hall, 1992

Proceedings of the Third European Software Engineering Con-
ference, Milan, Italy, Springer-Verlag, 1993

Feather, M., Language Support for the Specification and Deriva-
tion of Concurrent Systems, ACM Transactions on Programming
Languages 9(2), April 1987, 198-234

Fickas, S., Nagarajan, P., Critiquing Software Specifications: a
Knowledge-Based Approach, in: IEEE Software, November 1988

N. V. Findler, (ed.), Associative Networks: Representation and
Use of Knowledge by Computers, Academic Press, New York,
1979

Finkelstein, A., Kramer, J., et al, Viewpoints: A Framework
for Multiple Perspectives in System Development, International
Journal of Software Engineering and Knowledge Engineering,
2(1), World Scientific Publishing, March 1992, 31-57

Finkelstein, A., Gabbay, D., et al, Inconsistency Handling in
Multi-Perspective Specifications, in: [ESEC93], 84-99

Galbraith, J. R., Designing Complex Organizations, Addison
Wesley, 1973

Gotel, O., Finkelstein, A., Contribution Structures, Proceedings
Second IEEE International Symposium on Requirements Engi-
neering, York, England, March 1995

Greenspan, S., Mylopoulos, J., Borgida, A., Capturing More
World Knowledge in the Requirements Specification, Proc. 6th
Int. Conf.» on SE, Tokyo, 1982, Reprinted in: P. Freeman, A.
Wasserman (eds.), Tutorial on Software Design Techniques, IEEE
Computer Society Press, 1984, also in: Prieto-Diaz, R., Arango,
G.;, Domain Analysis and Software Systems Modeling, IEEE
Comp. Sci. Press, 1991

[Gre84]

[GBMS6]

[HM81]

[Har87]

[Hay85)

[HWL83]

[Hen79]

[HewT1]

[Hir89]

[HK87]

[3CJ092)

[Jac78]

{Jac83]
[JMSV92]

Characterizing Information Modeling Techniques 51

Greenspan, S., Requirements Modeling: A Knowledge Represen-
tation Approach to Requirements Definition, Ph.D. thesis, De-
partment of Computer Science, University of Toronto, 1984

Greenspan, S., Borgida, A., Mylopoulos, J., A Requirements
Modeling Language and Its Logic, Information Systems 11(1),
1986, 9-23, also appears in: M. Brodie, J. Mylopoulos (eds.),
Knowledge Base Management Systems, Springer-Verlag, 1986

Hammer, M., McLeod, D., Database Description with SDM: A
Semantic Data Model, ACM Transactions on Database Systems,
September 1981

Harel, D., Statecharts: A Visual Formalism for Complex Sys-
tems, Science of Computer Programming 8, 1987

Hayes, P. J., The Second Naive Physics Manifesto, in: J. R.
Hobbs, R. C. Moore (eds.), Formal Theories of the Commonsense
World, Ablex Publishing Corp., Norwood, N. J., 1985, 1-36

F. Hayes-Roth, D. A. Waterman, D. B. Lenat, (eds.), Building
Expert Systems, Addison-Wesley, Reading, MA, 1983

Hendrix, G. G., Encoding Knowledge in Partitioned Networks,
in: N. V. Findler (ed.), Associative Networks: Representation
and Use of Knowledge by Computers, Academic Press, New York,
1979, 51-92

Hewitt, C., Procedural Embedding of Knowledge in PLANNER,
Proceedings International Joint Conference on Artificial Intelli-
gence (IJCAI‘71), London, September 1971, 167-182

Hirst, G., Ontological Assumptions in Knowledge Representa-
tion, in: Proceedings of the First International Conference on
Principles of Knowledge Representation and Reasoning, Toronto,
1989, 157-169

Hull, R., King, R., Semantic Database Modelling: Survey, Ap-
plications and Research Issues, ACM Computing Surveys 19(3),
September 1987

Jacobson, 1., Christerson, M., Jonsson, P., Overgaard, G.,
Object-Oriented Software Engineering, A Use Case Driven Ap-
proach, Addison-Wesley, 1992

Jackson, M., Information Systems: Modeling, Sequencing and
Transformation, Proceedings Third International Conference on
Software Engineering, 1978, 72-81

Jackson, M., System Development, Prentice Hall, 1983

Jarke, M., Mylopoulos, J., Schmidt, J., Vassiliou, Y., DAIDA:
An Environment for Evolving Information Systems, ACM Trans-
actions on Information Systems 10(1), 1992, 1-50

52

[JGJISEQS]

[JINS98)

[JFH92)

[Kat90]

[KBG89)

[KS94]

[KMO1]

[LMV97]

[LL91]

[LG90]

[LM79]

[Lev86]

[LNW91]

John Mylopoulos

Jarke, M., Gallersdérfer, R., Jeusfeld, M. A., Staudt, M., Eherer,
S., ConceptBase - a deductive object base for meta data manage-
ment, Journal of Intelligent Information Systems, (Special Issue
on Advances in Deductive Object-Oriented Databases), Vol. 4,
No. 2, 1995, 167-192

Jeusfeld, M., Jarke, M., Nissen, H., Staudt, M., ConceptBase:
Managing Conceptual Models About Information Systems, (this
volume)

Johnson, W. L., Feather, M., Harris, D., Representing and Pre-
senting Requirements Knowledge, IEEE Transactions on Soft-
ware Engineering, October 1992, 853-869

-Katz, R. H., Toward a Unified Framework for Version Model-

ing in Engineering Databases, ACM Computing Surveys 22(4),
December 1990, 375-408

Kim, W., Bertino, E., Garza, J. F., Composite Objects Revis-
ited, in: Proceedings Object-Oriented Programming Systems,
Languages and Applications (OOPSLA’89), 1989, 337-347

W. Klas, A. Sheth, (eds.), Special Issue: Metadata for Digital
Data, ACM SIGMOD Record 23(4), December 1994

Kramer, B., Mylopoulos, J., A Survey of Knowledge Representa-
tion, in: S. Shapiro (ed.), The Encyclopedea of Artificial Intelli-
gence, John Wiley and Sons Inc., 2nd edition, 1991

Lam, W., McDermid, J., Vickers, A., Ten Steps Towards Sys-
tematic Requirements Reuse, in: Proceedings Third IEEE Inter-
national Symposium on Requirements Engineering, Annapolis,
January 1997, 6-15

Lee, J., Lai, K.-Y., What is Design Rationale?, Human-Computer
Interaction 6(3-4), 1991

Lenat, D., Guha, R., Building Large Knowledge Based Systems
- Representation and Inference in the CYC Project, Addison-
Wesley, 1990

Levesque, H. J., Mylopoulos, J., A Procedural Semantics for Se-
mantic Networks, in: N. V. Findler (ed.), Associative Networks:
Representation and Use of Knowledge by Computers, Academic
Press, New York, 1979, 93-120

Levesque, H. J., Knowledge Representation and Reasoning, An-
nual Review of Computer Science 1, 1986, 255-287

Lockemann, P. C., Nagel, H.-H., Walter, I. M., Databases for
Knowledge Bases: “An Empirical Study, Data and Knowledge
Engineering 7, 1991, 115-154

[LZ92]

[MS82]

[MV97]

[McC68]

[MR95]

[MYBM91]

[MP93]

[MJ76]

[Min68]

[Min75]

[Min79)

[MM92]

[Mot93]

[MBW80]

Characterizing Information Modeling Techniques 53

P. Loucopoulos, R. Zicari, (eds.), Conceptual Modeling,
Databases and CASE: An Integrated View of Information System
Development, Wiley, 1992

Maida, A., Shapiro, S. C., Intensional Concepts in Propositional
Semantic Networks, Cognitive Science 6, 1982, 291-330

Massonet, P., Lamsweerde, A. van, Analogical Reuse of Require-
ments frameworks, in: Proceedings Third IEEE International
Symposium on Requirements Engineering, Annapolis, January
1997, 17-26

McCarthy, J., Programs with Common Sense, in: M. Minsky
(ed.), Semantic Information Processing, MIT Press, Cambridge,
MA, 1968, 403-418

Macfarlane, 1., Reilly, I., Requirements Traceability in an Inte-
grated Development Environment, in: Proceedings Second IEEE

International Symposium on Requirements Engineering, York,
England, March 1995

MacLean, A., Young, R., Bellotti, V., Moran, T., Questions,
Options, Criteria: Elements of Design Space Analysis, Human-
Computer Interaction 6(3-4), 1991

N. Madhavji, M. H. Penedo, (eds.), Special Section on the Evo-
lution of Software Processes, IEEE Transactions on Software En-
gineering 19(12), 1993

Miller, G., Johnson-Laird, P., Language and Perception, Harvard
University Press, 1976

M. Minsky, (ed.), Semantic Information Processing, MIT Press,
Cambridge, MA, 1968

Minsky, M., A Framework for Representing Knowledge, in: P.
Winston (ed.), The Psychology of Computer Vision, the MIT
Press, 1975

Mintzberg, H., The Structuring of Organizations, Prentice Hall,
1979

Motschnig-Pitrik, R., Mylopoulos, J., Classes and Instances, In-
ternational Journal of Intelligent and Cooperative Systems 1(1),
April 1992

Motschnig-Pitrik, R., The Semantics of Parts Versus Aggregates,
in: Data/Knowledge Modeling, Proceedings Fifth Conference on
Advanced Information Systems Engineering (CAiSE93), Paris,
June 1993

Mylopoulos, J., Bernstein, P. A., Wong, H. K. T., A Language
Facility for Designing Data-Intensive Applications, ACM Trans.

54

[MBS8S]

[MBJK90]

[MM95]

[MCPST96]

[NW94]

[NKF93]

[PFPMFGN92]

[PM88]

[PST78]

[PZMY94]

[Pol8s5]

[PB8S]

John Mylopoulos

on Database Systems 5(2), June 1980, reprinted in: S. Zdonik, D.
Maier, Readings in Object-Oriented Database Systems, Morgan-
Kaufmann, 1989

J. Mylopoulos, M. Brodie, (eds.), Readings in Artificial Intelli-
gence and Databases, Morgan-Kaufmann, 1988

Mylopoulos, J., Borgida, A., Jarke, M., Koubarakis, M., Te-
los: Representing Knowledge About Information Systems, ACM
Transactions on Information Systems, October 1990

Mylopoulos, J., Motschnig-Pitrik, R., Partitioning an Informa-
tion Base Through Contexts, Proceedings Third International
Conference on Cooperative Information Systems (CoopIS‘95),
Vienna, May 1995

Mylopoulos, J., Chaudhri, V., Plexousakis, D., Shrufi, A,
Topaloglou, T., Building Knowledge Base Management Systems,
Very Large Databases Journal 5(4), October 1996

Norrie, M. C., Wunderli, M., Coordination System Modelling,
Proceedings of the Thirteenth International Conference on The
Entity Relationship Approach, Manchester, UK, December 1994

Nuseibeh, B., Kramer, J., Finkelstein, A., Expressing the Rela-
tionships Between Multiple Views, in: Requirements Specifica-
tion, Proceedings 15th International Conference on Software En-
gineering, IEEE Computer Science Press, Baltimore, MD, May
1993, 187-196

Patil, R., Fikes, R., Patel-Schneider, P., Mckay, D., Finin, T\,
Gruber, T., Neches, R., The DARPA Knowledge Sharing Effort:
Progress Report, Proceedings Third International Conference on
Knowledge Representation and Reasoning, Boston, November
1992

Peckham, J., Maryanski, F., Semantic Data Models, ACM Com-
putinf Surveys 20(3), September 1988

Pfeffer, J., Salancik, G., The External Control of Organizations:
A Resource Dependency Perspective, Harper and Row, 1978

Pirotte, A., Zimanyi, E., Massart, D., Yakusheva, T., Material-
ization: A Powerful and Ubiquitous Abstraction Pattern, Pro-
ceedings Very large Databases Conference (VLDB‘94), Santiago
Chile, 1994

Politakis, P., Empirical Analysis of Expert Systems, Pitman Pub-
lishers, 1985

Potts, C., Bruns, G., Recording the Reasons for Design Decisions,
in: Proceedings Tenth International Conference on Software En-
gineering, Singapore, 1988

[PT93]

[Qui6s8]

[RE93]

[Rie76]

[RF94]
[RC92]
[Roms5]
[RST77]
[Ros77b]
[RBPEL91]

[SAICO1]

[SM83)
[ST89]

[Sch93]

[SLT91]

Characterizing Information Modeling Techniques 55

Prevelakis, V., Tsichritzis, D., Perspectives on Software De-
velopment Environments, in: Proceedings Fifth Conference on
Advanced Information Systems Engineering (CAiSE’93), Paris,
France, June 1993, Lecture Notes in Computer Science 685,
Springer Verlag, 1993

Quillian, M. R., Semantic Memory, in: M. Minsky (ed.), Seman-
tic Information Processing, MIT Press, Cambridge, MA, 1968,
227-270

Proceedings IEEE International Symposium on Requirements
Engineering, IEEE Computer Society Press, January 1993

Rieger, C., An Organization of Knowledge for Problem-Solving
and Language Comprehension, Artificial Intelligence 7(2), 1976,
89-127

Robinson, W., Fickas, S., Supporting Multi-Perspective Require-
ments Engineering, in: [ICRE94]

Rolland, C., Cauvet, C., Trends and Perspectives in Conceptual
Modeling, in: [LZ92]

Roman, G.-C., A Taxonomy of Current Issues in Requirements
Engineering, IEEE Computer 18(4), April 1985

Ross, D. T., Schoman, Structured Analysis for Requirements Def-
inition, in: [TSET77], 6-15

Ross, D. T., Structured Analysis: A Language for Communicat-
ing Ideas, in: [TSE77], 16-34

Rumbaugh, J., Blaha, M., Premerlani, W., Eddy, F., Lorensen,
W, Object-Oriented Modeling and Design, Prentice Hall, 1991

Guidelines for Verification and Validation of Expert Systems:
Review of Conventional Methods, Science Applications Interna-
tional Corporation, Report to the US Nuclear Regulatory Com-
mission and the Electric Power Research Institute (EPRI), 1991

Shlaer, S., Mellor, S., Object-Oriented Systems Analysis, Your-
don, Englewood Cliffs, NJ, 1988

J. Schmidt, C. Thanos, (eds.), Foundations of Knowledge Base
Management, Springer Verlag, 1989

Schoebbens, P. Y., Exceptions in Algebraic Specifications: On
the Meaning of ‘but‘, Science of Computer Programming 20,
1993, 73-111

Scholl, M. H., Laasch, C., Tresch, M., Updateable Views in
Object Oriented Databases, Proceedings of the Second Interna-
tional Conference on Deductive and Object-Oriented Database
Systems, Munich, December 1991

56

[Sco87]

[SMsg]

[$S77]

[Sol79]

[Spi&9]

[TD90]

[TM96]

[TSET77]

[TSE92]

[TL82]
[UML97)

[Ver84]

[Ver96)

[VKV89]

[Wan89]

John Mylopoulos

Scott, W., Organizations: Rational, Natural or Open Systems,
Prentice Hall, 2nd edition, 1987

Shlaer, S., Mellor, S., Object-Oriented Systems Analysis: Mod-
eling the World in Data, Prentice Hall, 1988

Smith, J., Smith, D. C. P., Database Abstractions: Aggrega-
tion and Generalization, ACM Transactions on Database Systems
2(2), Jun. 1977, 105-133

Solvberg, A., A Contribution to the Definition of Concepts for
Expressing Users Information System Requirements, in: Pro-
ceedings International Conference on the E-R Approach to Sys-
tems Analysis and Design, December 1979

Spivey, J. M., The Z Notation: A Reference Manual, Prentice
Hall, 1989

Thayer, R., Dorfman, M., System and Software Requirements
Engineering, (two volumes), IEEE Computer Society Press, 1990

Topaloglou, T., Mylopoulos, J., Representing Partial Spatial In-
formation in Databases: A Conceptual Modeling Approach, Pro-
ceedings Fifteenth International Conference on Conceptual Mod-
eling (ER‘96), Cottbus, Germany, October 1996

IEEE Transactions on Software Engineering 3(1), Special Issue
on Requirements Analysis, January 1977

IEEE Transactions on Software Engineering, 18(6) & 18(10), Spe-
cial Issue on Knowledge Representation and Reasoning in Soft-
ware Development, June & October 1992

Tsichritzis, D., Lochovsky, F., Data Models, Prentice Hall, 1982

Rational Software Corporation, Unified Modeling Language Re-
source Centre, http:/www.rational.com/uml, 1997

Vernadat, F., Computer-Integrated Manufacturing: On the
Database Aspect, Proceedings of CAD/CAM and Robotics Con-
ference, Toronto, 1984

Vernadat, F., Enterprise Modeling and Integration, Chapman
and Hall, 1996

Vilain, M., Kautz, H., van Beek, P., Constraint Propagation Al-
gorithms for Temporal Reasoning: A Revised Report, in: D.
Weld, J. De Kleer (eds.), Readings in Qualitative Reasoning
About Physical Systems, Morgan Kaufmann, 1989

Wand, Y., A Proposal for a Formal Model of Objects, in: W.
Kim, F. Lochovsky (eds.), Object-Oriented Concepts, Databases
and Applications, Addison-Wesley, 1989

[WW90]

[Web87]

[Wid95)

[Yu93]

[YM94]

[YMLY6]

[ZM89]

Characterizing Information Modeling Techniques 57

Wand, Y., Weber, R., An Ontological Model of an Information
System, IEEE Transactions on Software Engineering 16, 1282-
1292

Webster, D. E., Mapping the Design Representation Terrain: A
Survey, TR-STP-093-87, Microelectronics and Computer Corpo-
ration (MCC), Austin, 1987

Widom, J., Research Problems in Data Warehousing, in: Pro-
ceedings Fourth Conference on Information and Knowledge Man-
agement, November 1995

Yu, E., Modeling Organizations for Information Systems Require-
ments Engineering, in: [RE93], 34-41

Yu, E., Mylopoulos, J., Understanding "'Why’ in Software Process
Modeling, Analysis and Design, Proceedings Sixteenth Interna-
tional Conference on Software Engineering, Sorrento, 1994

Yu, E., Mylopoulos, J., Lesperance, Y., AI Models for Business
Process Re-Engineering, IEEE Expert 11(4), August 1996

S. Zdonik, D. Maier, (eds.), Readings in Object-Oriented
Databases, Morgan-Kaufmann, 1989

CHAPTER 3

EXPRESS

Reiner Anderl, Harald John, Christian Piitter

The ISO standard 10303-11, also known as EXPRESS, is a formal modelling lan-
guage for the specification of static aspects of an information model. To this intent
EXPRESS provides object oriented constructs, such as specialisation, aggregation
and modularization. For the specification of dynamic, behavioural and other non-
static aspects of a model, various dialects of EXPRESS have been developed which
will be unified in the future ISO standard, EXPRESS edition 2. EXPRESS or
one of its dialects is being used in a number of research and industrial projects
related to the area of product data technology for the specification of even large
scale models such as, for instance, the application protocol development in STEP
or the modelling of environmentally sound products.

1 Introduction

EXPRESS is a formal language developed to describe information models.
An information model is a formal description of objects, facts and ideas which
together form a mapping of part of the ‘real world’. An information model
also provides an explicit set of interpretation rules [SW94]. EXPRESS has
been under development since 1984. The first version was standardised by
the International Standardisation Organisation (ISO) in 1994 [ISO94]. Since
then EXPRESS (or one of its dialects) have been used in many industrial and
research oriented projects. Up to now, one of the main domains EXPRESS
is used in is the specification of the integrated product data model of the
“Standard for the Exchange of Product Data” (STEP, ISO 10303 [ISO94c]).
The formal specification of an information model using EXPRESS has two
main advantages:

1. The information model can be algorithmically transformed into a com-
puter accessible representation, e.g. a database schema.

2. The formal specification of the information model usually contains less
ambiguity than any model described in natural language.

60 Reiner Anderl, Harald John, Christian Piitter

The problem with formal information models is that they are more diffi-
cult for users to read and understand than natural language. In this article
we will therefore describe the elements of EXPRESS from a user’s point of
view. Rather than a formal specification we will use a model defining prod-
uct structure to explain the syntax and semantics of EXPRESS (Section 2).
For a detailed and formal specification of EXPRESS, see [ISO94]. While us-
ing EXPRESS some deficits have been encountered. A description of some
EXPRESS enhancements which deal with these deficiencies are described in
Section 3 focusing on their extensions to the standard. Two large scale exam-
ples - the information model for the development of environmentally sound
products and the application protocol development process in ISO 10303 - are
presented in Section 4. Section 5 discusses the application area of EXPRESS
and compares it to public object oriented modelling languages.

2 EXPRESS Language Constructs

In contrast to most modelling languages, EXPRESS contains two different
notations. The graphical one - EXPRESS-G - is a subset of the textual
notation. The example of a simplified product structure will be used to
introduce both notations.

2.1 Aggregation

In EXPRESS the basic element to structure data is the entity type. Entities
are used to represent objects of the real world (like assemblies or product
components in the following example). Entities do not describe individu-
als of the real world, but groups of instances which have same properties.
Mandatory or optional relations are used to express relationships such as
aggregations or associations between entities.

The model in Figure 1 specifies that the entity product_component has
an attribute shape described by entity geometry. The entity geometry is
not further described. This means that attributes of the real world object
geometry are of no importance in the context the model used, but it does
not mean a geometry has no properties in general.

Properties of an entity without internal structure like version number,
name or mass are described as Simple Types. Depending on the data to be
described, seven different kinds of Simple Types may be used:

1. An attribute of type STRING may contain a list of characters defined
in the EXPRESS character set. A simple type could be seen as a set.
The STRING set is defined as:

STRING = {z | z € ASCII*}

EXPRESS 61

2. Properties of type INTEGER describe numbers. The INTEGER set is
defined as:

INTEGER={z|M <z < N; M,N,z € Z},

where the values of M and N depend on the model’s implementation
and are not specified in EXPRESS.

3. Rational numbers are represented by properties of type REAL, defined
by the set:

REAL={s|M'<z<N'; M',N',z € Q'},
where the values of M', N' may also differ among different implemen-
tations. @' is a finite subset of rational numbers.

4. If the type of a property could be in one case of type REAL and of
type INTEGER in an other, the set NUMBER is used. NUMBER is
specified by:

NUMBER =INTEGER U REAL

Usually the sets NUMBER and REAL are identical, but an implemen-
tation may use huge integer arithmetic where M < M’ and N' < N.

5. As in most formal languages (e.g. programming languages), the BOOL-
EAN set is defined as:

BOOLEAN = {true, false}.

Boolean attributes are often used to indicate whether an entity has a
special property or not, so that details of this property do not matter
in the given context.

6. The LOGICAL set extends the BOOLEAN set by one value:

LOGICAL = {true, false, unknown}.

It is used, where attributes could not be determined to be true or false
for a given context.

62 Reiner Anderl, Harald John, Christian Piitter

EXPRESS-G EXPRESS
#1 ENTITY geometry;
T2 nTEGer]] #2 Ewp _E-‘,NT?TY; :
STRING l #3 ENTITY product component;
E-— ik r“;’“:‘: #4 name : STRING;
£ giE :‘,_Eu_o_’s_:_. #5 synonyns : OPTIONAL SET (1:7] OF
§ 37 #6 . STRING;
! 7 serial no: INTEGER;
¢ #8 version no : INTEGER;
E;On?::;nt Sha #9 color : colors;
_ #10 shape : geometry;
o Z' fll prod _date : date;
= § odidaps ! #12 mass : INTEGER;
g g —P—d date | #13 END_ENTITY;
L S N e #14 TYPE colors = ENUMERATION OF
#15 (red, green, blue);
#16 END TYFE;
#17 TYPE date = ARRAY [1:3] OF INTEGER;

$18 END TYPE;

Figure 1: Example of a product structure model (1)

7. Attributes of type BINARY are used to describe digital data (e.g. im-
ages or sounds). The BINARY set consists of two values:

BINARY = {0, 1}.

In addition to the predefined simple types, users can specify additional sets
using either the enumeration or select type. An enumeration is a finite set
of ideas called items. An enumeration item must be unique within the enu-
meration definition. A common example of an enumeration is the set of
colours. This set consists of the items red, green, blue and so on. As with
simple types, enumerations may be used to describe attributes of entities.
The possible value of these attributes is thus constrained by the items of the
enumeration.

The set defined by a select type consists of items that have already been
specified in the model (such as connection.type in Figure 2). At instance
level the value of an attribute described by a select type will be an instance
of one of the types specified in the set of the select type.

It is possible to define global synonyms for types like entities, enumera-
tions, simple types or select types. These global synonyms are called defined
types and are represented in EXPRESS-G using a dashed box (see Figure 1).
Defined types are basically used to give more semantic weight to the model.
They help to understand the context in which the underlying type is used.

Up to now the relationships between entities and other types discussed,
arerl:1 relations: EXPRESS defines collection types which may be used to
represent ordered or unordered 1:n relations. A collection can have fixed or
varying sizes depending on the specific collection type being used. There are

EXPRESS 63

four different collection types defined. Each has a special behaviour and is
used for different purposes. The four collection types are:

1. ARRAY. The array collection type represents an ordered, fixed-size
collection of elements of the reference type. Its bounds m and n are
(possibly negative) integer values. Exactly n-m +1 elements must be
stored in the array collection.

2. BAG. A bag represents an unordered collection of elements. Duplicate
elements within the bag collection are permitted. A bag may hold any
number of elements within the restrictions or is unlimited.

3. LIST. A list constitutes of an ordered collection of elements. The num-
ber of elements in the list may be specified if needed. If it is not
specified, the list may possibly contain an infinite number of elements.

4. SET. A set is similar to a bag. It contains an unordered collection
of elements. The size of the set is also restricted or unlimited. The
difference between a set and a bag is that a set may not contain two
elements of the same value.

The synonyms of product component may be specified by an unlimited set of
strings, where as its construction date would be defined as an array of three
elements of type integer (Figure 1). In order to realise m:n relationships be-
tween entities, an inverse relation can be defined. The inverse relation can
have a different name and cardinality. All attributes in an EXPRESS model
can be labelled with the keywords OPTIONAL and/or UNIQUE, where
UNIQUE means that the values of the attribute must be different among
all instances of the type. If an attribute is declared to be OPTIONAL, an
instance of the type need not specify a value for this attribute.

2.2 Specialisation

In addition to the ability to structure data using the aggregation relationships
described above, EXPRESS provides specialisation mechanisms for entities
which differ from any mainstream programming or modelling language.

In general the specialisation (or inheritance) relationship is used to reduce
complexity of an information model by constructing type hierarchies. Along
a specialisation relation, properties are inherited by more specific entities
(subtypes) from more general entities (their supertypes).

As far as the product structure example is concerned, the entities assem-
bly and product_component have some attributes in common (e.g. name,
version no etc.). In order to reduce complexity and prevent redundancy, a
supertypeof productzcomponentiandrassembly, item for example, has been
introduced which contains the common attributes. Hence, these attributes
do not need to be specified lexplicitly in the subtypes (2). The entity item

64 Reiner Anderl, Harald John, Christian Pitter

EXPRESS-G EXPRESS

#1 ENTITY geometry;

§2 END_ENTITY;

#3 ENTITY item ABSTACT SUPERTYPE OF

#4 (ONEOF (assembly,product component));
#5 name : STRING;

#6 synonyms : SET [1:?] OF STRING;
#7 serial no: INTEGER;

#8 version no : INTEGER;

$#9 prod date : date;

#10 END_ENTITY;

#11 ENTITY relationship;

#12 conncetion : connection_type;
#13 upper : assembly;

£14 lower : item;

#15 END_ENTITY;

#16 ENTITY assembly SUBTYPE OF (item);
#17 END ENTITY:;

#18 ENTITY product component SUBTYPE OF
$19 {item) ;

#20 color : colors;

#21 shape : geometry;

#22 mass : INTEGER;
#22 END ENTITY;
#23 TYPE connection_type = SELECT OF
$#24 (type_a, type b);
#25 END TYPE;

shape #26 TYPE colors = ENUMERATION OF

. #27 (red, green, blue);

#28 END TYPE;

855 INTEGER] | $29 TYPE date = ARRAY [1:3] OF INEGER;

#30 END TYPE;

Figure 2: Example of a product structure model (2)

must be declared as abstract, since only instances of the entities assembly
or product.component are required to define a particular product structure.
Entities declared abstract must not be instantiated. Furthermore an item
must be either an assembly or a product_component but not both.

EXPRESS provides different types of specialisation relations. The special-
isation relation between item and its subtypes is called a oneof specialisation
(Figure 3b), because there are no real world objects, being assemblies as well
as product components.

In addition to this public specialisation relation, which is used in common
object oriented languages, EXPRESS provides additional mechanisms which
lead to the concept of complex instantiation.

There are two further kinds of specialisation relations. If the subtypes are
mutually inclusive the relationship between the subtypes is specified using
the and specialisation relation. In this case the instances in the example of
Figure 3c must have the properties of entity A and entity B. Instances of
entity A or entity B are not allowed. The and specialisation relation should
only-besused-in-combination-with-ether;types of specialisation (e.g. the oneof
specialisation).

The third type of a specialisation relation is the andor specialisation.

EXPRESS 65

model level instance level

ab
attr 2
B R]
@ox —r—q A g]

B2 : b
attr 2 attr_1 attr_2
.l
ab

(abs) X 3 -
aftr_1

attr 2 attr 2

a)

b)

9

Figure 3: Possible specialisation relationships in EXPRESS

Given the example of Figure 3a, instances which (only) have the properties
of entity A could exist as well as instances of entity B and instances with
the properties of both A and B. The subtypes A and B are neither mutually
exclusive nor mutually inclusive. Instances which contain the attributes of
more than one entity are called complex instances. The concept of complex
instantiation is difficult to implement using a programming language, which
does not support this concept (e.g. C++, Smalltalk or Eiffel). However,
Mayer et al suggest a solution in [Mai94] where any inheritance hierarchy
defined in EXPRESS is automatically transformed to an equivalent common
oneof hierarchy which can be processed by the compiler of most mainstream
programming language.

The solution implies that it must be possible to renounce the special
inheritance relation provided by EXPRESS. This - in fact - is the case, but
the complexity of the information model may grow substantially.

2.3 Schemas

An information model may consist of hundreds of entities. To control the
complexity EXPRESS offers the schema mechanism schema mechanism, by
which a model can be divided into several isolated parts. Further, EXPRESS
allows a schema A to reference elements of schema B using the reference
from and use from constructs. Elements of another schema accessed using
reference fromcanonly berinstantiated as attributes of entities from the
importing schema. In contrast, elements imported using use from could
have an independent existence.

66 Reiner Anderl, Harald John, Christian Pitter

EXPRESS-G Description EXPRESS

[Page#, Ref# (numbeﬂ—o .
reference onto this page -
[Page#, Ref# name]— reference onto another page —-

schema.def }_ definition referenced from REFERENCE FROM

T aias . : another schema schema (entity list);
schema.def definition used from USE FROM
r another schema schema (entity list);

Figure 4: Graphical and lexical notation of schema constructs

Moreover EXPRESS-G offers additional symbols, so-called page refer-
ences, to distribute a large, single schema over different sheets. Figure 4
summarises the graphical and lexical notation of these constructs.

2.4 Functions and Rules

As mentioned above EXPRESS-G is a subset of EXPRESS. The essential
facilities supported by EXPRESS and not included in EXPRESS-G are local
and global functions, and local and global rules. Functions and rules will
not be specified formally, but explained by extending the product structure
example.

2.4.1 Functions

Local functions are included in the definition of an entity using the keyword
DERIVED. A local function in EXPRESS consists of an identifier, an at-
tribute name and a single, unconstraint formula. Local functions are used to
derive values relevant to the model from a combination of other attributes of
the entity concerned. The checksum of an item for example can be defined
as:

#1 ENTITY item ABSTRACT SUPERTYPE OF

#2 (oneof (assembly, product_component));
#3 serial_no : INTEGER;

#4 version_no : INTEGER;

#5 o

#6 DERIVED

#7 cs:

EXPRESS 67

#8 checksum:=serial_no+version_no mod 9;
#9 END_ENTITY;

Global functions are not related to any particular entity or type definition.
As in most programming languages, global functions compute a result from
given function parameters. Global functions may be used in the formulae
of local functions. In the following example, the given function calculates
the mass of the assembly entity, which is supposed to be defined as in the
product structure example.

#1 FUNCTION assembly_mass(a : assembly) : INTEGER;
#2 relations : LIST [1:7] OF

#3 RELATIONSHIP:=BASE.RELATIONSHIP;

#4 mass : INTEGER := 0;

#5 REPEAT i :=1 TO SIZEOF (BASE.RELATIONSHIP);

#6 IF (relations[i].top=a AND

#7 TYPEQOF (relations[i].lower)=product_component)
#8 THEN mass:=mass+relations[i].lower.mass

#9 * relations[i].number;

#10 END_IF;

#11 IF (relations[i].top=a AND

#12 TYPEOF (relations[i].lower)=assembly)

#13 THEN mass:=mass+assembly_mass(relations[i].lower);
#14 END_IF;

#15 END_REPEAT;

#16 RETURN (mass);

#17 END_FUNCTION;

2.4.2 Rules

Like local functions, local rules are declared within an entity declaration. Lo-
cal rules constrain the possible values an attribute may take at instance level.
A local rule consists of an identifier and a logical formula, which evaluates
to true or false. For valid instances all local rules must evaluate to true. For
example the version number of an item must be greater or equal to zero. This
can be specified by extending the entity item by a local rule as follows:

#1 ENTITY item ABSTRACT SUPERTYPE OF

#2 (oneof (assembly, product_component));
#3 version_no : INTEGER;

#4 e

#5 WHERE

#6 legal_version : version_no >= 0;

#7 END_ENTITY;

In the same way as local rules define constraints for the values of at-
tributes, global rules specify constraints which an instantiation of the whole

68 Reiner Anderl, Harald John, Christian Piitter

schema must satisfy. In the product structure example, the frequency with
which a assembly or product component in the next level occurs within a
super-assembly is given by the attribute number of the entity relationship.
Therefore an assembly may not contain duplicate subassemblies or product
components. This constraint is defined by the following global rule:

#1 RULE assembly_constraint;

#2 indicator : BOOLEAN:= true;

#3 relations : LIST [1:7] of

#4 RELATIONSHIP:= BASE.RELATIONSHIP;

#5 REPEAT i := 1 TO SIZEOF (BASE.RELATIONSHIP);

#6 REPEAT j := 1 TO SIZEOF(BASE.RELATIONSHIP);

#7 if (relations[i].lower = relations[j].lower and
#8 relations[i] .upper = relations[j].upper)
#9 THEN indicator:= false;

#10 END_REPEAT;

#11 END_REPEAT;

#12 where assembly_constraint : indicator = true;
#13 END_RULE;

The where clause in line #12 indicates the case that schema instantiation
satisfies this rule.

The constructs described in this contribution enables the user to specify
the static aspects of an information model using a combination of graphical
and textual notation.

3 Extensions to Standard

3.1 Shortcomings of EXPRESS

During the use of EXPRESS, especially in the context of STEP, several short-
comings were detected. On the one hand, these shortcomings prevent a com-
plete specification of all properties an information model may contain. On the
other hand, there are some aspects, which when modelled using EXPRESS
constructs lead to complicated models, difficult to read and understand. One
of the main elements missing in EXPRESS is the support for modelling dy-
namics and behaviour of information. With EXPRESS only a time invariant
snapshot of an information model can be described. The ability to spec-
ify the change of information is most important for a number of application
domains, such as business process reengineering or software development.
Furthermore, EXPRESS is not fully object-oriented (EXPRESS is said
torbesstructuraliobject=oriented)mItrisinot possible to define methods within
an entity declaration which are local to the entity and operating on local
attributes. In EXPRESS global functions are used to support the restricted

EXPRESS 69

local functions. This strategy may cause side effects difficult to control in
complex models.

Another disadvantage is the subset relationship between the graphical
and lexical notation. It is hence necessary to refer to the lexical notation as
well to fully understand the contents of an information model.

Finally, EXPRESS does not support the creation of instance scenarios or
the definition of different views of the model for validation and application
purposes. With these, the use of an information model in a real application
context could be simulated and simplified before being implemented.

Several extensions to the ISO standard have been developed to deal with
the shortcomings of EXPRESS described above. Four of these EXPRESS-
dialects which are not mutually compatible are described briefly below.

3.2 EXPRESS-X

An information model must be complete and unambiguous. In general, in-
formation represented in a model can be a union of requirements of different
sources (e.g. application systems). As a result, this information model con-
tains data that is not needed by individual sources. This may cause problems
in application systems working with this data. To prevent such problems a
view of the model must be defined which only contains the information nec-
essary for the particular application.

EXPRESS-X
bijective mapping

EXPRESS EXPRESS
original model view model

Figure 5: Schema mapping with EXPRESS-X [ISO96b]

The main purpose of EXPRESS-X is to describe such views. EXPRESS-X
can be used to define mappings between entities from one EXPRESS schema
(e.g. the entire information model) to entities in another schema, a view of
the first (Figure 5).

WithsEXPRESS-Xothe creationrof a view of an EXPRESS model is di-
vided into two phases: materialise and compose. In the materialise phase,
the view entities and their attributes that depend on the original entities

70 Reiner Anderl, Harald John, Christian Piitter

are defined. In the compose phase, additional attributes which depend on
the view entities are created (e.g. an attribute which specifies a relationship
between view entities). A particular view of a schema is defined by determin-
ing the original EXPRESS schema, the view schema and a mapping schema
(defined in EXPRESS-X) which specifies the mapping. The mapping itself
is a partial bijection on attribute level. This enables an EXPRESS-X pro-
cessing application to convert the data back to the original schema. In this
way EXPRESS-X combines the capabilities of EXPRESS-M and EXPRESS-
V [IS095, HS96] and is intended to become an ISO standard independent of
the existing standard EXPRESS.

Up to now EXPRESS-X does not provide a graphical notation. For a
detailed description of EXPRESS-X, see [ISO96b].

3.3 EXPRESS-P

EXPRESS-P is an extension of standard EXPRESS for process modelling
and monitoring and is upward compatible with EXPRESS. EXPRESS-P ad-
ditionally specifies communication structures between processes and their
behaviour. Therefore, the concept of dynamic entities is introduced extend-
ing the static entity declaration of EXPRESS by a behavioural section. The
behavioural section may contain descriptions of interfaces, methods, channels
and processes or explicit references to other processes. As attributes, these
constructs are inherited from supertypes to subtypes. Interfaces define sig-
nals which can be received or sent via this interface. Methods are functions
or procedures only visible within the scope of the enclosing entity. Using
channels, the user can define the communication structure between inter-
faces of different entities. A process in EXPRESS-P is a list of statements in
the syntax of EXPRESS extended by statements supporting communication
(e.g. INPUT, TIMER, KILL etc.).

EXPRESS-P also extends the graphical notation EXPRESS-G with sym-
bols for the visualisation of communication structures. For a detailed de-
scription of EXPRESS-P, see [FM94].

3.4 EXPRESS-C

Like EXPRESS-P, EXPRESS-C is an upward compatible extension to EX-
PRESS, extending EXPRESS with object-oriented and behavioural facilities.
The entity declaration is extended by operations using the definition of sig-
natures, pre- and postconditions and algorithms. Pre- and postconditions
must be satisfied before and after execution of an algorithm respectively.
Operations as well as attributes are inherited along the specialisation hierar-
chy. They may be overloaded or redefined. Attributes and operations can be
labelled by thekeyword privateppreventing their accessibility from outside
the entity’s scope. Behavioural aspects of an information model are defined
using a declarative event- action paradigm. Events are raised by changing

EXPRESS 71

attribute values. If a (Boolean) condition in an event evaluates to true the as-
sociated action procedure which is a sequence of statements (possibly raising
other events) is executed. Furthermore EXPRESS-C supports the concept of
dynamic typing. This concept allows instances to change their types during
their lifetime.

The extensions of EXPRESS-C are - in a way - similar to those of EX-
PRESS-P, because both modelling languages extend EXPRESS by dynamic
elements. The main difference is the point of view and therefore the applica-
tion area. For a detailed description of EXPRESS-C, refer to [ISO94b).

3.5 EXPRESS Edition 2

The shortcomings of EXPRESS described in the previous section are in fact
the subject of activities of the ISO SC4 committee to extend and improve
the standard. Various dialects are currently being analysed, with the view to
the following goals:

e the improvement of the static modelling provided by EXPRESS,

o the upward compatibility to EXPRESS,

the integration of dynamic and behavioural aspects,

the extension of the graphical notation, and

e the unification of dialects.

As a first step, the static modelling has been extended by the definition of
new data types and user defined operators. The event-action concept of
EXPRESS-C has been taken for the modelling of behaviour. EXPRESS-G
has been extended by new symbols for the visualisation of the new data types
and the behaviour of the model [ISO96]. EXPRESS edition 2 is intended to
become an international standard within the next decade.

4 Large Scale Examples

In the area of virtual product development, the requirements of computer ap-
plications involved such as CAD, PDM or Database Systems are increasing.
In particular the processed data structures have reached a level of complex-
ity where database schemas or file formats can only be specified by formal
information models. It has been proven in several industrial and research
projects that EXPRESS is a suitable language for modelling even large scale
information models and converting the information to computer accessible
formy T'worof 'suchrprojectsystherapplication protocol development process
and the information model for environmentally sound design are briefly ex-
plained below focusing on the use of EXPRESS or an extension of it.

72 Reiner Anderl, Harald John, Christian Piitter

4.1 Application Protocol Development in STEP

STEP (ISO 10303) is a standard for computer accessible representation and
exchange of virtual products. It provides a neutral mechanism for the de-
scription of product information throughout all life cycle phases (e.g. product
planing, manufacturing, usage or recycling) independent of any particular
system. STEP is suitable for file exchange as well as for shared product
databases [ISO94c]. STEP is a series of standards, rather then one standard,
since for each significant type of information exchange a separate application
protocol can be developed and standardised. The standard is organised as a
series of parts specifying:

e The description method EXPRESS,

¢ integrated resources, containing basic information models, independent
from a particular application area or implementation (i.e. geometry or
material data),

e abstract test suites for the verification of each application protocol,

e implementation methods (e.g. for the implementation of a standard
data access interface),

e conformance testing methods for the validation of models and their
implementation according to the standard, and

¢ application protocols, defining the use of integrated resources in a par-
ticular application context (e.g. core data for automotive mechanical
design processes).

AAM ARM AIM
application activity application reference application interpreted

model model model
process formal ARM to AIM implementation
analysis description mapping

Figure 6: Development process of an application protocol

The development process of an application protocol is the process in which
ISO 10303 is extended to be used inia particular application context (i.e.
process chain ship building). It is divided into four phases (Figure 6). The
first phase aims to define a process model. This process model (in STEP

EXPRESS 73

terminology an “application activity model” - AAM) consists of activities
creating or using product data. An AAM is defined to restrict and specify
the process chain supported by this application protocol. A typical modelling
language used for the specification of AAM is IDEF0 [Ros77).

An application reference model (ARM) must be developed on the basis
of AAM. The ARM in an information model developed for example in EX-
PRESS which describes the the product data description requirements of the
application area of which the scope is defined in the AAM. The model is
specified in the terminology of its application area. Therefore experts of this
domain are able to understand and verify the model to ensure its correctness
and completeness. ARMs are usually very large information models, contain-
ing hundreds of entities, functions or rules. Therefore an ARM is divided into
units of functionality which are sets of entities, rules and types concerning the
same topic (e.g. 3D geometry). The modelling language for the specification
of the ARM is not prescribed by ISO 10303, but up to now EXPRESS has
been used.

Further to the ARM specification, an “application interpreted model”
(AIM) has to be created. This model defines how elements of the integrated
resources have to be used in order to meet the requirements described in
the ARM. Therefore these elements have to be used directly, if possible, or
by the introduction of subtypes expanding the entities from the integrated
resources by additional local rules or attributes. The AIM must be defined
with EXPRESS and is used as a basis for implementation.

To derive an application interpreted model from the application refer-
ence model mapping rules have to be defined specifying the relationships
between ARM and AIM entities. These mapping rules (possibly specified
with EXPRESS-X) are used to check correctness and completeness of the
AIM.

Finally suggestions for the implementation of the AIM are specified con-
cerning, for instance, the compatibility of a particular implementation with
the application protocol and other parts of ISO 10303.

According to the standardisation process defined by ISO, the application
protocol has to be reviewed several times by users and domain experts. The
development of various application protocols have proven the suitability of
EXPRESS for the definition of large information models which have to be
analysed by domain experts or users, not familiar with information modelling
or even implementation tasks.

4.2 Development of Environmentally Sound Products

The development of environmentally sound products requires efficient access
to environmental, technical and economical knowledge of all life cycle phases.
Sincerthisrcomplex knowledgerisidistributed over a variety of sources such as
enterprise departments, their co-operation is recommended including early
design phases to minimise harmful influences on the environment. Of crucial

74 Reiner Anderl, Harald John, Christian Pitter

importance is the sharing of information between the experts involved. The
sharing of this information in the design process and its supporting environ-
ment requires a suitable information model as a basis.

To create such an information model, application experts from a num-
ber of disciplines or areas must work together. The engineers and scientists
involved handle information in different ways, resulting in various types of
environmental information.

This information is not suitable for direct use by a designer and must be
transformed. Furthermore the environmental knowledge is distributed over
suppliers or institutions - such as UBA (Umweltbundesamt) ! - at different
locations. Some kind of support for their co-operation is necessary.

EXPRESS is a suitable basis for information modelling of an interdisci-
plinary group of distributed application experts as well as for the represen-
tation of the complex environmental knowledge; however, it has been found
that some extensions are necessary.

Figure 7: Information model for environmentally sound design

In the research project “SFB 392: Development of Environmentally Sound
Products” at Technical University of Darmstadt an information model, an
allied database and a design system environment are being developed by an
interdisciplinary group of scientists. To allow their co-operation, the informa-
tion model is partitioned according to the life cycle phases which constitute
the domains of the research experts (Figure 7). The core of this information
model contains a product data model covering all development phases as de-
veloped within ISO 10303. Any partial model representing environmental
knowledge refers to this core model to ensure its relevance for design. Based
on this architecture an information and assessment system for product models
of all design phases enable the designer to decide between product alterna-
tives depending on their technical, economical and environmental properties.

The modelling methodology used is called CO-operative Object Modelling
Technique (COOM) and follows principles similar to those in co-operative
product modelling [Kre96]. During the development of the information model

LFederal Office of the Environment

EXPRESS 75

the interfaces between life cycle functions must be defined, the partial models
have to be harmonised and the modellers need a view of the actual model as
a whole. Such a concept of co-operative modelling needs to be implemented
in terms of an information modelling method as well as with software tools
and techniques.

Information identification of Object-oriented Logical
clusters partial models process models partial models database schema
Step Step|
g 4
St St Step woremore s:I Step
ep ep —p{oeP ||
1 2 i 3 4 5 @
problem definition of model instantiation
analysis information model integration
architecture Step > Step | |
31 4
detailed analysis specification of
of partial models object-oriented models

Figure 8: Process Chain ‘information modelling’ with COOM [ADJP97]

COOM consists of six modelling steps. The first and second steps of this
method do not require any modelling task. The application area is analysed
(first step) and the architecture of the information model is defined (second
step).

The third step aims at the develpment of informal process models which
are the result of the detailed analysis of the partial models. In the fourth step
a simple graphical, object-oriented modelling language based on EXPRESS-
G is used in order to represent the complex information model of the envi-
ronmental knowledge. Figure 8 shows the whole modelling process. For a
detailed description of the modelling methodology, see [ADJP97].

An important aspect for database creation by application experts is a
facility which allows direct translation of the object-oriented model into a
database structure, which is supported by EXPRESS.

Standard object-oriented modelling languages are too complex to be used
by an application expert and cannot be translated directly into database
schemas. For this reason a modelling langnage based on EXPRESS-G is de-
veloped for COOM. The language must be capable of presenting all important
information at the first glance to allow co-operative work fully graphic repre-
sentationrasrinrstandardrobject=oriented methods is obligatory. To meet the
requirements of complex environmental knowledge, the following graphical
modelling constructs are necessaryp:

76 Reiner Anderl, Harald John, Christian Pitter

o Static Object Modelling. EXPRESS-G is taken as a basis for static
modelling. It can be simplified by integrating attributes of simple types
into the class symbol as in UML. The reduced number of relations makes
the model easier to survey. To avoid complex modelling structures,
further redundant types such as fuzzy sets are defined.

¢ Functional Modelling. To specify functional relations between class at-
tributes there are three different types of functions: Local functions
only refer to attributes of simple types within one class and are shown
inside the class symbol. They are used e.g. to transform units of pro-
cess parameters. Complex functions may refer to attributes of other
classes especially to derive assessment data from parameters of prod-
ucts and processes. Tables represent measured data as combinations
of parameters and their result, because in many cases environmental
relations cannot be described with functions. Pre- and post-conditions
of complex functions can be defined as constraints.

e Constraint Modelling. Constraints are used to ensure database consis-
tency for both instantiation and automatic or manual change of objects.
They are defined by logic statements using Boolean operators. Local
constraints limit the range of an attribute value. Complex constraints
define dependencies between class attributes of the same type.

e Rule Modelling. The definition of rules is based on object states. An
object state specifies values of a restricted group of attributes at a
particular time. These states can be divided into conditions and conse-
quences. Conditional states are linked by Boolean operators and refer
to attribute values by means of mathematical expressions (e.g. equa-
tions). Consequence states express the effect of a rule on the value of
object attributes. Rules are important for describing processes during
product use that cannot be specified with functional relations.

Incorporating these aspects into the current ISO 10303 EXPRESS-G dia-
grams would increase their size. In addition to optimising the graphic rep-
resentation itself various model views or layers are defined. They can be
realised by blanking selected aspects within one diagram.

The approach of modelling technique and graphical language has to be
realised with suitable modelling tools. A software tool developed for COOM
must support the entire process of modelling to minimise the training period,
and provides transitions between modelling steps. Because of the analogy
with co-operative product development, computer support for co-operative
information modelling can be realised in similar ways. The collaboration
support in general is synchronous, asynchronous or limited to document pub-
lishing techniques.

The collaboration support for information modelling should include an
entire survey of the actual model. For this reason an administration module

EXPRESS 77

has to be developed to communicate with a model repository and to control
access on the partial models. The administration tool also offers facilities
to search for redundant model components and provides information about
partial models under modification to ensure consistency. Access to design
patterns for information modelling is provided to achieve high quality of the
models. Synchronous presentation of model changes will be realised especially
to co-ordinate information modelling in early development phases.

The modelling tool environment also includes a compiler to create a
database schema directly from the information model which enables a rapid
prototyping for model implementation. The object-oriented approach for the
conceptual model including dynamic properties of a product suggests an im-
plementation in an object-oriented database system. The compiler developed
to support the database schema generation transforms the schema into the
Data Definition Language (DDL) of the database (e.g. OQL).

The database is the main component for a design system. Additional
systems required for the development of environmentally friendly products
are integrated into the design platform:

e parametric 3D-CAD system
e assessment system for ecological properties of products

e knowledge based system to facilitate the designer’s task in finding rel-
evant information in the database and ’

e user interfaces for direct access to the database using a query language

This prototype design environment might serve as an example of a shared
database, derived from an information model based on a graphical EXPRESS
dialect.

5 Conclusion

EXPRESS is a suitable basis for the development of large scale information
models which will be implemented, for instance, as database schemas accessed
by different software applications. Comparing EXPRESS to public object-
oriented modelling methods or languages like OMT or UML, both advantages
and disadvantages of EXPRESS can be identified.

The main disadvantage of the actual standard is the absence of constructs
to model time variant dynamics or behaviour yielding incomplete information
models. In particular UML provides facilities to graphically represent almost
all static, dynamic and behavioural properties a model may have.

The advantage of EXPRESS is that it is easy to learn and to handle
(invcomparisonwith- UML)y even-forusers not familiar with implementation
details of information models. Moreover, there is often only one way to
model real world ideas with EXPRESS. This makes it easier for somebody

78 Reiner Anderl, Harald John, Christian Pitter

who is not involved in the modelling process to understand the contents of
an EXPRESS model.

This features of EXPRESS enables teams consisting of domain experts,
users, modelling experts and implementers to develop an information model
which is understood and therefore influenced by everyone involved. This
information model serves as a suitable basis for the development of data
structures accessed by software systems as is the case in STEP.

References

[ADJP97] Anderl, R., Daum, B., John, H., Piitter, C., Co-operative Product
Data Modelling in Life Cycle Networks, in: 4th International Seminar
on Life Cycle Engineering, Berlin, 1997

[BJR97] Booch, G., Jacobson, I., Rumbaugh, J., Unified Modeling Language -
UML Summary Version 1.0, Rational Software, 1997

[FM94] Felser, W., Mueller, W., Extending EXPRESS for Process Modelling
and Monitoring, in: Proceedings of the 1994 ASME Computers in
Engineering Conference, Minneapolis, MI, September 11-14, 1994

[HS96] Hardwick, M., Spooner, D., EXPRESS-V Reference Manual, Tech-
nical Report of the Rensselaer Laboratory for Industrial Information
Infrastructure, 1996

[1SO94] ISO TC184/5C4/WG5, EXPRESS Language Reference Manual, ISO
1994

[ISO94b] ISO TC184/SC4/WG5, EXPRESS-C Language Reference Manual,
ISO 1994

[ISO94c¢] ISO TC184/SC4, Overview and fundamental principles, ISO 1994
[ISO95] ISO TC184/SC4/WG5, EXPRESS-M Reference Manual, ISO 1995

[ISO96) ISO TC184/SC4/WG5, Requirements for the second edition of EX-
PRESS, ISO 1996

[ISO96b] ISO TC184/SC4/WG11, EXPRESS-X Reference Manual, ISO 1996

[Kre96] Kress, H. et al, An Open System Environment to Support the Inte-
grated Product Development Process (in German), in: Proceedings of
the Conference on Electronic Imaging, Science & Technologies, San
Jose, 1996

[Mai94] Maier, M. et al, Multiple Class Membership and Supertype Constraint
Handling - Concepts and Implementation Aspects, in: Proceedings of
the 4th"EXPRESS |Users Group Conference Greenville, S.C., Oct. 13
- 14,1994

[Ros77]

[Rum91]

[SW94]

EXPRESS 79

Ross, D. T., Structured Analysis (SA): A Language for Communicat-
ing Ideas, in: IEEE Transactions of Software Engineering, Vol 3, No.
1, 1977

Rumbaugh, J. et al, Object-Oriented Modeling and Design, Prentice-
Hall, 1991

Schenck, D. A., Wilson, P. R., Information Modelling: The EXPRESS
Way, Oxford University Press, 1994

CHAPTER 4

ORM/NIAM
Object-Role Modeling

Terry Halpin

Object-Role Modeling (ORM) is method for modeling and querying an informa-
tion system at the conceptual level, and mapping between conceptual and logical
(e.g. relational) levels. ORM comes in various flavors, including NIAM (Natural
language Information Analysis Method). This contribution provides an overview
of ORM, and notes its advantages over Entity Relationship and traditional Object-
Oriented modeling.

1 Introduction

1.1 ORM: What is it and Why use it?

Object-Role Modeling (ORM) is primarily a method for modeling and query-
ing an information system at the conceptual level. In Europe, the method is
often called NIAM (Natural language Information Analysis Method). Since
information systems are typically implemented on a DBMS that is based on
some logical data model (e.g. relational, object-relational, hierarchic), ORM
includes procedures for mapping between conceptual and logical levels. Al-
though various ORM extensions have been proposed for process and event
modeling, the focus of ORM is on data modeling, since the data perspective
is the most stable and it provides a formal foundation on which operations
can be defined.

For correctness, clarity and adaptability, information systems are best
specified first at the conceptual level, using concepts and language which
people can readily understand. Analysis and design involves building a for-
mal-model-of the application.area.or.universe of discourse (UoD). To do this
properly requires a good understanding of the UoD and a means of specify-
ing this understanding in a clear, unambiguous way. Object-Role Modeling

82 Terry Halpin

simplifies this process by using natural language, as well as intuitive dia-
grams that can be populated multiple with examples, and by expressing the
information in terms of elementary relationships.

ORM is so-called because it pictures the world in terms of objects (enti-
ties or values) that play roles (parts in relationships). For example, you are
now playing the role of reading, and this paper is playing the role of being
read. In contrast to other modeling techniques such as Entity-Relationship
(ER) and Object-Oriented (OO) approaches, ORM makes no explicit use
of attributes. For example, instead of using countryborn as an attribute of
Person, we use the relationship type Person was born in Country. This has
many important advantages. Firstly, ORM models and queries are more sta-
ble (attributes may evolve into entities or relationships). For example, if we
decide to later record the population of a country, then our countryborn at-
tribute needs to be reformulated as a relationship. Secondly, ORM models
may be conveniently populated with multiple instances (attributes make this
too awkward). Thirdly, ORM is more uniform (e.g. we dont need a sepa-
rate notation for applying the same constraint to an attribute rather than a
relationship).

ORM is typically more expressive than ER or OO. Its role-based notation
makes it easy to specify a wide variety of constraints, and its object types
reveal the semantic domains that bind a schema together. One benefit of this
is that conceptual queries may now be formulated in terms of schema paths,
where moving from one role though an object type to another role amounts
to a conceptual join (see later).

Unlike ORM or ER, popular OO models often duplicate information by
wrapping facts up into pairs of inverse attributes in different objects. More-
over, OO0 notations have weak support for constraints (e.g. a constraint might
have to be duplicated in different objects, or even ignored). Unfortunately,
00 models are less stable than even ER models when the UoD evolves. For
such reasons, OO models should be used only for implementation, not for
analysis.

Although the detailed picture provided by ORM is desirable in develop-
ing and transforming a model, for summary purposes it is useful to hide or
compress the display of much of this detail. Various abstraction mechanisms
exist for doing this, e.g. [CHP96]. If desired, ER and OO diagrams can also
be used for providing compact summaries, and are best developed as views of
ORM diagrams. For a simple discussion illustrating the points in this section,
see [Hal96].

The rest of this contribution provides a brief history of ORM, summarizes
the ORM notation, illustrates the conceptual design and relational mapping
procedures, and mentions some recent extensions before concluding.

1.2 A Brief History of ORM

In the 1970s, especially in Europe, substantial research was carried out to pro-
vide higher leyel semantics for modeling information systems. Abrial [Abr74],

ORM/NIAM 83

Senko [Sen75] and others discussed modeling with binary relationships. In
1973, Falkenberg generalized their work on binary relationships to n-ary re-
lationships and decided that attributes should not be used at the conceptual
level because they involved “fuzzy” distinctions and also complicated schema
evolution. Later, Falkenberg proposed the fundamental ORM framework,
which he called the “object-role model” [Fal76]. This framework allowed
n-ary and nested relationships, but depicted roles with arrowed lines. Ni-
jssen [Nij76] adapted this framework by introducing the circle-box notation
for objects and roles that has now become standard, and adding a linguis-
tic orientation and design procedure to provide a modeling method called
ENALIM (Evolving NAtural Language Information Model) [Nij77]. Nijssen
led a group of researchers at Control Data in Belgium who developed the
method further, including van Assche who classified object types into lex-
ical object types (LOTs) and non-lexical object types (NOLOTs). Today,
LOTs are commonly called “Entity types” and NOLOTs are called “Value
types”. Kent [Ken77] provided several semantic insights and clarified many
conceptual issues.

Meersman added subtypes, and made major contributions to the RIDL
query language [Mee82] with Falkenberg and Nijssen. The method was re-
named “aN Information Analysis Method” (NIAM) and summarized in a
paper by Verheijen and van Bekkum [VB82]. In later years the acronym
“NIAM” was given different expansions, and is now known as “Natural lan-
guage Information Anslysis Method”. Two matrix methods for subtypes
were developed, one (the role-role matrix) by Vermeir [Ver83] and another
by Falkenberg and others.

In the 1980s, Falkenberg and Nijssen worked jointly on the design pro-
cedure and moved to the University of Queensland, where the method was
further enhanced by various academics. Halpin provided the first full for-
malization of the method [Hal89], including schema equivalence proofs, and
made several refinements and extensions to the method. In 1989, Halpin and
Nijssen co-authored a book on the method. A second edition of this book,
authored by Halpin, was published in 1995 [Hal95]. Another book on the
method, written by Wintraecken, was published in 1990 [Win90].

Many researchers have contributed to the ORM method over the years,
and there is no space here to list them all. Today various versions of the
method exist, but all adhere to the fundamental object-role framework. Al-
though most ORM proponents favor n-ary relationships, some prefer Binary-
Relationship Modeling (BRM), e.g. Shoval [SS93]. Habrias [Hab93] devel-
oped an object- oriented version called MOON (Normalized Object-Oriented
Method). The Predicator Set Model (PSM) was developed mainly by ter Hof-
stede, Proper and van der Weide [HPW93], and includes complex object con-
structorsyDer TroyerrandsMeersmany[DM95] developed another version with
constructors called Natural Object-Relationship Model (NORM). Halpin de-
veloped an extended version called Formal ORM (FORM), and with Bloesch

84 Terry Halpin

and others at InfoModelers Inc. developed an associated query language
called ConQuer [BH97}; this work is being extended at Visio Corporation.
Van der Lek and others [BZL94] allowed entity types to be treated as nested
roles, to produce Fully Communication Oriented NIAM (FCO-NIAM). Emb-
ley and others [EKW92] developed Object-oriented Systems Analysis (OSA)
which includes an “Object-Relationship Model” component that has much
in common with standard ORM, with no use of attributes.

2 Data Modeling in ORM

2.1 Notation

A modeling method includes both a notation and a procedure for using its
notation. This subsection discusses notation, and later subsections discuss
procedures. Each well defined version of ORM includes a formal, textual
specification language for both models and queries, as well as a formal, graph-
ical modeling language. The textual languages are more expressive than the
graphical languages, but are mentioned only briefly in this paper. Figure 1
summarizes most of the main symbols used in the graphical language. We
now briefly describe each symbol. Examples of these symbols in use are given

later.
/‘_—\\\ A
1 2 3 4 5 6
o

e R B

7 8 9 10 n 12
@ {a, 8,)
H {a,..a)}
13 14 15 16
? f ® R ojr ojt ©Ogc
: ; ; n nh-m n oas Oans °sym *
17 18 19 20 2 2 2

Figure 1: Main ORM symbols

The symbols are numbered for easy reference. An entity type is depicted
as a named ellipse (symbol 1). A walue type denotes a lexical object type

ORM/NIAM 85

(e.g. a character string or number) and is usually shown as a named, dot-
ted ellipse (symbol 2). Another notation for value types encloses the value
type name in parentheses. Object types that appear more than once in the
schema may be tagged with an arrow tip (see symbol 3), that “points” to
the existence of another occurrence. Each entity type must have at least
one reference scheme, which indicates how each instance of the entity type
may be mapped via predicates to a combination of one or values. A simple
injective (1:1 into) reference scheme maps entities to single values. For ex-
ample, each country may be identified by a single country code (e.g. USA).
In such cases the reference scheme may be abbreviated as in symbol 4 by
displaying the reference mode in parentheses beside the name of the entity
type, e.g. Country(code). The reference mode indicates how values relate to
the entities. Symbol 5 shows that a plus sign “+” may be added if the values
are numeric. Values are constants with a universally understood denotation,
and hence require no reference scheme to be declared.

Although not strictly a conceptual issue, it is normal to require each
entity type to have a primary reference scheme. Relationship types used
for primary reference are then called reference types. The other relationship
types are known as fact types. In symbol 6, an exclamation mark is added to
declare that an entity type is independent. This means that instances of that
type may exist without participating in any facts. By default, this is not the
case (i.e. we don’t normally introduce an object into the universe unless it
takes part in some fact).

Symbol 7 shows a ternary predicate, comprised of three roles. Each role is
depicted as a box, and must be played by exactly one object type. Roles are
connected to their players by a line segment (see symbol 13). A predicate is
basically a sentence with object holes in it, one for each role. The number of
roles is called the arity of the predicate. Except for the BRM version, ORM
allows predicates of any arity (1 = unary, 2 = binary, 3 = ternary etc.).
Predicates are usually treated as ordered, as in predicate logic. In this case,
the name of the predicate is written either in or beside the first role box,
and if necessary each object hole may be shown as an ellipsis “...”. Different
readings may be provided so the information may be read in any direction.
FORML allows mixfix predicates so objects may be placed at any position in
the predicate. For example, the fact type Room at Time is used for Activity
involves the predicate “... at ... is used for ..”. Apart from facilitating
natural verbalization of n-ary relationships, mixfix predicates allow binary
relationships to be verbalized in languages where the verb is not in the infix
position (e.g. in Japanese, verbs come at the end). In some versions of ORM,
relationship types are given a name, and each role is also given a name, thus
making order irrelevant.

Internaluniquenessiconstraintsare depicted as arrow tipped bars (symbol
8), and are placed over one or more roles in a predicate to declare that
instances for that role (combination) in the relationship type population must

86 Terry Halpin

be unique. For example, adding a uniqueness constraint over the first role of
Person was born in Country declares that each person was born in at most
one country. A predicate may have one or more uniqueness constraints, at
most one of which may be declared primary by adding a “P” (symbol 9).
An external uniqueness constraint shown as a circled “u” may be applied
to two or more roles from different predicates by connecting to them with
dotted lines (symbol 10). This indicates that instances of the combination
of those roles in the join of those predicates are unique. For example, to say
that a state is identified by combining its statecode and country, we add an
external uniqueness constraint to the roles played by Statecode and Country
in the reference types: State has Statecode; State is in Country. To declare
an external uniqueness constraint primary, use “P” instead of “u” (symbol
11). An object type may have at most one primary reference constraint.

If we want to talk about a relationship type we may objectify it (i.e. make
an object out of it) so that it can play roles. Graphically, the objectified
predicate is enclosed in either a rounded rectangle (symbol 12) or an ellipse,
and named. Objectified predicates are also called nested object types. Typ-
ically the objectified predicate must have a spanning uniqueness constraint,
but 1:1 cases may also be allowed [Hal93].

A mandatory role constraint declares that every instance in the population
of the role’s object type must play that role. It is usually shown as a black
dot (see symbol 13) but a universal quantifier is sometimes used. Mandatory
roles are also called total roles. A disjunctive mandatory constraint may be
applied to two or more roles to indicate that all instances of the object type
population must play at least one of those roles. This may often be shown
by connecting the roles to a black dot on the object type (symbol 14) or in
general by connecting the roles by dotted lines to a circled black dot (symbol
15).

To restrict an object type’s population to a given list, the relevant values
may be listed in braces (symbol 16, top). If the values are ordered, a range
may be declared separating the first and last values by “.” (symbol 16,
bottom). These constraints are called value constraints.

Symbols 17-19 denote set comparison constraints, and may only be ap-
plied between compatible role sequences (i.e. sequences of one or more roles,
where the corresponding roles have the same host object type). A dotted
arrow (symbol 17) from one role sequence to another is a subset constraint,
restricting the population of the first sequence to be a subset of the second. A
double- tipped arrow (symbol 18) is an equality constraint, indicating the pop-
ulations must be equal. A circled “X” (symbol 19) is an ezclusion constraint,
indicating the populations are mutually exclusive. Exclusion constraints may
be applied between two or more sequences.

Avsolidvarrows(symbol20)ifromorne object type to another indicates that
the first object type is a (proper) subtype of the other. For example, Woman
is a subtype of Person. Totality (circled black dot) and exclusion (circled

ORM/NIAM 87

“X”) constraints may also be displayed between subtypes, but are implied
by other constraints if the subtypes are given formal definitions.

Symbol 21 shows three kinds of frequency constraint. Applied to a se-
quence of one or more roles, these indicate that instances that play those
roles must do so exactly n times, between n and m times, or at least n times.

Symbol 22 shows six kinds of ring constraint, that may be applied to a
pair of roles played by the same host type. These indicate that the binary
relation formed by the role population must be irreflexive (ir), intransitive
(it), acyclic (ac), asymmetric (as), antisymmetric (ans) or symmetric (sym).

Symbol 23 is an asterisk “*”, which may be placed beside a fact type
to indicate that it is derivable from other fact types. Not all versions of
ORM support all these symbols, and some versions have a few more symbols.
InfoModeler, a popular ORM tool, supports all the symbols shown, as will a
future release of Visio Professional.

2.2 Conceptual Schema Design Procedure

The information systems life cycle typically involves several stages: feasibil-
ity study; requirements analysis; conceptual design of data and operations;
logical design; external design; prototyping; internal design and implemen-
tation; testing and validation; and maintenance. ORM’s conceptual schema
design procedure (CSDP) focuses on the analysis and design of data. The
conceptual schema specifies the information structure of the application: the
types of fact that are of interest; constraints on these; and perhaps derivation
rules for deriving some facts from others. With large applications, the UoD
is divided into convenient modules, the CSDP is applied to each, and the
resulting subschemas are integrated into the global conceptual schema.

Table 1 shows the CSDP used in FORM. Although different versions of
the CSDP exist, they all agree on the importance of verbalization in terms of
elementary facts, population checks, and thorough analysis of business rules.
The rest of this section illustrates the basic working of this design procedure
by means of an example. Because of space limitations, our treatment is
necessarily brief. A much more detailed discussion of the same example can
be electronically accessed from [Hal97].

Step

1. Transform familiar information examples into elementary facts,
and apply quality checks.

Draw the fact types, and apply a population check.

Add uniqueness constraints, and check arity of fact types.

Add mandatory role constraints, and check for logical derivations.
Add value, set comparison and subtyping constraints.
Addrother-constraintssand-perform final checks.

S Tv W

Table 1: The conceptual schema design procedure (CSDP)

88 Terry Halpin

Step 1is the most important. Examples of the information required from
the system are verbalized in natural language. Such examples are often avail-
able in the form of output reports or input forms, perhaps from a current
manual version of the required system. If not, the modeler can work with
the client to produce examples. To avoid misinterpretation, a UoD expert
(a person familiar with the application) should perform or at least check the
verbalization. As an aid to this process, the speaker imagines he/she has
to convey the information contained in the examples to a friend over the
telephone.

For our case study, we consider a fragment of an information system used
by a university to maintain details about its academic staff and academic
departments. One function of the system is to print an academic staff di-
rectory, as exemplified by the report extract shown in Table 2. Part of the
modeling task is to clarify the meaning of terms used in such reports. The
descriptive narrative provided here would thus normally be derived from a
discussion with the UoD expert. The terms “empnr” and “extnr” abbreviate
“employee number” and “extension number.”

A phone extension may have access to local calls only (“LOC”), national
calls (“NAT”), or international calls (“INT”) . International access includes
national access, which includes local access. In the few cases where different
rooms or staff have the same extension, the access level is the same. An
academic is either tenured or on contract. Tenure guarantees employment
until retirement, while contracts have an expiry date.

Phone Tenured/
Empnr | EmpName Dept Room Extnr | Access | Contract-
expiry
715 Adams A | Computer Science | 69-301 2345 LOC | 01/31/95
720 Brown T Biochemistry 69-301 9642 LOC 01/31/95
139 Cantor G Mathematics 62-406 1221 INT tenured

430 Codd EF Computer Science 67-301 2911 INT tenured
503 Hagar TA | Computer Science 69-507 2988 LOC tenured

651 Jones E Biochemistry 69-803 5003 LOC 12/31/96
770 Jones E Mathematics 67-404 1946 LOC 12/31/95
112 Locke J Philosophy 1-205 6600 INT tenured
223 Mifune K Elec.Eng. 50-215A 1111 LOC tenured
951 Murphy B Elec.Eng. 45-B19 2301 LOC 01/03/95
333 Russell B Philosophy 1-206 6600 INT tenured

654 Wirth N Computer Science 69-603 4321 INT tenured

Table 2: Extract from a directory of academic staff

The information contained in this table is to be stated in terms of elemen-
tary facts. Basically, an elementary fact asserts that a particular object has
a property, or that one or more objects participate in a relationship, where
that relationshiprcannot be expressedias a conjunction of simpler (or shorter)
facts without introducing new object types [Hal93]. For example, to say that
Bill Clinton jogs and is the president of the USA is to assert two elementary
facts.

ORM/NIAM 89

As a first attempt, one might read off the information on the first data
row as the six facts f1-f6. Each asserts a binary relationship between two
objects. For discussion purposes the predicate is shown in bold between the
noun phrases which identify the objects, and object type names start with a
capital letter. Some obvious abbreviations are used (“empnr”, “EmpName”,
“Dept”, “extnr”); when read aloud these can be expanded to “employee
number”, “Employee name”, “Department” and “extension number”. The
second data row contains different instances of these six fact types. Row
three, because of its final column, provides an instance 7 of a seventh fact
type, a unary.

f1 The Academic with empnr 715 has EmpName ‘Adams A’.

f2 The Academic with empnr 715 works for the Dept named ‘Computer
Science’.

f3 The Academic with empnr 715 occupies the Room with roomnr ’69-
301°.

f4 The Academic with empnr 715 uses the Extension with extnr ‘2345’.

f5 The Extension with extnr ‘2345’ provides the AccessLevel with code
‘LOC’. mdy-code ‘01/31/95’.

f6 The Academic with empnr 715 is contracted till the Date with mdy-
code ‘01/31/95’

f7 The Academic with empnr 139 is tenured.

Different readings may be provided to allow relationships to be read in differ-
ent directions. For example, the inverse reading of f4 is: The Extension with
extnr 2345 is used by the Academic with empnr 715. To save writing, both
the normal predicate and its inverse may be included in the same declaration,
with the inverse predicate preceded by a slash “/”. For example:

f4 The Academic with empnr 715 uses/is used by the Extension with
extnr 2345.

Predicate names are usually unique in the conceptual schema. In some cases
(e.g. “has”), the same name may be used externally for different predicates:
internally these have different identifiers.

As a quality check at Step 1, we ensure that objects are well identified.
Values are identified by constants (e.g. Adams A, 715). Entities are “real
world” objects that are identified by a definite description (e.g. the Academic
with empnr 715). Fact f1 involves a relationship between an entity (a person)
andra value (anameis justracharacter string). Facts f2-f6 specify relation-
ships between entities. Fact f7 states a property (or unary relationship) of
an entity.

90 Terry Halpin

As a second quality check at Step 1, we use our familiarity with the UoD
to see if some facts should be split or recombined (a formal check on this
is applied later). For example, suppose facts f1 and f2 were verbalized as:
The Academic with empnr 715 and empname ‘Adams A’ works for the Dept
named Computer Science. The presence of the word “and” suggests that this
may be split without information loss. The repetition of “Jones E” on differ-
ent rows of Table 2 shows that academics cannot be identified just by their
name. However the uniqueness of empnr in the sample population suggests
that this suffices for reference. Since the “and-test” is only a heuristic, and
sometimes a composite naming scheme is required for identification, the UoD
expert is consulted to verify that empnr by itself is sufficient for identifica-
tion. With this assurance obtained, the composite sentence is now split into
f1 and f2.

As an alternative to specifying complete facts one at a time, the reference
schemes may be declared up front and then assumed in later facts. For exam-
ple, suppose we have declared the following: Academic(empnr); EmpName();
Dept(name). The empty parentheses after EmpName indicates it is a value
type and hence needs no reference scheme. Now facts f1 and f2 may be stated
as: Academic 715 has EmpName ‘Adams A’; Academic 715 works for Dept
‘Computer Science’. Facts f1-f7 are instances of the following fact types:

F1 Academic has EmpName
F2 Academic works for Dept
F3 Academic occupies Room
F4 Academic uses Extension
F5 Extension provides AccessLevel
F6 Academic is contracted till Date

F7 Academic is tenured

Step 2 of the CSDP is to draw o draft diagram of the fact types and
apply a population check (see Figure 2). As a check, each fact type has been
populated with at least one fact, shown as a row of entries in the associated
fact table, using the data from rows 1 and 3 of Table 2. The English sentences
listed before as facts f1-f7, as well as other facts from row 3, may be read
directly off this figure. Though useful for validating the model with the client
and for understanding constraints, the sample population is not part of the
conceptual schema. itself.

Suppose the information system is also required to assist in the production
of departmentalyhand=books:Figures3 shows an extract from a page of one
such handbook. In this university academic staff are classified as professors,
senior lecturers or lecturers, and each professor holds a “chair” in a research

ORM/NIAM 91

2345 LOC
1221 INT

715 Adams A
139 Cantor G

AccesslLeve _
- T~ ~

. N
| EmpName ;
N

Extension
(extnr)

is used by / uses

Academic
(empnr)

2345 715
1221 139

715 Computer Science
139 Mathematics

is contracted till

(roomnr)

715 01/31/97

139

69-301 715
67-301 139

Figure 2: Draft diagram of fact types for Table 2 with sample population

area. To reduce the size of our problem, we have excluded many details which
in practice would also be recorded (e.g. office phone and fax). To save space,
details are shown here for only four of the 22 academics in that department.
The data are, of course, fictitious.

It appears from the handbook example that within a single department,
academics may be identified by their name. Let us assume this is verified by
the UoD expert. However the complete application requires us to handle all
departments in the same information system, and to integrate this subschema
with the directory subschema considered earlier. Hence we must replace the
academic naming convention used for the handbook example by the global
scheme used earlier (i.e. empnr).

We use this report to illustrate Step 8 of the CSDP: check for entity
types that should be combined, and note any arithmetic derivations. Sup-
pose we verbalized the degree information in terms of the three ternary fact
types: Professor obtained Degree from University; SeniorLecturer obtained
Degree from University; Lecturer obtained Degree from University. The com-
mon predicate suggests that the entity types Professor, SentorLecturer and
Lecturer should be collapsed to the single entity type Academic, with this
predicate now shown only once. To preserve the original information about
who is a professor, senior lecturer or lecturer we introduce the fact type:
Academic has Rank. Let’s use the codes “P,” “SL” and “L” for the ranks of
professor, senior lecturer and lecturer.

ThersecondpaspectyofsStepr3uisstorsee if some fact types can be derived
from others by arithmetic. Since we now record the rank of academics as
well as their departments, we/can compute the number in each rank in each

92 Terry Halpin

Department: Computer Science

Home phone of

Dept head: 9765432

Chairs Professors (5)

Databases Codd EF BSc (UQ); PhD (UCLA) (Head of Dept)

Algorithms Wirth N BSc (UQ); MSc (ANU); DSc (MIT)

Senior Lecturers (9)
Hagar TA BInfTech (UQ); PhD (UQ)

Lecturers (8)
Adams A MSc (OXON)

Figure 3: Extract from Handbook of Computer Science Department

department simply by counting. So the fact type Dept employs academics of
Rank in Quantity is derivable. If desired, derived fact types may be included
on a schema diagram if they are marked with an asterisk “*”.At any rate,
a derivation rule must be supplied. This may be written below the diagram
(see Figure 4). Here “iff” abbreviates “if and only if”.

Step 4 of the CSDP is to add uniqueness constraints and check the arity of
the fact types. For example, we add a uniqueness constraint to the first role
of works for to ensure that each academic works for at most one department.
One simple arity check ensures that each uniqueness constraint on an n-ary
spans at least n-1 roles.

Step 5 of the CSDP is to add mandatory role constraints, and check for
logical derivations. For example, we need a disjunctive mandatory constraint
to declare that each academic either is contracted till some date or is tenured.
Roles that are not mandatory are optional. If an object type plays only one
fact role in the global schema, then by default this is mandatory, but a dot
is not normally shown.

Suppose that departmental handbooks include a building directory, which
lists the names as well as the numbers of buildings. A sample fact might be:
Building ‘67’ has Buildingname ‘Priestly’. Earlier we identified rooms by a
single value. For example “67-301” was used to denote the room in building
67 which has room number “301”. Now that buildings are to be talked about
in their own right, we replace the simple reference scheme by a composite
one which shows the full semantics (see Figure 4). Here Roomnr now means
juststhe-number (e:g:+“301")used-tosidentify the room within its building.

To illustrate nesting, suppose the application also has to deal with reports
about teaching commitments, an extract of which is shown in Table 3. Not

ORM/NIAM 93

all academics currently teach. If they do, their teaching in one or more
subjects may be evaluated and given a rating. Some teachers serve on course
curriculum committees. Here the new fact types may be schematized as
shown in Figure 4. The nested object type Teaching plays only one role, and
this role is optional, so Teaching is an independent object type (as shown by
the “I).

The second stage of Step 5 is to check for logical derivations (i.e. can
some fact type be derived from others without the use of arithmetic?). One
strategy here is to ask whether there are any relationships (especially func-
tional relationships) which are of interest but which have been omitted so far.
Another strategy is to look for transitive patterns of functional dependencies.
Suppose that our client confirms that the rank of an academic determines the
access level of his/her extension. For example, suppose a current business rule
is that professors get international access while lecturers and senior lecturers
get local access. This rule might change in time (e.g. senior lecturers might
be arguing for national access). To minimize later changes to the schema,
we store the rule as data in a table. So it can be updated as required by an
authorized user without having to recompile the schema. The relevant rule
is shown at the bottom of Figure 4.

Empnr Emp. name Subject Rating Committees
715 Adams A CS100
CS101 5
430 Codd EF
654 Wirth N CS300 BSc-Hons
CAL Advisory

Table 3: Extract of report on teaching commitments

In Step 6 of the CSDP we add any value, set comparison and subtyping
constraints. One value constraint is that Rankcode is restricted to P,SL,L.
In Figure 4, a pair-subset constraint runs from the heads predicate to the
works for predicate, indicating that a person who heads a department must
work for the same department. The rule that nobody can be tenured and
contracted at the same time is captured by an exclusion constraint. Sub-
typing is determined as follows. Each optional role is inspected: if the role
is played only by some well-defined subtype, a subtype node is introduced
with this role attached. Subtype links and definitions are added. Figure 4
contains three subtypes: Teacher; Professor; and TeachingProfessor. In this
university, each teacher is audited by another teacher. Moreover, only pro-
fessors may be department heads, and only teaching professors can serve on
curriculum committees (not all universities work this way).

Step 7 of the CSDP adds other constraints and performs final checks. For
exampleyauditingisvirrefleziver(norteacher audits himself/herself). Suppose
we also need to record the teaching and research budgets of the departments.
We might schematize this using the ternary Dept has for Activity a budget

94 Terry Halpin

e "Teaching 1" -
S teache Subject
— (code)
Building
(bldgnr) Degree
=] @

(Roommr - T (e

,

o l ...obtained...from...
i is contracted fill
Extension occupies I
1] T
: : (mdy)

is used by / uses

{P','SL",'L} '
> ~ 7
Rank Academic -
(code) [[has | (empnr)

¢ > ~
4 \
e T} e
s
T ~ -

ensures I is audited by faudits @ head has home-

-- e .
works for N
. .

1

‘ Dept "\ (Phonenr |
ccesslLevel <———>I<—> (name)

{INT','NAT','LOC"} has has]
<«—»+———» fesearch teaching

o | |

——>
Committee serves Teaching @ MoneyAmt
(name) - on Prof (usd) +

each Teacher is an Academic who teaches some Subject
each Professor is an Academic who has Rank "P'
each TeachingProf is both a Teacher and a Professor

* Dept d employs academics of Rank rin Quantity q iff g =
count each Academic who has Rank r and works for Dept d

* Extension e provides Accessl.evel a Iff
Extension e is used by an Academic who has a Rank that ensures AccessLevel a

Figure 4: The final conceptual schema

of MoneyAmt, where Activity has the value constraint { Teaching, Research}
and the first role is mandatory and constrained to a frequency of 2.

Once the global schema is drafted, and the target DBMS decided, some
optimizationycanyoftenybesperformedyto improve the efficiency of the logi-
cal schema obtained by mapping. Assuming the conceptual schema is to be
mapped to a relational database schema, the ternary fact type about bud-

ORM/NIAM 95

gets will map to a separate table all by itself, leading to extra joins for some
queries. We can avoid this problem by transforming the ternary into the fol-
lowing two binaries before we map: Dept has teaching budget of MoneyAmt;
Dept has research budget of MoneyAmt. These binaries have simple keys,
and will map to the “main” department table. Another optimization may
be performed which moves the home phone information to Dept instead of
Professor. Figure 4 includes these optimizations. Such conceptual schema
transformations require a rigorous theory of schema equivalence and opti-
mization strategies. For details on such topics (see [Hal95], ch.9, [HP95b]
and [DeT93]).

Once the conceptual schema has been specified, the target data model
is selected and the mapping is done. For example, the Rmap algorithm
[RH93, Hal95] maps our conceptual schema to the relational schema shown
in Figure 5 (domains omitted). If the conceptual fact types are elementary
(as they should be), then the mapping is guaranteed to be free of redun-
dancy, since each fact type is grouped into only one table, and fact types
which map to the same table all have uniqueness constraints based on the
same attribute(s). Keys are underlined. If alternate keys exist, the primary
key is doubly-underlined. A mandatory role is captured by making its corre-
sponding attribute mandatory in its table (not null is assumed by default),
by marking as optional (in square brackets) all optional roles for the same
object type which map to the same table, and by running an equality/subset
constraint from those mandatory/optional roles which map to another table.
The <2,1> in the pair-subset constraint indicates the source pair should be
reversed before the comparison. Subtyping is captured by qualified optionals
or qualified subset constraints. The word “exists” means “a non-null value
exists”.

3 Recent Extensions

3.1 Conceptual Queries

Besides information modeling, ORM is also ideal for information query-
ing. The first significant ORM query language was RIDL [Mee82], a hy-
brid language with both declarative and procedural components. Tempo-
ral aspects were added later to form TRIDL. Currently, research is being
carried out on at least three ORM query languages: LISA-D [HPW93];
OSM-QL [EWPC96]; and ConQuer [BH96]. Of these ConQuer (CONcep-
tual QUERYy) is the only one to be commercially released. A more powerful
version, ConQuer-II [BH97], is currently under development at Visio Corpo-
ration.

UsingrConQuerprantORMimodelymay be queried directly without prior
knowledge of either the conceptual schema or the corresponding relational
schema, by dragging object types onto the query pane, selecting predicates

96 Terry Halpin

Building (bldgnr, bidgname)
—

{L.S,P} {INT,NAT,LOC}
PhoneAccess (rank, accesslevel)
A

e o o o e e - e ——— ——

o - —————

I

] |

Department (deptname , headempnr ! homephone, teachingbudget, :
[}

i

'_1:2,|1>—-—J h researchbudget)
5 : et
: {PSLLy - : -
Academic (empnr, empname, deptname , extn, rank; bidgnr, roomnr,
PRY) tenured, [enddate] 1, [chair]?, [au’ditor] 34
/ 11 {Y.N} ! e
R R | P
5 /, | e

Award [/ : (empnr, degree , university) - i

¢ \ P
\ -
\ I\ ———

NSNS &7
Teaching . (empnr, subject , [rating])

N f “.n

A

\
CteeMember (embnr, committee)

1 exists iff tenured ='N'

2 exists iff rank ="P'

3 <> empnr

4 exists iff empnr in Teaching.empnr
5 only where rank ='P'

* .
Provides (extn, accesslevel) := extn, accesslevel from
Academic natural join PhoneAccess

* Employs (deptname, rank, nrstaff) ::= deptname, rank, count (*)
from Academic
group by deptname, rank

Figure 5: The relational schema mapped from Figure 4

of interest, applying restrictions and functions as desired, and ticking the
items to be listed. As a simple example, consider the following English query
on our academic database: list the empnr, empname and number of subjects
taught for each academic who occupies a room in the Chemistry building and
teaches more than two subjects. This may be formulated by drag-and-drop
basically as shown in Figure 6.

Noticeshowreasilysthesconceptualyjoins are made. A verbalization of the

query is automatically generated, as well as SQL code. Formulating queries in
terms of objects and predicates is much easier than deciphering the semantics

ORM/NIAM 97

Academic
—— is identified by V Empnr
— has V Empname
—— occupies Room
is in Building
L has BldgName 'Chemistry’

—— teaches Subject
LV count (Subject) for Academic > 2

Figure 6: Query on an academic database

of the relational schema and coding in SQL or QBE. A major benefit of
such queries is their semantic stability. For example, ConQuer queries are
unaffected by most schema changes (e.g. addition of fact types, or changes to
constraints). In contrast, such changes often require the corresponding SQL
or ER query to be reformulated, since they depend on attribute structures.

3.2 Other Extensions

Researchers are actively investigating several extensions to the basic ORM
framework. These include abstraction mechanisms to allow users to con-
trol the amount of detail seen at any given time [CHP96], reverse engi-
neering [SS93, CH94], support for complex objects [HW93, DM95], process-
event modeling [Hof93], external schema generation [CH93], schema evolution
[Pro94], schema optimization [HP95b] [Bom94], meta-modeling [FO94], null
handling [HR92], object-oriented mapping [ME96], unary nesting [BZL94],
and empirical research [Eve94].

Although various versions of ORM have added support for complex ob-
jects, they differ in their approaches. Currently there seems to be a growing
agreement that constructors (e.g. set, bag, sequence) should only be added
after a lat ORM model is first developed. There are also different opinions on
whether such constructors should be considered part of the conceptual model,
or regarded as mapping annotations. Commercial developers of ORM tools
are also extending the method. For example, InfoModeler includes extra
constructs for mapping to object-relational databases, and extensions of this
technology are being incorporated into Visio Professional.

4 Conclusion

Thisrcontributionshas providedronlyraibrief sketch of the ORM method, em-
phasizing its fundamental features and touching on some of its advantages.
Apart from its sound theoretical basis, the method has been used success-

98 Terry Halpin

fully in many countries, on applications from the small to the very large.
The recent emergence of intuitive and powerful ORM tools has led to wider
adoption of the method, which is now being successfully taught as early as
high school level. Perhaps the greatest strengths of ORM are that it lifts the
communication between modeler and client to a level where they can readily
understand and validate the application model using simple sentences, and
that it has been designed from the ground up to facilitate schema evolu-
tion. This second advantage is very relevant to today’s business world where
change is ongoing.

In an article this brief, several aspects of ORM have necessarily been
glossed over. The reader who is interested in pursuing the area further should
consult the cited references, which are included at the end of the contribution.

References

[Abr74] Abrial, J. R., Data Semantics, in: J. W. Klimbie, K. L. Koffe-
man (eds.), Data Base Management, North-Holland, Amsterdam, The
Netherlands, 1974, 1-60

[BZL94] Bakema, G. P., Zwart, J. P. C., Lek, H. van der, Fully Communication
Oriented NIAM, in: G. M. Nijssen, J. Sharp (eds.), NIAM-ISDM 1994
Conf. Working papers, Albuquerque, NM USA, 1994, 1-35

[BH96] Bloesch, A. C., Halpin, T. A., ConQuer: a conceptual query language,
Proc. ER’96: 15th Int. Conf. on conceptual modeling, Springer LNCS,
vol. 1157, 1996, 121-133

[BH97] Bloesch, A. C., Halpin, T. A., Conceptual queries using ConQuer-1I,
in: Proc. ER’97, 16th Int. Conf. on Conceptual modeling, Springer
LNCS 1331, 1997, 113-26

[Bom94] Bommell, P. van, Implementation selection for Object-Role models,
in: T. A. Halpin, R. M. Meersman (eds.), Proc. First Int. Conf. On
Object-Role Modeling (ORM-1), Magnetic Island, Australia, 1994,
103-112

[CH93] Campbell, L., Halpin, T. A., Automated Support for Conceptual to
External Mapping, in: S. Brinkkemper, F. Harmsen (eds.), Proc. 4th
Workshop on Next Generation CASE Tool, Univ. Twente Memoranda
Informatica 93-132, Paris (June), 1993, 35-51

[CHY94] Campbell, L., Halpin, T. A., The reverse engineering of relational
databases, Proc. 5th Workshop on Next Generation CASE Tools,
Utrecht (June), 1994

[CHP96] Campbell, L. J., Halpin, T% A., Proper, H. A., Conceptual Schemas
with Abstractions: making flat conceptual schemas more comprehen-
sible, Data and Knowledge Engineering, vol. 20, no. 1, 1996, 39-85

[DeT93]

[DM95)

[EKW92]

[EWPC96]

[Eve94]

[Fal76)

[FO94]

[Hab93]

[Hal89]

[Hal93]

[Hal95)

[Hal96]

[Hal97)

[HP95a]

[HP95b)

ORM/NIAM 99

De Troyer, O., On data schema transformations, PhD thesis, Univer-
sity of Tilburg (K. U. B.), Tilburg, The Netherlands, 1993

De Troyer, O., Meersman, R., A logic framework for a semantics of ob-
Ject oriented data modeling, OOER’95: Object-Oriented and Entity-
Relationship Modeling, Springer LNCS, vol. 1021, 1995, 238-249

Embley, D. W., Kurtz, B. D., Woodfield, S. N., Object-Oriented Sys-
tems Analysis, Prentice Hall, Englewood Cliffs, NJ, 1992

Embley, D. W., Wu, H. A, Pinkston, J. S., Czejdo, B., OSM-QL: a
calculus-based graphical query language, Tech. Report, Dept of Comp.
Science, Brigham Young Univ., Utah, 1996

Everest, G., Experiences teaching NJAM/OR modeling, NTJAM-ISDM
1994 Conf. Working Papers, G. M. Nijssen, J. Sharp (eds.), Albu-
querque, NM USA, 1994, 1-26

Falkenberg, E. D., Concepts for modelling information, in: G. M.
Nijssen (ed.), Proc. 1976 IFIP Working Conf. on Modelling in Data
Base Management Systems, Freudenstadt, Germany, North-Holland
Publishing, 1976, 95-109

Falkenberg, E. D., Oei, J. L. H., Meta-model hierarchies from an
Object-Role Modeling perspective, in: T. A. Halpin, R. M. Meers-
man (eds.), Proc. First Int. Conf. On Object-Role Modeling (ORM-1),
Magnetic Island, Australia, 1994, 218-227

Habrias, H., Normalized Object Oriented Method, in: Encyclopedia
of Microcomputers, vol. 12, Marcel Dekker, New York, 1993, 271-285

Halpin, T. A., A Logical Analysis of Information Systems: static
aspects of the data-oriented perspective, PhD thesis, University of
Queensland, 1989

Halpin, T. A., What is an elementary fact?, in: G. M. Nijssen, J.
Sharp (eds.), Proc. First NIAM-ISDM Conf., Utrecht, (Sep), 1993, 11

Halpin, T. A., Conceptual Schema and Relational Database Design,
2nd edn, Prentice Hall Australia, Sydney, 1995

Halpin, T. A., Business Rules and Object-Role Modeling, Database
Prog., Design, vol. 9, no. 10, Miller Freeman, San Mateo CA, 1996,
66-72

Halpin, T. A., Object-Role Modeling: an overview, electronic paper
available on website http://www.visio.com, 1997

Halpin, T. A., Proper, H. A., Subtyping and polymorphism in Object-
Role Modeling, Data and Knowledge Engineering, Elsevier Science,
vol. 15, 1995, 251-281

Halpin, T. A., Proper, H. A., Database schema transformation and op-

100

[HR92]

[Hof93]

[HPW93]

[HW93]

[Ken77]

[Mee82]

[ME96]

[Nij76]

[Nij77]

[Pro94]

[RHY3]

[Sen75]

Terry Halpin

timization, OOER95: Object-Oriented and Entity-Relationship Mod-
eling, Springer LNCS, vol. 1021, 1995, 191-203

Halpin, T. A., Ritson, P. R., 1992, Fact-Oriented Modelling and Null
Values, in: B. Srinivasan, Z. Zeleznikov (eds.), Proc. 3rd Australian
Database Conf., World Scientific, Singapore, 1992

Hofstede, A. H. M. ter, Information modelling in data intensive do-
mains, PhD thesis, University of Nijmegen, The Netherlands, 1993

Hofstede, A. H. M. ter, Proper, H. A., Weide, Th. P. van der, Formal
definition of a conceptual language for the description and manipula-
tion of information models, Information Systems, vol. 18, no. 7, 1993,
489-523

Hofstede, A. H. M. ter, Weide, Th. P. van der, Expressiveness in
conceptual data modelling, Data and Knowledge Engineering, vol. 10,
no. 1, 1993, 65-100

Kent, W., Entities and relationships in Information, in: G. M. Ni-
jssen (ed.), Proc. 1977 IFIP Working Conf. on Modelling in Data Base
Management Systems, Nice, France, North-Holland Publishing, 1977,
67-91

Meersman, R., The RIDL conceptual language, Research report, Int.
Centre for Information Analysis Services, Control Data Belgium, Brus-
sels, 1982

Mok, W. Y., Embley, D. W., Transforming conceptual model to objec-
toriented database designs: practicalities, properties and peculiarities,
Proc. ER96: 15th Int. Conf. on conceptual modeling, Springer LNCS,
vol. 1157, 1996, 309-324

Nijssen, G. M., A gross architecture for the next generation database
management systems, in: G. M. Nijssen (ed.), Proc. 1976 IFIP Work-
ing Conf. on Modelling in Data Base Management Systems, Freuden-
stadt, Germany, North-Holland Publishing, 1976, 1-24

Nijssen, G. M., Current issues in conceptual schema concepts, in: G.
M. Nijssen (ed.), Proc. 1977 IFIP Working Conf. on Modelling in Data
Base Management Systems, Nice, France, North-Holland Publishing,
1977, 31-66

Proper, H. A., A theory of conceptual modelling of evolving applica-
tion domains, PhD thesis, University of Nijmegen, The Netherlands,
1994

Ritson, P. R., Halpin, T. A., Mapping Integrity Constraints to a Re-
lational Schema, Proc. 4th ACIS, Brisbane, (Sep.), 1993, 381-400

Senko, M. E.; Information Systems: records, relations, sets, entities
and things, Information Systems, vol. 1, no. 1, Jan. 1995, Pergamon
Press, 1975, 3-13

[5593]

[VB82]

[Ver83]

[Win90]

ORM/NIAM 101

Shoval, P., Shreiber, N., Database reverse engineering: from the rela-
tional to the binary relational model, Data and Knowledge Engineer-
ing, vol. 10, 1993, 293-315

Verheijen, G. M. A.; van Bekkum, J., NIAM: an information analy-
sis method, Information systems Design Methodologies: a compara-
tive review, Proc. IFIP WG8.1 Working Conf., Noordwijkerhout, The
Netherlands, North Holland Publishing, 1982, 537-590

Vermeir, D., Semantic hierarchies and abstractions in conceptual
schemata, Information systems, vol. 8, no. 2, 1983, 117-124

Wintraecken, J. J. V. R., 1990, The NIAM Information Analysis
Method: Theory and Practice, Kluwer, Deventer, The Netherlands,
1990

CHAPTER 5

Database Language SQL

Jim Melton

SQL, a data sublanguage used to access relational databases, is sometimes de-
scribed as “English-like” because many of its statements read a bit like English.
It is a non-procedural language since complex data operations are formulated by
specifying their intended result rather than the method used to obtain that result.
Both ANSI and ISO have published three generations of the de jure SQL standards.
The syntax and semantics of SQL is examined and the conformance requirements
are stated; a few components of the language are considered in greater detail and
the future of the language is outlined.

1 Introduction

SQL is not a complete programming language, but is a data sublanguage
used with a host language for access to relational databases. Programs writ-
ten using SQL depend on the host language for input/output and control
facilities. The syntax of SQL is sometimes described as “English-like” be-
cause many of its statements read a bit like English. SQL is described as a
non-procedural language, or an intentional language because complex data op-
erations are stated by specifying their intended result rather than the method
by which that result is to be obtained.! This results from SQL’s relation-
ship to the relational model of data and has resulted in the fact that much
of the research related to SQL implementation is intended to improve the
optimization of SQL statement execution. Both ANSI (American National
Standards Institute) and ISO (International Organization for Standardiza-
tion) have published three generations of the de jure SQL standard, and a
consortium, X/Open, has published an SQL specification that is often said
to be a de facto standard.

Linmathematicalrlogic-werwouldisay that'SQL describes intensionally the set of tuples
(specifies the set through its intension, i.e. the properties of the tuples in the set that the
user of the language wants to denote, as opposed to the extension of the set, which would
be the enumeration of tuples) [Ed].

104 Jim Melton

The relational model gained prominence in 1974 when E.F.Codd pub-
lished his seminal paper [Cod74] that provided a mathematical foundation
for logical representation and manipulation of data, independent of physi-
cal representation, relationships, and other implementation considerations.
Shortly afterwards, Don Chamberlin and Raymond Boyce published the first
paper on the language that became SQL [CB74]. This paper was based on
research prototypes on data languages named SQUARE and SEQUEL, as
well as on IBM'’s research relational database project, called System R. The
relational model uses terms like relation, attribute, and tuple for the concepts
that SQL calls table, column, and row. It should be noted that SQL does not
correspond perfectly to the relational model — most significantly in the fact
that SQL does not prohibit duplicate rows in a table, although SQL does
permit users to restrict their tables to contain only unique rows.

In 1978, the principle standards body in the United States, ANSI, ap-
proved a project to develop a standard for a data definition language for
network databases and established a new Technical Committee, X3H2, to do
the work on that project. In 1986, a complete network database language
standard was published as Database Language NDL (ANSI X3.133-1986).
However, X3H2 members recognized the importance of the relational model
and worked in the background on a derivation of SEQUEL called RDL (many
viewed this as an acronym for “Relational Database Language”). After a cou-
ple of years of RDL work, X3H2 found the work wasn’t reaching closure and
accepted an IBM proposal to use IBM’s SQL specification. X3H2, in cooper-
ation with a newly-established corresponding ISO group, spent another year
refining the SQL specification, which was published in 1986 by ANSI and in
early 1987 by ISO [ANSI86, ISO87].

SQL-86 (or SQL-87, depending on one’s frame of reference) omitted sup-
port for referential integrity, but a revised standard, called SQL-89, was
published three years later by both ANSI and ISO, with a minimal referen-
tial integrity facility [ANSI89, ISO89]. In 1992, a major new version of the
language was published [ANSI92, IS092]. While SQL-86 and SQL-89 did not
have adequate features for real applications, SQL-92 contained language fea-
tures and conformance requirements that would allow significant applications
to be built using only standardized language features. The fourth generation
of SQL (the project is called “SQL3”) is currently being prepared for publi-
cation perhaps as early as the end of 1998; it adds significant new facilities to
SQL, including support for object orientation, and divides the specification
into several parts that can be progressed more or less independently.

2 Requirements Leading to SQL

SQEderived fromtheneed foradatabase language that, analogous to COBOL,
was relatively easy to use and supported the most important features of the
relational model of data that was in the 1980s attracting so much attention

Database Language SQL 105

from large application builders and software vendors. Like the CODASYL-
defined language [Coda7l] supporting “network database” applications, a
relational database language had to be complete, allowing definition and
maintenance of a database and its structure, as well as management of its
contained data. In addition, it was widely agreed that such a language was
required to provide better support for application modeling, including en-
forcement of business rules, without depending on the database structure.
Several languages were developed in support of these requirements. SQL
became the most popular of those languages — not necessarily because of in-
herent technical superiority, but because of that most powerful of forces, the
marketplace. SQL was supported and implemented by several marketplace-
leading vendors and demanded by several important computer system users:
the combination determined the outcome of any competition from other lan-
guages.

2.1 Database Definition

Like the relational model itself, SQL’s database definition capabilities specify
only the logical contents of a database and say nothing about the physical
structure. Although virtually every dialect of the SQL language includes
facilities for defining certain physical aspects of a database — such as indexes
that are used for higher-performance access to some data, or allocation of
data storage to physical devices — those facilities vary quite widely from
implementor to implementor and are generally viewed as extensions to the
language rather than an inherent part of it.

Instead of allocating significant language facilities to physical database
design, SQL focuses on the higher abstraction levels of data. The data def-
inition language of SQL, called the “schema manipulation language” in the
SQL standard, allows database designers to specify the data elements that
they wish represented, the data types of those elements, and how those ele-
ments are grouped together into “records” of data. Database designers are
also able to identify specific rules that the database must follow when appli-
cations perform various operations that manipulate the data that it contains.
Some versions of SQL, including the emerging next generation of the SQL
standard sometimes called SQL3, allow database designers to specify active
behaviors that the database system takes when applications perform certain
classes of operations on the data.

2.2 Data Manipulation

As important as database design is to successful application creation, the
essence of a database management system is the operations that it permits
ontherdatarthatiitiisidesigneditorcontain. SQL provides four major classes of
data manipulation operation: retrieval, insertion, update, and deletion. All
operations in an SQL database are performed in the context of a transaction

106 Jim Melton

[GR93] that provides atomicity of groups of operations. The SQL standard,
as well as most implementations of the language, allows application writers
to determine the degree of isolation that transactions have from the effects of
other transactions. Data manipulation operations are, of course, performed
in the larger context of an application, which leads to special considerations
that are not immediately obvious.

Because of its relationship to the relational model of data, SQL’s opera-
tions are inherently set oriented operations, meaning that a single SQL data
manipulation statement specifies both an action to be performed and a rule by
which the database system is able to identify ~ possibly many — data items on
which the action is performed. However, SQL is not a complete programming
language but is used in conjunction with more traditional programming lan-
guages for building applications. Those traditional programming languages
do not process data in sets, but one datum at a time. It often happens that
SQL and its host language must interact as they manipulate the database
data. This leads to one component of what is commonly called the impedance
mismatch between SQL and other programming languages. SQL provides a
construct called a cursor to resolve this aspect of impedance mismatch; a
cursor identifies a set of data to manipulate, but actually operates on that
data one datum at a time.

Since SQL’s data types are not identical to those of any single traditional
programming language — much less to all such languages — a second compo-
nent to the impedance mismatch is revealed. As data is transferred between
SQL and code written in the host language, there may be a need for some of
that data to be converted from one data type to another. In doing so, it is
possible that information (e.g., precision) could be lost; application writers
must exercise some caution to ensure that data loss possibilities are well un-
derstood and actual loss minimized or eliminated. A final component of the
impedance mismatch arises from SQL’s recognition that not all data is well
known at the time that collections of data are created. SQL uses the notion
of a null value to represent data that is missing, inapplicable, or otherwise
unavailable. Traditional programming languages do not have inherent facil-
ities for dealing with those concepts and this leads to difficulties when it is
necessary to retrieve data from an SQL database into an application program
and that data is null (or, conversely, when data is being stored into an SQL
database and the application must notify SQL that the data to be stored is
null). This aspect of the impedance mismatch is resolved by exchanging two
components for every potentially null datum transferred between SQL and
the host language: one component is a sort of flag that identifies whether or
not the datum has the null value, and the other — relevant only if the flag
indicates that the datum does not have the null value — contains the actual
value of the datum.

Database Language SQL 107

2.3 Business Rules

Data models that predate the relational model - and the database access fa-
cilities, including database languages, that supported those models ~ typically
required that the database be designed in a way that enforced the various
rules of the business and its applications in the database structure itself.
This approach made database designs very inflexible and difficult to adapt
to new business conditions with different rules. The relational model, and
SQL, permit and encourage a very different approach, in which the logical
structure of a database is independent of the business rules that applications
must enforce. Of course, one possible outcome of this change in approach
is that each application program might be responsible for enforcing all of
the business rules itself. Besides raising the costs of writing applications
considerably, this situation would significantly increase the risk that errors
in programming could cause many sorts of anomalies in database contents.
This is clearly an undesirable result.

To avoid such problems, SQL provides facilities that allow database de-
signers to define business rules within the database itself and to modify or
even remove those rules as circumstances require. Because the rules are not
instantiated in the database structure, the database design remains quite flex-
ible and can respond readily to business changes — and application programs
need not even be aware of the existence of such rules and certainly don’t
have to be changed as business conditions evolve. Some such rules are called
semantic integrity constraints because they provide restrictions on data con-
tent that enforce the integrity of the meaning of the data. For example, most
business entities require that all wages and salaries be greater than zero —
employees are rarely required to pay for the privilege of working. Therefore,
a meaningful (if trivial) business rule applied to salary data is that values
representing such data must be greater than zero.

2.4 Modeling Businesses and Applications

There are other sorts of business rules, however. Many of these govern the
relationships between different aspects of business data. For example, it is
common to require that business departments be managed by exactly one em-
ployee; departments cannot be comfortably managed by two or more employ-
ees simultaneously, and it’s clearly undesirable to have departments without
any management at all. A different sort of business rule called a referential
integrity constraint allows database designers to place restrictions on certain
data to insist that the data reference existing data in other places in the
database.

Real business requirements go even further than this. It is often necessary
thaticertainvactionsiperformedromndata in a database always be accompanied
by other actions in order to maintain consistency of data in different places
in the database. For example, it is common for a business to require that an

108 Jim Melton

increase in capital expenditures for one project in a department be supported
by an equal decrease in the capital budget for one or more other projects in the
same department. SQL database systems often provide triggers that allow
a database designer to make the database an active database by prescrib-
ing specific actions to be automatically taken by the database management
system whenever certain specific actions are taken by an application.
Facilities such as referential (and semantic) integrity constraints and trig-
gers — and others that will be introduced shortly — make it possible for SQL
databases to do more than merely model the data associated with an appli-
cation ~ SQL permits the modeling of entire applications and businesses.

3 The SQL Language

SQL is a sufficiently large and complex language that no strictly linear treat-
ment of it can be wholly successful. However, a good understanding of the
main concepts of SQL provides a foundation on which other aspects of the
language can be acquired as needed.

3.1 Principle Concepts

The most fundamental concept of SQL is the table. A table is a logical unit
of data that has one or more columns, each of which has a name and a data
type. Data in a table is stored in rows that have columns corresponding to
those of the table. Each column of a table has a single data type for all rows
in that table. (A column in a row is sometimes called a “cell”, though the
SQL standard does not use or define that term.) Figure 1 illustrates these
concepts.

SQL provides a number of data types, broken into the categories of nu-
meric, string, datetime, and others. Table 1 shows each category, the further
breakdown of those categories, and the specific data types.

All data in an SQL database belongs to one of those data types, even if
some data has the null value. The concept of null doesn’t have a data type
itself, but the cell in which a null is stored always has one of the SQL data
types.

In addition to representing data, SQL databases are self-describing; that
is, besides the tables they contain that hold the application data, they contain
tables with metadata that describes the tables in the database (and describing
the tables containing the metadata). While the SQL standard doesn’t define
the word “database”, it does define the words catalog and schema. A catalog
is a named collection of schemas, including the special schema that contains
the metadata for all objects in the catalog. A schema is a named collection
of tables (andstheir.columns);character sets, and other SQL-defined objects.
Catalog names qualify schema names, allowing multiple schemas with the
same name to exist in different catalogs; similarly, schema names qualify the

Database Language SQL 109

A Row

Cell

Column Table

Figure 1: Illustration of Table concepts

names of tables and other objects, and table names qualify the names of
columns. Qualified names are represented by the various components of the
name separated by periods. For example, the name of a table might be

CATALOG3.MYSCHEMA . EMPLOYEES

Part of the power of SQL lies in the aids that it provides database and
application designers. SQL databases can contain constraints, including:

e semantic integrity constraints that instruct the database system how to
enforce business rules associated with the data stored in the database,
and

o referential integrity constraints that tell the database system how to
keep its data internally consistent when changes are made by applica-
tions.

If an application attempts to violate a semantic integrity constraint (for ex-
ample, a rule that says “all salaries must be greater than 0”), then it is
notified of the error and the statement attempting that violation is not ex-
ecuted. Attempted violations of some referential constraints (e.g., a rule
prohibiting elimination of departments having one or more employees) are
handled similarly. However, referential constraints can be more sophisticated
~ a database designer might permit resignation of a project’s manager, but
requirertherdatabasertoreffectrresolution of the status of the project. One
design could result in the project’s automatic deletion, while a second design
might assign the project to someone responsible for “orphaned” projects, and

110 Jim Melton

Numeric Numbers
Exact numeric Represents values exactly
INTEGER and SMALLINT System-defined precisions
DECIMAL and NUMERIC User-defined precisions
Approximate numeric “Floating point” numbers
REAL and DOUBLE PRECISION System-defined precisions
FLOAT User-defined precision
String Characters and bits
Character string In specific character sets
CHARACTER, CHARACTER
VARYING User-specified character set
NATIONAL CHARACTER System-defined character set
Bit string Zeros and ones
BIT, BIT VARYING Fixed- or varying-length
Datetime and interval Chronological, or temporal, data
DATE, TIME, and TIMESTAMP Specific dates and times
INTERVAL (with precision) Difference between datetimes
Logical Truth-related data
Boolean TRUE, FALSE, and UNKNOWN
User-defined Extending the database
Abstract Data Type (ADT) User-defined encapsulated type
Named row type “Record” or “structure”
Distinct type Based on an existing type
Object orientation New paradigm support
Reference type References to instances of named row
type

Table 1: SQL Data Types

a third design leaves the project in an unassigned state pending explicit ac-
tion at a later time. Each of these designs results in automatic resolution
without execution of any additional SQL statements by the application.

A related feature, called triggers, allows a database designer to force the
database system to take certain specific actions whenever certain tables are
accessed in specified ways. For example, a trigger could be defined to add a
row to a log table whenever changes are made to the salary column of an em-
ployee table, or to adjust the budgets for departments whenever new projects
are assigned to them. Triggers can be arbitrarily complex and “intelligent”
and their actions can cause additional triggers to be invoked.

When rows are created in a table, an application programmer can choose
to provide a value for every column in each created row; alternatively, some
rows might have an obvious default value. For example, employees might be
hired as members of the Staff department often enough that the application
assumes that department assignment for new employees if no specific depart-
ment is provided. SQL allows the database designer to specify a default value
for each column in a table; if no default value is specified, then a default of
null is implied.

It sometimes happens that database designers find themselves using a
particular combination of data type, constraint, and default value frequently

Database Language SQL 111

(perhaps in various tables). SQL allows the definition of a domain 2 to give a
name to that combination; the domain name can then be used in place of the
data type (and constraint and default value) when defining columns in tables.
For example, the name MONEY might be applied to a domain providing a
data type of DECIMAL(8,2) — decimal with 8 total digits of precision, two
of them after the decimal point ~ along with a constraint saying that the
value must never be negative, and a default value of null. Columns such as
SALARY and BUDGET could then be defined to be MONEY, providing a
convenient shorthand as well as ensuring consistency of specification.

SQL programmers have several alternatives for using the language. The
most widely-used alternative is to embed SQL statements into programs writ-
ten in ordinary third-generation programming languages (3GLs). This tech-
nique, called embedded SQL, requires the application programmer to write
the application in a 3GL (the SQL standard supports Ada, C, COBOL, For-
tran, MUMPS, Pascal, and PL/I; SQL implementations often support other
languages and standard support is likely for increasingly important languages
such as Java). Each embedded SQL statement starts with a distinguished
string, such as “EXEC SQL”. In a typical SQL implementation, this em-
bedded SQL program is processed by a preprocessor that extracts the SQL
statements and (conceptually, at least) replaces them with a “call statement”
to invoke the (conceptual or literal) procedure that the system creates to con-
tain the SQL statement. The SQL statement (contained in that procedure)
is then compiled and optimized by the SQL system to prepare it for later
execution, while the remaining application program is compiled in the nor-
mal way. When the program executes, the optimized SQL statements are
executed as specified by the 3GL code.

In some SQL implementations and in the SQL standard, it is possible to
write actual SQL procedures (each containing a single SQL statement), col-
lecting related procedures together into a module. Called module language,
this technique permits applications to be written in a more modular fashion
— database-related operations are coded in “pure SQL” and processed by an
SQL compiler, while other application operations are coded in the appropri-
ate 3GL and processed by that language’s compiler. The SQL procedures are
invoked through actual “call statements” by the application program. The
two techniques are completely isomorphic with one another. In implemen-
tations that support both techniques, the choice of which to use is often a
matter of taste or of organization policy.

In many applications, such as traditional mainframe applications, the
SQL statements to be executed are well-known when the application is writ-
ten. Embedded (or module language) SQL is appropriate for such applica-

23QL does not follow the mathematical convention here with respect to the use of the
term_domain. Mathematically an SQL attribute (column name) is a function which maps
the attribute domain to its range, where the set of possible tuples (rows) are the domain
of the this function, and the set of possible values are the range of that function. The SQL
terminology ‘domain’ really refers to this range.[Ed].

112 Jim Melton

tions. In other situations, such as ad hoc query generators, graphical database
browsers, or client-server systems with widely-varying users, the SQL state-
ments that will be executed are often not known until execution time, when
the user formulates a question. A technique called dynamic SQL allows SQL
statements to be formulated at runtime, prepared for execution by the data-
base system, and executed on demand. Dynamic SQL is typically slower than
static SQL because of its inability to precompile and optimize statements. Of
course, the benefits of flexibility often make this a worthwhile cost.

3.2 Basic Data Definition Language (DDL)

Manipulation and management of data in an SQL database depends, of
course, on the existence of the database. SQL does not specify how a
database itself is created; there are simply too many different reasonable
(and commercially-successful) implementation techniques to support stan-
dardization of any one or a set of them. Because the SQL standard does
not even define the term “database”, the closest analog to a database in
SQL is the catalog. Catalogs contain schemas, including the schema (called
the “Information Schema”) that describes all other schemas (and their con-
tained objects) in the catalog. The SQL standard does not provide state-
ments for creating and destroying catalogs, either. It explicitly leaves that
to “implementation-defined” means.

However, SQL does provide a CREATE SCHEMA statement that allows
users to define new schemas, as well as a DROP SCHEMA statement to
allow the destruction of schemas and their contents. Creation of a schema
is normally accompanied by the creation of one or more objects within the
schema, such as tables; in addition, such objects can be added to schemas
already in existence. A schema belongs to a specific authorization identifier
(authorization identifiers are the way that SQL identifies and represents users
of the database). All objects in a schema ordinarily belong to the owner of
the schema and only the owner of a schema is able to define and manage
objects in that schema. Some SQL products provide language extensions
permitting the owner of a schema to grant other users privileges allowing
them to create and otherwise manage objects in that schema. The privilege
structure of SQL is covered later.

The SQL statements that create and destroy schemas are:

CREATE SCHEMA schema-name...
DROP SCHEMA schema-name

The ellipsis (...) represents one or more statements that create schema ob-
jects, such as tables or views.
To create or destroy a table, these SQL statements would be used:

CREATE TABLE table-name (table-element, ...)
DROP TABLE tablertname

Database Language SQL 113

Each table-element can be a column definition or a table constraint definition.

A column definition specifies the column name and data type, optionally
with additional information:

column-name data-type
default-clause
column-constraint
collation

The column-name must be unique within the table and data-type can be
either one of SQL’s data types or the name of a domain. The other clauses
are optional. Default-clause provides an explicit default for the column and a
collation instructs the database system how to sort character string columns.
Constraints (column and table constraints) are discussed later.

A virtual table is a table that is not persistently stored in the database,
but that is generated on demand as the result of a query expression. A view is
a named virtual table whose definition is stored in the database as part of the
metadata. One use of views is to capture complex query expressions once so
they can be used by many application programs without the costs and risks
of errors that rewriting them for each program entails. Another important
use of views is to allow access to some data in some tables without allowing
unrestricted access; this subject is discussed along with SQL’s privilege model
later.

3.3 Basic Data Manipulation Language (DML)

Creation of a database and its contained objects is of course necessary, but the
essence of a database management system is the storage, retrieval, and ma-
nipulation of the data stored within it. SQL’s Data Manipulation Language
provides the statements necessary to retrieve information from a database,
as well as to insert information into, modify information in, and remove in-
formation from a database.

A number of additional SQL statements exist for managing various as-
pects of the database and the application’s use of it; however, those state-
ments are usually not characterized as Data Manipulation Statements.

3.3.1 Retrieving Information from a Database

Arguably, the most basic operation that is performed on an SQL database
is the retrieval of information stored in it. Information may be retrieved
directly into an application, or it may be retrieved for use strictly within an
SQL statement. :

The SELECT expressionristtherfoundation for retrieval of SQL informa-
tion. With a little variation in syntax, the SELECT expression can be used
as an SQL statement to retrieve the information into the application or to

114

Jim Melton

define a view, as well as in the form of a subquery within an SQL statement.
The format of a SELECT expression is:

SELECT select-list
FROM table, table...
WHERE logical-expression
GROUP BY grouping-columns
HAVING logical-expression

The WHERE, GROUP BY, and HAVING clauses are all optional. The result
of the SELECT expression is always a wvirtual table; SQL exhibits closure
such that operations on tables produce new tables. A SELECT expression
is evaluated according to the following rules (effectively, that is; products
must provide this effect, but may — and usually do — provide significant
optimizations):

1.

First, all rows in the table or tables specified in the FROM clause are
retrieved; if more than one table is specified, then the Cartesian product
of all tables is retrieved, producing new, extended rows. (Two tables
with N and M columns and n and m rows have a Cartesian product
with N + M columns and nm rows; each row in one table is “matched”
with every row from the other table.)

The predicates in the WHERE clause (if present) are applied to the
rows produced by the preceding step. All rows that do not satisfy the
predicate or combination of predicates in the logical-expression (that is,
for which the logical expression does not evaluate to ¢rue) are eliminated
from the working set of rows.

. If a GROUP BY clause is present, then rows are grouped together

according to equal values in the column or columns (grouping-columns)
identified in that clause.

. If a HAVING clause is present, then its logical-expression is applied to

the groups; all groups for which the logical-expression does not evaluate
to true are eliminated. (A HAVING clause without a GROUP BY
clause effectively makes the result of the WHERE clause a single group.)

Finally, the select-list is used to determine the columns produced as
the result of the SELECT expression. If groups have been formed by
the presence of a GROUP BY clause or a HAVING clause, then the
select-list can include only columns used as grouping columns, certain
“statistical operations” (sum, average, maximum, and minimum) on
other columns, and count operations on the resulting table. These
statistical-and count operationsican be also used without groups having
been formed. If no groups have been formed, then any column of the
resulting virtual table can be used. In any case, the select-list can

Database Language SQL 115

include expressions of various sorts as long as the expressions do not
include any columns prohibited by the grouping rules.

It is worth noting that SQL supports several sorts of Jjoins, including inner
joins (in which the result includes only rows that have a match between
the two tables being joined) and outer joins (in which the result may include
rows from one or both tables that have no match in the other table — columns
corresponding to those from the table with no match are filled in with nulls).

To form a SELECT statement, the target of the retrieved information
must be given:

SELECT select-list
INTO target-list
FROM table, table...
WHERE logical-expression
GROUP BY grouping-columns
HAVING predicates

The target-list is a list of host language variables (or, in module language,
a list of parameters of the containing procedure); there must be as many
targets as there are columns in the select-list, and the data types of each
target must match the data type of its corresponding select-list column.

A problem arises if the SELECT statement produces a virtual table con-
taining more than one row. The host language variables into which the
columns of the result are retrieved can only accept a single value at a time.
If the SELECT statement were to produce multiple rows, then only one of
them could be retrieved into the list of targets. This illustrates part of the
impedance mismatch between SQL and the host languages. The SELECT
statement, then, is really a “single-row SELECT statement”. If it produces
more than one row, an error is signaled.

The difference between SQL’s set-at-a-time semantics and the datum-at-
a-time character of the host languages makes it infeasible to write a simple
SELECT statement to retrieve more than one row, yet many applications
need exactly this capability. SQL resolves this impedance mismatch by pro-
viding a device called a cursor, which allows the application to identify sets
of rows, but to process them one at a time. The set of rows is identified by
a cursor declaration that specifies the SELECT expression:

DECLARE cursor-name CURSOR FOR
SELECT select-list
FROM tables
WHERE logical-expression

Thercursorrdeclarationvissjustothatr=ra declaration. It is not executed at
all. However, when the application program opens the cursor, the SELECT
expression is evaluated. Once the cursor has been opened, rows can be fetched

116 Jim Melton

through the cursor until the last row has been retrieved (signaled by a special
status returned to the application program). Finally, the cursor is closed.

OPEN cursor-name

label:

FETCH FROM cursor-name
INTO target-list

... 8GL statements to process the data ...

if not end-of-data, then loop to label
CLOSE cursor-name

3.3.2 Inserting Information into a Database

However useful it might be to retrieve information from a database, that
information must first be somehow placed into the database. SQL’s INSERT
statement is used to insert information into tables.

The INSERT statement has three alternative formats, allowing informa-
tion to be inserted using literal values, information retrieved from another
table or tables, or merely the default values for each column. The syntax of
INSERT is:

INSERT INTO table-name (column-name, column-name. . .)
data-source

The parenthesized list of column-names is optional; if it is not specified, then
the system assumes a list containing every column of the table, in the order
in which they are defined in the table. The number of column-names and the
number of columns in the data-source must be the same and the data types
of each corresponding column must match.

If the data-source is a list of literals or host variables, then a single row is
inserted into the identified table. If the data-source is a SELECT expression,
then many rows might be inserted — one per row of the virtual table resulting
from evaluation of the SELECT expression. If data-source is the keywords
DEFAULT VALUES, then a single row is inserted in which each column takes
on the default value for that column (which, of course, is null if no explicit
default value has been defined).

3.3.3 Updating Information in a Database

In addition to retrieving information from a database and inserting new in-
formation intorit; real'applications frequently require that data already in a
database be modified. In fact, after retrieval, updating information is prob-
ably the most common operation performed on SQL databases.

Database Language SQL 117

SQL provides two types of UPDATE statement — one for set-oriented up-
date operations, and a second for cursor-oriented updates. The first, some-
times called a searched update because of its self-contained nature of locating
and updating rows in tables, exemplifies SQL’s set-oriented nature. Using
this, an application is able to change many rows of a table with one statement
— without the programmer having to write a loop of any sort. The second
form of UPDATE is called the positioned update; the word “positioned” is
used to imply that the statements affect the row on which a cursor is currently
positioned. UPDATE statements use the syntax:

UPDATE table-name
SET column-name = update-value,
column-name = update-value...
WHERE locator

The WHERE clause in the searched UPDATE is optional; if it is omitted,
then all rows of the table are affected. If WHERE is specified and locator is
a logical-expression, then only those rows in the table for which the logical-
expression is satisfied are updated. If WHERE is specified and locator is
“CURRENT OF cursor-name”, then the single row currently identified by
the cursor is updated. The update-values can be expressions with a data type
suitable for the corresponding column (including scalar subqueries), but they
can also be the keyword NULL or the keyword DEFAULT. In the cases of
NULL or DEFAULT, the corresponding column in each identified row is set
to null or to its default value (which, of course, might itself be null). When
an expression is used for an update-value, the expression can use values in
the row being updated. For example:

UPDATE employees
SET salary = salary * 1.05
WHERE dept_id = ’ENG’

will give a 5 % raise in salary to every member of the engineering department.

3.3.4 Removing Information from a Database

Of course, not all data that is put into a database remains there forever; some
data become obsolete and must be removed, while other insertion operations
are wrong and the incorrect rows must be deleted. SQL provides two forms
of the DELETE statement, analogous to the two forms of the UPDATE
statement, to allow applications to remove data from tables.

The first form, called the searched delete, allows applications to remove
(possibly many) rows from a table based on criteria specified in the statement,
while the second formuisrcalledsthespositioned delete and deletes from the
identified table only the row on which the specified cursor is positioned. The
format of the DELETE statement is:

118 Jim Melton

DELETE FROM table-name
WHERE locator

The WHERE clause here, as in the searched UPDATE statement, is optional;
if absent, then all rows in the specified table are deleted. As with the two
variants of UPDATE, it’s possible to delete all rows of a table (obviously
a DELETE without a WHERE is to be used with discretion!), all rows for
which a logical-expression is satisfied, or the one row currently identified by
a cursor.

3.4 SQL-86

The 1986/1987 standard for SQL was widely characterized as a “least-common
denominator” standard. Its goal was to standardize only those features of
SQL that had been widely implemented by the major database system ven-
dors (principally, IBM, Oracle, Informix, Sybase, and Ingres). In fact, al-
though public awareness of this was minimal, SQL-86 had two levels, called
Level 1 and Level 2. Level 1 was viewed as so minimal that almost any vendor
with any sort of database product could conform with a few months work.
In fact, Level 1 was rejected by NIST (the National Institute of Standards
and Technology) on behalf of the U.S. Federal Government when it adopted
FIPS (Federal Information Processing Standard) 127 for use in government
agency procurements.

Level 2 was also rather minimalist. For example, all DDL operations in
SQL-86 were to be performed in the context of a “schema definition pro-
cessor” distinct from the SQL language processor, and once a database was
created, no changes to its metadata (e.g., addition of tables, addition of
columns to tables, etc.) could be performed. There were many concessions
made to accommodate the goal of standardizing only that which was already
implemented, meaning that no serious applications could be written using
only standardized SQL language.

The most controversial omission in SQL-86 — which nearly caused it to
be rejected by the international standards community — was referential in-
tegrity. Progression in ISO was saved only because of a last-minute offer from
the United States to work on an addendum to SQL-86 specifying referential
integrity that could be quickly progressed.

3.5 SQL-89

While development of the referential integrity addendum to SQL-86 was be-
ing developed, a number of the more active standardization participants be-
gan working on a second addendum that was intended to add a number of
significant new features to the language.

As work proceeded on both addenda, it became obvious that the ANSI
and ISO processes were sufficiently different that it would be easiest to recast

Database Language SQL 119

the referential integrity addendum as a replacement standard that could be
adopted in identical form by both communities. The delays in making this
discovery and restructuring the document itself, coupled with the (by then,
significant) distractions of the second addendum, led to a three-year lapse
before publication as SQL-89. SQL-89 was virtually identical to SQL-86
other than the addition of basic (restrictive) referential integrity facilities.

However, there were two mechanisms specified in SQL-86 and SQL-89 for
coupling SQL with other programming languages. One mechanism, module
language, was specified in the normative part of the standards, but very few
vendors had actually implemented it. The other mechanism, embedded SQL,
was specified only in an informative annex to the standard! The U.S. Federal
Government participants expressed concern that it would serve only to limit
the number of vendors competing for Federal procurements if only a few
vendors implemented module language and all of the others implemented only
the “non-standard” embedded capabilities. To avoid this potential problem,
ANSI progressed a second SQI-related standard in 1989, called “Database
Language Embedded SQL” [ANSI89b}; ISO did not pursue a corresponding
standard.

Besides the technical content, SQL-89 contained the same two levels that
SQL-86 contained. NIST issued a revised FIPS 127-1 that combined require-
ments for SQL-89 and Embedded SQL.

3.6 SQL-92

By 1989, it had become obvious that the proposed second addendum to SQL-
86 was going to take significantly longer than originally thought and that the
content was going to be quite a bit larger. Both ANSI and ISO decided to
transform that addendum into another replacement standard that would be
published about three years after SQL-89.

Industry dissatisfaction with the least-common denominator aspect of
SQL-89 led to another important decision: to ensure that the new version of
the SQL standard contained enough features that realistic applications could
be built using only standardized language features. There were, predictably,
vastly differing opinions about what such a set of features would be. Intense
technical work and negotiations among the representatives of database imple-
menters, large and small customers, government agencies, and even academia
continued for three years, culminating in a new SQL specification that took
roughly five times as many pages (nearly 600) to present as SQL-89 had
taken.

Close analysis of those nearly 600 pages show that the actual language
itself grew by a factor of between two and three; the remaining increase in
size was due largely to more detailed specification of features (even those
fromS Q=86 randrtherinciusionrofrauxiliary components of the language like
definitions of the tables that describe various schema objects (the metadata
tables). Nonetheless, the size of the language was sufficiently daunting that

120 Jim Melton

participants agreed to divide it into three levels: Entry SQL, Intermediate
SQL, and Full SQL. Entry SQL was to be very little more than SQL-89, while
Intermediate SQL was to contain roughly half of the new features added to
the language; Full SQL, of course, was the entire standard.

NIST released a revised FIPS 127-2 that carefully analyzed the features
in SQL-92 and specified a taxonomy of features divided into the three levels
specified in the standard. As an aid in guiding the vendors, NIST included
a fourth level, called Transitional SQL, that contained roughly half of the
features that were standardized in Intermediate SQL. Unfortunately, a great
many compromises had to be made in determining the set of features in Tran-
sitional and Intermediate SQL in order to acquire enough votes for a majority
- and those compromises may have made it unattractive for any vendor to
pursue conformance to either level. By early 1997, no vendor had made a
formal claim of conformance to Transitional SQL, although most of the fea-
tures in that level, and even in Intermediate SQL had been implemented by
multiple vendors.

3.7 SQL3

Even before SQL-92 was finalized, it was obvious to participants that many
good ideas proposed for that version of the standard were either too immature
or in insufficient demand to justify delaying publication in order to complete
their specification. Instead, a new project for yet another replacement version
of the standard was initiated. If SQL-86 had been the first SQL standard,
then SQL-89 was not so much the second SQL standard as it was a minor
enhancement. The project under which SQL-92 was developed was widely
called “SQL2”, so it was natural to call the next edition “SQL3”, particularly
since it was uncertain how long development would take.

A sort of theme quickly developed for SQL3: support for object orienta-
tion. Even though a large number of additional, more traditional, features
have been proposed for and are included in SQL3, the most energy has been
required for the object-oriented aspects of the specification. Among the other
features are new data types and predicates, support for recursion, and better
support for analytical processing.

Early proposals that specified several different aspects related to the ob-
ject paradigm were surprisingly contentious and resulted less in stable spec-
ifications than in heated debate and competing approaches. Some facilities
were quickly endorsed philosophically — although working out the details was
still difficult and time-consuming; others proved to be extremely difficult in
terms of reaching agreement amongst the principle participants. The most
difficult aspect turned out to be the definition of just what an object is! Sev-
eral different approaches were taken, notably creating a new storage category
(invaddition tostables) that-providediextents for user-defined data type in-
stances, treating rows of tables as instances of user-defined data types with
the table’s columns equivalent to the instance’s attributes, and requiring in-

Database Longuage SQL 121

stances of user-defined data types to be stored in columns of tables whose
rows could then be treated as objects with identity. That last approach finally
won over enough participants to move forward.

Unfortunately, by the time that decision was reached, the goal of publish-
ing the revision to SQL-92 in three years — by 1995 — was no more than a lost
dream. Instead, participants realized that publication even by 1998 would
require incredible efforts, especially since other components of SQL3 were by
then partitioned into separate documents and progressing to standardization
very rapidly (SQL’s call-level interface, SQL/CLI, is closely related to the
ODBC interface from Microsoft and others and was standardized in 1995; a
standard for stored procedures, SQL/PSM, was standardized in 1996).

In late 1996, the first formal ballot was held on the most crucial parts of
SQL3. This ballot, as expected, failed, but a large number of comments were
submitted from many participants all over the world. Meetings to resolve
those comments, limit the feature set of SQL3, and pursue publication no
later than late 1998 or early 1999 are currently in progress.

4 Advanced Topics

There are a number of additional aspects of SQL that demand some atten-
tion. These range from security and error handling issues, as well as putting
business rules in the database, to aspects of object orientation.

4.1 Security

SQL offers the ability to protect data from unauthorized access. Every
schema object is covered by one or more privileges so that only users (identi-
fied by authorization identifiers) having the appropriate privilege are able to
use that schema object. Objects containing data, such as tables and views,
require that users have the SELECT privilege on the object before they can
successfully perform any operation that reveals data values, such as data
retrieval; users must have the INSERT privilege on the object in order to
create new rows of data, the UPDATE privilege in order to modify data
values, and the DELETE privilege in order to delete rows of data. The REF-
ERENCES privilege permits the definition of referential integrity constraints
that reference data values stored in a table.

The owner of a schema object automatically gets all possible privileges
on that object; when the object is a view, “all possible privileges” is often
less than all of the privileges that theoretically might apply to the view, as
we’ll see shortly. The owner is able to grant privileges to other authorization
identifiers by using the GRANT statement, specifying the specific privileges
torbe granted; the schemaobjecttomwhich privileges are being granted, and
the authorization identifiers to which those privileges will be given. If the
privileges are granted WITH GRANT OPTION, then the recipients are per-

122 Jim Melton

mitted to grant those privileges to additional users. Privileges are taken away
with the REVOKE statement, which requires the same information that was
used for the GRANT.

The INSERT privilege can be granted for access to an entire table or only
to selected columns of the table, since users might be authorized to insert rows
into a table but supply non-default values only for some columns; the same
granularity applies to the UPDATE privilege since users might be authorized
to change only some columns of a table. Because it is meaningless to attempt
to delete only some columns of specified rows, the DELETE privilege can be
granted only at table granularity. The SELECT privilege is also limited
to table granularity, although there is interest in extending it to column
granularity. The REFERENCES privilege is applied at either table or column
granularity.

Every SQL statement is executed under the privileges of exactly one au-
thorization identifier. The success of an attempt to execute an SQL state-
ment depends in part on the privileges required by the statement itself and
the privileges available to that authorization identifier. If the user on whose
behalf an SQL statement execution is attempted does not have all of the
privileges required for successful execution of the statement, SQL will inhibit
execution of that statement; implementations are sometimes able to deter-
mine the presence or absence of required privileges when applications are
compiled, but they must always reconfirm the continued existence of those
privileges before executing the statement (thus avoiding the situation where
a user compiled a program while having the privileges and then runs the
program after those privileges are revoked).

Views accomplish two principle functions: assignment of a name to per-
sistent specification of a query expression so applications can avoid recoding
that query specification; and provision of a security mechanism that allows
users to access data through the view that they are not authorized to access
directly in the underlying tables. For example, instead of giving users SE-
LECT privilege on a table that contains salary information for all employees,
views can be created that permit users to see only their own salary informa-
tion, but that allow all users to see office telephone numbers of any employee.
In order to create a view that derives its contents from data stored in one
or more tables or other views, the definer of the view must have the appro-
priate privileges on the view. The privileges that the view definer has on
those underlying tables and views determines the privileges that the definer
gets on the view. If the privileges required for the view’s creation are later
revoked from the view’s definer, the view is automatically destroyed by the
system. (Of course, no data is lost since destruction of a view only destroys
the persistent query expression.) A view definer might have only SELECT
privilegesronnthetablesrunderlying the view; in this case, the privileges given
to the definer would not include UPDATE, DELETE, or INSERT since those
privileges are unavailable on the underlying tables.

Database Language SQL 123

4.2 Semantic Integrity Constraints and Assertions

SQL supports the creation of business rules at several levels of granularity.
Semantic integrity constraints can be applied to entire tables or to individ-
ual columns (though SQL automatically transforms column constraints to
table-level constraints). Table constraints can apply to individual columns or
groups of columns in the table or they can apply to the table as a whole. Table
constraints that apply to the entire table might make restrictions on the total
number of rows stored in the table. Constraints applying to columns could
be used, for example, to prohibit null values being stored in the columns,
to require that the columns’ values not contain any duplications, or to place
restrictions on the values that can be stored in columns.

Another form of semantic integrity constraint, called an assertion, can be
specified at the schema level and is intended primarily to specify relationships
between data stored in more than one table. For example, an assertion might
be used to restrict the sum of salaries in a table of employee information plus
the sum of capital budgets in a table of department information to some
maximum value. Such a constraint could be written as a table constraint,
but a decision would have to be made to define the constraint in the context
of the employee table or in the context of the department table; to avoid
such arbitrary and possibly misleading choices, assertions provide a more
appropriate mechanism.

4.3 Referential Integrity Constraints

Many types of data represented in an SQL database have a natural component
that serves to uniquely identify each row of data. For instance, employees
usually have employee identification numbers and products being sold in a
store always have a product code of some sort. While SQL, unlike the re-
lational model, does not prohibit storage of more than one row in a table
with all corresponding column values equal, many application benefit from
the identification of some such unique value. SQL gives database designers
the ability to specify PRIMARY KEY for any column or group of columns
that provide such a unique value. SQL requires that the table contain no
two rows for which the values stored in the column or columns specified as
a PRIMARY KEY are equal; it also requires that the PRIMARY KEY col-
umn (or, if more than one column participates in the PRIMARY KEY, the
combination of all such columns) not have the null value.

Applications often require that data stored in one table correspond closely
with data stored in a different table. For example, if employees are assigned
to departments, then the table representing employees must require that the
values stored in the departments column all be equal to a value stored in
therdepartmentridentificationscolummrof the table representing departments.
Such a requirement is called a foreign key. SQL allows database designers to
specify one or more columns as a FOREIGN KEY that references a specific

124 Jim Melton

table; if a FOREIGN KEY specification does not provide the names of the
columns in the referenced table, then SQL assumes that the PRIMARY KEY
of that table will be used — and, of course, the number and data types of
those PRIMARY KEY columns must match the number and data types
of the FOREIGN KEY columns. Although a table can have at most one
PRIMARY KEY, it can have any number of FOREIGN KEYs, and a given
column might participate in more than one FOREIGN KEY.

The simplest kind of FOREIGN KEY reference, which was supported in
SQL-89, simply prohibits any value in the referencing columns that do not
appear in the referenced columns — applications will encounter an error on
any attempt to delete a row from the referenced table that would delete the
referenced column values on which some referencing columns depend, as well
as on any attempt to add a row to a referencing table with values that depend
on values that don’t exist in the referenced columns.

SQL-92 added the ability for FOREIGN KEYs to specify the action that a
database system can take to correct referential integrity violations. Database
designers can specify that deletion of a referenced row automatically causes
deletion of referencing rows or that referencing rows have their referencing
column values replaced with their default values or with null values. Similarly,
they can specify that modification of a referenced column automatically cause
referencing rows to be updated so their referencing column values updated
to the same new values or replaced with either their default values or the
null value. (Of course, replacement of a referencing value with the default
value requires that that default value appear as a referenced column value,
and replacement with the null value requires that there be no constraint
prohibiting null values on the referencing column or columns.)

4.4 Triggers

SQL3 provides the ability for database designers to build into a database
the ability for the database to react to changes made by an application in
ways other than simply making the specified changes. The database can
make additional changes not specified directly by the application, including
making changes to completely different tables.

Triggers can be specified to respond to specific application actions, such as
insertion, update, or deletion of rows from specific tables (or even updates to
specific columns); they can execute any sequence of SQL statements, and can
be made to execute once per application statement or once per row affected
by such statements.

Triggers are even able to access column values in rows being updated
both before the update is applied and after it has been applied, permitting
databaserdesignersstorprohibitycertain transitions of data in the database.
For example, a trigger could be designed that allows the amount of remaining
capital expenditure budget for a project to be decreased but not increased.

Database Language SQL 125

4.5 Recursion

Certain classes of applications require the ability to recursively retrieve data
from tables. A common example is called the “bill of material” application,
in which it is desired to retrieve information about all components required
to manufacture some product. Given the part number of the product, the
application must locate all subassemblies required to build the product; some
of those subassemblies are made of other subassemblies, possibly through
several iterations before basic indivisible parts are the only components used.

Constructing such a bill of materials requires recursively retrieving part
information, sometimes through a number of levels not well known in ad-
vance. Until SQL3 is implemented, the only approaches available to applica-
tions are awkward to write and limited to a pre-known number of levels of
recursion. SQL3, however, provides inherent recursion capabilities that can
be used by applications for bill of material and other analogous requirements
(including, for example, genealogy or genetics research). These recursion fa-
cilities even allow the definition of views that are inherently recursive, thus
removing yet another burden from application writers.

4.6 Abstract Data Types (ADTs)

While SQL’s “traditional” data types, such as numbers and character strings,
have supported countless applications for years, increasing numbers of ap-
plications require the ability to store and manage more complex forms of
data, including things like documents, images, and sound. Furthermore, the
increasing popularity of object-oriented technology places additional require-
ments on database systems.

SQL3 responds to these needs with the addition of abstract data types.
ADTs allow database designers to define data types that include arbitrarily
complex structures and fully encapsulate them so that their components are
accessible only through a functional interface (methods is the word used in
the object-oriented community). Type hierarchies can be defined using ADTs
(e.g., employees are a type of person, and managers are a type of employee;
while persons may not be assigned to a department, employees might be,
and managers typically have some signatory authority that other employees
do not). SQL also allows the definition of multiple functions with the same
name but with different combinations of parameter definitions; this allows
applications to overload function names and have the database system decide
the most appropriate function of a given name to use based on the parameters
that the application provides. While most function resolution is done when
applications are compiled, functions having parameters that are abstract data
typesvinvantyperhierarchy canysometimes only be fully resolved when the
application runs, based on the most specific type passed as an argument to
the function.

126 Jim Melton

4.7 Reference (REF) Types

ADTs alone do not provide all elements expected for object orientation; they
are missing the important characteristic of identity. If objects have a unique
identity, then applications can reference an object strictly by its identity
instead of by the values of attributes of the object: for example, persons
with the same height, weight, hair color, and name are still distinct persons
having their own unique identities. SQL3 provides a data type called named
row type, and allows database designers to define tables whose columns are
not specified individually (which would give the table an anonymous row
type), but are taken from a specified named row type. SQL3 also provides
a reference type (called a REF type) that can be applied to instances of a
specified named row type. Thus, a column in a database table can contain
references to rows in other database tables that are of that named row type.
These references serve the function of object identity while preserving SQL’s
table and row orientation. By defining a named row type having exactly
one column whose data type is some ADT, rows in that table correspond
one-to-one with instances of the ADT — REF values identifying rows of that
table behave like object identifiers and the ADT instances provide the other
behaviors of objects including the method interface.

4.8 Error Handling

Applications written using any programming language may always encounter
unexpected conditions and errors; SQL is not an exception to this rule. Ex-
ecution of SQL statements cause the database system to set a status in a
structure called the diagnostics area. The status includes a 5-character value
called the SQLSTATE resulting from the statement’s execution; the SQL-
STATE informs the application of the statement’s outcome, including suc-
cessful execution, warnings, or outright exceptions, or whether a statement
intending to affect data actually did so.

SQL statements invoked through module language or embedded SQL
cause the SQLSTATE value to be returned in a required parameter to the
module language procedure or to a host language variable assigned for that
purpose. Applications should generally test the SQLSTATE variable after
the execution of every SQL statement to ensure its success or other expected
outcome before dispatching the next SQL statement. Embedded SQL appli-
cations can use a special language facility, the WHENEVER declaration, to
cause compiled embedded SQL programs to automatically test the outcome
of each SQL statement and branch to a specified target when the specified
conditions are met.

Multiple SQL statements can be combined together into compound state-
mentsywhenytherfacilitiesnofiSQL/PSM are used by an application. Com-
pound statements allow the specification of condition handlers that can take
application-specified action when specified exception or other conditions are
encountered.

Database Language SQL 127

5 Future Evolution

The database industry does not expect that SQL3 will be the end of the
development for SQL standards. Indeed, as SQL3 progresses towards formal
publication, additional features deemed insufficiently mature and stable (or
for which the market requirements have not yet proved sufficiently high) are
being developed — at a lower priority — for an anticipated fourth generation of
the SQL standard, naturally called “SQL4”. The SQL standards community
generally anticipates that SQL4 will be published as a de jure standard in
roughly 2001 or 2002, i.e. three years after SQL3 is published.

Will there be another generation of the SQL standard beyond SQL47 It’s
difficult to be certain, but as long as relational database systems remain as
important to industry and commerce as they are today, evolution of SQL and
its standard is probably inevitable.

References

[ANSI86] ANSI, ANSI X3.135-1986, American National Standard for Informa-
tion Systems — Database Language SQL, American National Standards
Institute, 1986

[ANSI89] ANSI, ANSI X3.135-1989, American National Standard for Informa-
tion Systems — Database Language SQL with Integrity Enhancement,
American National Standards Institute, 1989

[ANSI89b] ANSI, ANSI X3.168-1989, American National Standard for Informa-
tion Systems — Database Language Embedded SQL, American National
Standards Institute, 1989

[ANSI92] ANSI, ANSI X3.135-1992, American National Standard for Informa-
tion Systems — Database Language SQL, American National Standards
Institute, 1992

[CBT4] Chamberlin, D. D., Boyce, R. F., SEQUEL: A Structured English Query
Language, Proceedings of the ACM SIGFIDET Workshop, 1974, 249-
264

[CO93] Cannan, S., Otten, G., SQL — The Standard Handbook, McGraw-Hill
Book Company, 1993

[Cod74] Codd, E. F., A Relational Model of Data for Large Shared Data Banks,
Communications of the ACM (13,6), 1974, 377-387

[Coda7l] Data Base Task Group Report to the CODASYL Programming Lan-
guage Committee, ACM, New York, 1971

[DD93] Date, C. J., Darwen, A Guide to the SQL Standard, Addison-Wesley
Publishing Company, 1993

128

[GR93]

[MS93)

[1SO87]

[ISO89)

[1S092]

[1S095]

[1S096)

[ISO97a]

[ISO97b]

[XOPN93]

Jim Melton

Gray, J., Reuter, A., Transaction Processing: Concepts and Techniques,
Morgan Kaufmann Publishers, San Mateo, CA, 1993

Melton, J., Simon, A. R., Understanding the New SQL: A Complete
Guide, Morgan Kauffman Publishers, 1993

ISO, ISO 9075:1987, Database languages — SQL, International Organi-
zation for Standardization, 1987

ISO, ISO/IEC 9075:1989, Information technology — Database languages
- SQL, International Organization for Standardization, 1989

ISO, ISO/IEC 9075:1992, Information technology — Database languages
- SQL, International Organization for Standardization, 1992

ISO, ISO/IEC 9075-3:1995, Information technology — Database lan-
guages — SQL — Part 3: Call-Level Interface (SQL/CLI), International
Organization for Standardization, 1995

ISO, ISO/IEC 9075-4, Information technology — Database languages —
SQL — Part 4: Persistent Stored Modules (SQL/PSM), International
Organization for Standardization, 1996

ISO, ISO/IEC CD 9075-2, Information technology — Database languages
- SQL - Part 2: Foundation (SQL/Foundation), International Organi-
zation for Standardization, 1997

1SO, ISO/IEC CD 9075-5, Information technology — Database languages
— SQL - Part 5: Host language bindings (SQL/Bindings), International
Organization for Standardization, 1997

X/Open, CAE Specification — Structured Query Language (SQL),
X/Open Company Ltd., 1993

CHAPTER 6

Petri Nets

Jean-Marie Proth

The objective of this contribution is to provide the basics of Petri net theory in
order to model and evaluate Discrete Event Systems (DES). The first part of the
contribution is devoted to the common definitions and properties of Petri nets.
Qualitative properties are then introduced. These properties are those who are of
importance when manufacturing systems are concerned. Finally, a short introduc-
tion of event graphs is proposed; these graphs are of utmost importance to study
cyclic DES.

1 Introduction

Discrete Event Systems (DES) such as manufacturing systems or information
networks are highly parallel and distributed. They need to be evaluated from
a qualitative point of view as well as from a quantitative point of view. The
goal of qualitative analysis is, for instance, to verify the absence of deadlocks,
the ability to reach some states (reachability) or the ability to return to some
pre-defined states (reversibility and home state), to quote only a few.

Quantitative analysis aims at evaluating performance properties (for in-
stance throughput), utilisation properties (for instance lengths of the queues
in front of the resources), or responsiveness properties (for instance average
time for message transmission). To summarise, quantitative analysis aims at
evaluating the efficiency of the system at hand.

Both qualitative and quantitative analyses are used more and more fre-
quently at the preliminary design phase of systems (manufacturing or infor-
mation networks) since the complexity of these systems increases due to the
constraints of the market and the rapid changes of technologies.

We claim that Petri nets, introduced by C.A. Petri in 1962 (see [Pet62]),
are the most powerful set of tools which can support the functional spec-
ificationyrasswellrasstherqualitativerand the quantitative analysis. In this
contribution, we provide the foundations of Petri nets. We deliberately re-
strict ourselves to simple Petri nets, since these nets have the most powerful

130 Jean-Marie Proth

analytical properties. More precise information about the use of Petri nets to
model and evaluate manufacturing systems is available in [DHPSV93, HP92,
Pet81, PX96, Ram74].

2 Basic Definitions

2.1 Petri Nets and Related Definitions
A Petri net is a five-tuple PN = (P, T, A, W, M,) where:

e P = (p1,p2,...,pn) is a finite set of places. Places are represented by
circles.
o T = (t1,t2,... ,tq) is a finite set of transitions. Transitions are repre-

sented by bars.

¢ AC (PxT)U(T x P) is a finite set of arcs. An arc joins a place
to a transition or a transition to a place, but never a transition to a
transition or a place to a place.

e W:A— (1,2,3,...) is a weight function attached to the arcs. The
weight is represented by an integer located near the arc. If this integer
is missing, it is assumed that the weight of the arc is 1.

e My : P — (0,1,2,...) is the initial marking. My(p),p € P, is the
marking of place p. Mp(p) is the initial number of tokens included in
place p. Each token is represented by a bullet.

Note 2.1 A Petri net is said to be ordinary if oll the weights are equal to 1.
A Petri net is represented in Figure 1. In this Petri net:

e P = (p1,p2,P3,P4,D5)

o T = (t1,t27t3)t47t5)

o A={(p1,t2), (t2,p2), (P2, 13), (t2,03), (D3, t4), (t4,P4), (3, 5), (t1,D5),
(p57t5)}

The weights are represented by integer numbers located near the arcs. For in-
stance, W(p1,t2) = 2; W (t1,ps) = 1, since the integer is missing, W (ps, t5) =
4. The initial marking is My = [3,1,2,0,1] since Mo(p1) = 3, My(p2) =
I’Mﬂ(p.'i) = 2’M0(p4) =0, Mo(ps) = 1.

We usually denote by:

e °t the set of input places of transition ¢, that is the set of places p such
that (p,7) € A. For instance, °t5 = (ps3,ps) in Figure 1.

Petri Nets 131

Figure 1: A Petri net

o 1° the set of output places of transition ¢, that is the set of places p
such that (t,p) € A. For instance, in Figure 1, 3 = (p2,p3) and t3 = 0,
where {} denotes the empty set.

e °pis the set of input transitions of place p, that is the set of transitions
t such that (t,p) € A. For instance, in Figure 1, °psy = {t4},°p1 =
®7O b2 = {t2}'

e p° is the set of output transitions of place p, that is the set of transitions
t such that (p,t) € A.

If °t = @ (resp. °p = @), then ¢ (resp. p) is called a source transition (resp.
source place). If t° = @ (resp. p° = @), then ¢ (resp.p) is called a sink
transition (resp. sink place). For instance, in Figure 1:

e p; is a source place.
e 1 is a source transition.
e {3 and t5 are sink transitions.

e p4 is a sink place.

2.2 Dynamics of Petri Nets

A transition ¢ is said to be enabled if, whatever p € °t, p contains a number
of tokens greater than or equal to W(p,t). If M is the marking of a Petri
net, this definition can be formally written as:

t € T is enabled if and only if, whatever p € °t, M(p) > W(p,t).

132 Jean-Marie Proth

For instance, in Figure 1, ¢; is enabled since Mo(p;) > W (py,t2) = 2, but t5
is not enabled since My(ps) =1 < W(ps,ts) = 4.

Note 2.2 According to the definition of an ordinary Petri net, a transition
t of an ordinary Petri net is enabled if and only if each of its input places
contains at least one token.

If a transition ¢ is enabled, it may or may not be fired. Firing a transition ¢
consists in:

o removing W (p,t) tokens from each p € °t
e adding W (¢, p) tokens to each p € t°.

For instance, firing ¢, in the Petri net represented in Figure 1 consists in:
e removing two tokens from p;

e adding four tokens in ps and one token in ps.

After firing 5, the marking becomes M = [1,5, 3,0, 1].

A source transition is always enabled. Firing a source transition consists
in adding W (¢, p) tokens to each p € t°. A sink transition can be fired if it is
enabled. If a sink transition is fired, the tokens are removed from the input
places following the usual rule, but no token is added in a place. In Figure
1, firing source transition ¢; once changes M into M = [3,1,2,0, 2]. None of
the sink transitions being enabled, they cannot be fired.

Let us assume that, starting from the marking My represented in Fig. 1:

e we fire ¢; three times in sequence
e we fire {5 once
e we fire t5 once
o we fire ¢3 once.

After firing ¢; three times, the marking becomes M; = [3,1,2,0,4]. After
firing t5 once, the marking becomes My = [3,1,1,0,0]. After firing ¢, once,
the marking becomes M3 = [1,5,2,0,0]. Finally, after firing t3 once, the
marking becomes My = [1,2,2,0,0]. In this case, we write:

My Z My, where 0 =< t1,t1,t1,85, 12,83 >

Note that sequence oy =< ts,11,t1,t1, 12,13 > which is composed of the
same set of transitions, is not firable since 5 cannot be fired first starting
from My. This remark is of great importance, as we will see in the remaining
of this contribution.

Note 2.3 The set of markings derived from M, is denoted by R(My). Thus,
in the previous example, M; € R(Mp) fori=1,2,3,4.

Petri Nets 133

Figure 2: Elementary circuits and self-loops

2.3 Siphons and Traps

We consider the case when the Petri net under consideration is an ordinary
Petri net, i.e. a Petri net where all the arcs are weighted to 1. A set P(s)
of places is a siphon if any transition ¢ € T which has an output place in
P(s) has at least one input place in P(s). In other words, P(s) is a siphon
if t°N P(s) # 0 leads to °t N P(s) # 0. Note that we may have, for some
transitions t, t° N P(s) = @ and °¢tN P(s) # 0. As a result, some siphons may
become empty by firing transitions. Thus, a siphon in the Petri net model of
a discrete event system, for instance a manufacturing system, may reflect a
mistake at the design level.

A set P(t) of places is a trap if each transition which has an input place
in P(t) has at least one output place in P(t). Formally, P(t) is a trap if
°tN P(t) # 0 leads to t° N P(t) # 0. Note that we may have, for some
transitions t, °¢ N P(t) = 0 and, nevertheless, t° N P(t) # §. A trap which
contains tokens will never become empty, but the number of tokens in a trap
may increase to infinity: a Petri net model containing a trap may reflect a
design mistake.

2.4 Elementary Circuits and Self-Loops

An elementary circuit in a Petri net is a directed path that goes from one
place (or transition) back to this place (or transition), and which does not
contain more than once any place (or transition). In Figure 2, v; = <
t1,P2,t2, D3, ta,p1 > and y2 =< t1,pa,t2,P3,t3, D6, t5, D4, ta, p1 > are two ele-
mentary circuits.

A self-loop is an elementary circuit containing one place and one transi-
tionmy=<ntyp>rissaselfslooprif{t = p° = °p. In figure 2, vz =< t5,ps >
is a self-loop.

134 Jean-Marie Proth

Level 0

Level |

Figure 3: The first three levels of the reachability tree

3 Reachability Tree and Coverability Tree

Let us consider a Petri net PN = (P,T, A, W, Mp). The goal of the reacha-
bility tree is to find all the markings which can be reached starting from the
initial marking My by firing a sequence of transitions.

To find the reachability tree, we start from the initial marking My which
is the root of the tree (level 0). Then we consider all the transitions enabled
by My and compute the markings obtained by firing each of these transitions
starting from My. Each of these new markings represents a node of the
reachability tree at level 1. In the example represented in Figure 2, My =
[0,2,0,1,1,0] and the following transitions can be fired starting from Mp:

e t5, which leads to marking M} =[0,1,1,1,1,0]
e tg, which leads to marking M} =[0,2,0,1,1,1].

In this case, level 1 of the reachability tree includes two nodes. The next
level, level 2, of the reachability tree is obtained by firing all the transitions
enabled by M{ and by M;.

Starting from M7, it is possible to fire:

e ty, which leads to marking M} =[0,0,2,1,1,0]

o tg, which leads to marking M} =[0,1,1,1,1,1].
Starting from M}, it is possible to fire:

o ty, which leads to marking M? ={0,1,1,1,1,1]

e t5, which leads to marking M? =[0,1,1,2,1,0]

e tg, which leads to marking M2 = [0,2,0,1,1,2].

The first three levels of the reachability tree of the Petri net represented in
Figure 2 are given in Figure 3.

We obtain the nodes at level 3 by firing all the transitions enabled by the
marking which are the nodes at level 2, and so on. When no transition is
enabled by a marking, no further node is derived from the node corresponding

Petri Nets 135

to the marking. If the markings corresponding to different nodes are the same,
we merge these nodes. It is easy to understand that a reachability tree may
have an infinite number of levels, and thus an infinite number of nodes. It
is the case for the Petri net introduced in Figure 2 since transition tg can be
fired as many times as we want. As a consequence, the reachability tree is
not an efficient tool to analyse the dynamics of most of the Petri nets.

To limit the size of the tree (at the expense of the information provided
by the tree), the following decisions were made:

(i) a node is marked “old” if the corresponding marking was already found
at another level of the tree, i.e. we do not fire a transition from the
corresponding marking anymore,

(ii) if a marking M reached at a given level is such that there exits a marking
M corresponding to a node located on the path joining the root to the
node corresponding to M which verifies:

o M(p) > M(p),Vpe P
o M(px) > M(px), for at least one px € P
then the marking of p* is denoted by w, where w stands for infinity.

As a consequence, the marking of px will remain w in all the markings
derived from M, and rule (i) also applies to these markings.

e A node is marked “dead-end” if the corresponding marking does
not enable any transition: such a node is a leaf of the tree.

e A node which is neither “dead-end” nor “old” is marked “new”.
Only the “new” nodes produce nodes at the next level.

The tree obtained by applying the previous rules is called coverability
tree. A coverability tree contains less information than a reachability tree,
but always remains limited in size. The following conclusions can be drawn
from a coverability tree:

e if none of the markings corresponding to the nodes of a coverability tree
contains w, then R(My), set of markings reachable from Moy, is finite

e the coverability tree provides the transitions which are never enabled

e when the Petri net under consideration is bounded, the reachability
tree provides the same information as the coverability tree.

The algorithm used to obtain the coverability tree is given hereafter.

136 Jean-Marie Proth

Coverability tree algorithm

1. Initialisation: one node, reprocessing the initial marking My, is assigned
to level 0. Let X be this node.

2. For each and every node X marked “new”:

(a) If there exists a node X on the path joining X, to X “such that
the marking corresponding to X is the same as the marking cor-
responding to X, then mark X with “old”. X is a leave of the
tree.

(b) If none of the transitions is enabled by the marking corresponding
to X, then mark X with “dead-end”. X is a leave of the tree.

(c) If at least one transition is enabled by the marking M correspond-
ing to X then, for each enabled transition t:

i. Compute M; derived from M by firing t. Let X; be the node
corresponding to Mj.

ii. If, on the path joining X, to X, there exists a node X the
marking of which is M and such that Mi(p) > M(p p),Vp € P
and M, (p) > M (p), for at least one p € P, then set M (p) =
for any p such that M;(p) > M(p).

iii. Introduce X; in the tree, as well as arc (X’ ,Xl), and mark
this arc with ¢.

iv. If there exists another node of the tree the marking of which
is M, then mark X; with “old”, otherwise, mark X; with

“new” .

(d) Go to 2.

4 Incidence Matrix and State Equation

Let P = (p1,p2,-.. ,Pn) (resp. T = (t1,ta,... ,t4)) be the set of places (resp.
transitions) of a Petri net. The incidence matrix of this Petri net is a matrix
A=la;),i=1,...,n;5=1,...,q defined as follows:

Witj,p:) ift; € °p;

a;; = —W(pi,tj) if t; € p}’
0 otherwise

where W is the weight function attached to the arcs.

Petri Nets 137

Example 4.1 We consider the Petri net given in Figure 1. Its incidence
matriz is:

0 -2 0 0 O
0 4 -3 0 0
A=[(0 1 0 -2 -1
0 0 0 1 O
1 0 0 0 -4

Note 4.1 An incidence matriz concerns only pure nets, i.e. nets without
self-loop since, if (pi,t;) would be a self-loop, a;; should equal simultaneously
—1 and +1, which is impossible.

Let us consider an initial marking My of a Petri net, and let o be a firable
sequence of transitions which applies to My. The counting vector V, of ¢ is
the vector:

Vs = [v1,v2,... ,v,] where v; is the number of times ¢; is included in o.
If M is the marking obtained by firing o, then:
M' = M{+ AV} (1)
where ¢ denotes the transpose and A the incidence matrix.
Note 4.2 1. Relation 1 is the state equation of the Petri net.

2. The counting vector V, remains unchanged when transitions permute
in sequence o, but a firable sequence o may become non-firable by per-
muting its transition. Thus the state equation applies only if we know
that o is firable: it helps us to compute the new marking M when we
know the initial marking and the fact that o is firable.

Figure 4: A marked Petri net

138 Jean-Marie Proth

Example 4.2 Let us consider the net represented in Figure 4. The initial
marking is My = [3,0,0,2] and the incidence matriz is:

1 -2 -1 0
0 4 0 -1
A= 0 0 1 -1
0 0 -2 2

Consider the firing sequence 0 =< t9,t3,t4 >. The corresponding count-
ing vector is V, = [0,1,1,1]. It is easy to check that o is firable. Thus, firing
o leads to marking M which can be computed using state equation 1:

3 1 -2 -1 07[o0 3 -3 0
o, o 4 o 1|1 0 3 3

t — —
Mi=1olTlo 0o 1 -1||1 o7l o [T o
2| o o -2 2 |[1 2 0 2

Note that 01 =< t4,to,t3 >, which is not firable, has the same counting
vector as o, and thus would lead to the same making M when applying the
state equation.

5 p-Invariants and t-Invariants

5.1 p-Invariants

A vector X = [zy,...,2,] with non-negative integer components is a p-
invariant if X A = 0, where A is the incidence matrix of the Petri net (with n
rows and ¢ columns) under consideration. For instance, a p-invariant of the
Petri net represented in Figure 3 is such that:

1 -2 -1 0 0
0 4 0 -1 0
[z1,$27$37l‘4] 0 0 1 -1 = 0
0 0 -2 2 0
which leads to:
1 =0
211 +4xz9 =0
—T1 +z3 —2z4 =0

-z —x3 +2z4 =0

Thus any vector X = [0, 0, 2k, k], where % is a non-negative integer, is a
p-invariant.

Theorem 5.1 If Xis a p-invariant and My the initial marking of a Petri net,
then X M§ = X M* for any M reachable from My, i.e. for any M € R(Mp).

Petri Nets 139

For instance, in the previous example:
2M (ps3) + M (p4)
1s constant whatever M reachable from M, = [3,0,0,2].

Definition 5.1 The set of places which correspond to the strictly positive
components of a p-invariant X is called support of X and denoted by | X|.

Definition 5.2 The support |X| of a p-invariant X is minimal if, whatever
the support | X1| of a p-invariant X, |X| 2 |X1|, where 3 stands for “does
not contain”.

Definition 5.3 A p-invariant X is minimal if there does not exist another p-
invariant the components of which are less than or equal to the corresponding
components of X.

Theorem 5.2 Any p-invariant is a linear combination of minimal p-inva-
riants.

In the previous example, we have only one minimal p-invariant which is
X* =10,0,2,1]. Thus, any p-invariant X can be written as X = kX*, where
k is a positive integer number.

Important properties:

(i) If a p-invariant X of a Petri net is such that all its components are strictly
positive, then the Petri net is bounded, i.e. for any place p € P there
exists a positive integer k, such that M(p) < k, whatever M € R(Mp).

(ii) If all the components of a p-invariant X of a Petri net are equal to one,
then the total number of tokens in the net remains constant for any
M € R(My).

5.2 t-Invariants

A vector Y = [y1,...,Yq] with non-negative integer components is a t-
invariant if AY? = 0, where A is the incidence matrix of the Petri net (with
n places and g columns) under consideration. For instance, a t-invariant of
the Petri net represented in Figure 3 is such that:

1 -2 -1 0
0 4 0 -1
0 0 1 -1 [ylay27y31y4} =
0 0 -2 2

which leads to the system:

OO OO

140 Jean-Marie Proth

Y1 —2Y2 —y3 =0
4y, -ys =0

Y3 Y =
—2ys +2ys =0

Thus: ys = ys = 4y, y1 = 6ys

A t-invariant of this Petri net is Y = [6,1,4,4]. Also, any vector ¥ =
[6k, k, 4k, 4k] = k[6,1,4,4], where k is a non-negative integer, is a t-invariant.

Theorem 5.3 Let o be a firable sequence and V, be the counting vector of
o. Let M € R(My) be the marking reached by firing 0. If V, is a t-invariant,
then M = M,.

For instance, let us consider the firing sequence:
o =< t1,t,t1,%1,81,81,13, 82,84, 83, 84, 3,84, 3,84 >, the counting vector of
which is V, = [6,1,4,4]. It is easy to verify that o is firable and that we
come back to My after firing o.

Definition 5.4 The set of transitions which correspond to the strictly posi-
tive components of a t-invariant Y is called support of Y and is denoted by
Y.

Definition 5.5 The support |Y| of a t-invariant Y is minimal if, whatever
the support |Y1|of a t-invariant Y1, |Y| 2 |Y1|, where 2 stands for “does not
contain”.

Definition 5.6 A t-invariant Y is minimal if there does not exist another t-
invariant the components of which are less than or equal to the corresponding
components of Y.

Theorem 5.4 Any t-invariant is a linear combination of minimal t-inva-
riants.

Since we have only one minimal t-invariant in the previous example, that
isY* = [6,1,4,4], then any t-invariant ¥ can be written as Y = kY'*, k being
a positive integer number.

Property, 5.1 Jf,vingallthesminimalyt-invariants of a Petri net, the same
component is equal to 0, then it is impossible to come back to the initial
marking after firing the transition corresponding to this component.

Petri Nets 141

Figure 5: A flow-shop

6 Timed Petri Nets

Two types of timing are used by the researchers working in the Petri net field
that is timing of places and timing of transitions. A time associated with a
place represents the minimal time a token should remain in this place after its
arrival as aresult of a firing. In the following of this contribution, we associate
times with transitions since, usually, transitions represent operations while
places represent buffers.

Let us assume that a time 8 is associated with a transition ¢, and that t
is enabled. Firing t at time p consists in:

e removing W(p,t) tokens from each p € °t at time p
e adding W (t,p) tokens to each p € t° at time pu + 6.

In the time interval (u, u+0), tokens disappear in the transition: This models
the fact that an operation is performed on the components represented by
the tokens arriving from the input places of ¢. The result of this operation is
represented by the tokens arriving in the output places of ¢. Note that the
time assigned to a transition may be deterministic or stochastic depending
on the kind of operation considered. To illustrate this concept, we present
in Figure 5 the model of two machines M; and M, working in series to
manufacture one type of product.

t1 (resp. to) represents the operation performed by M; (resp. Ms). The
self-loops (g1,t1) and (g2, t2) are introduced to prevent ¢; and ¢, to be fired
more than once at a time, since a machine performs at most one operation
at a time. The framed integer numbers are the manufacturing times. The
framed variables represent random variables. Zj is the random variable the
values of which represent the time intervals between consecutive arrivals of
raw material. Zp is the random variable the values of which represent the
time intervals between consecutive demands. p; (resp. p;) represent the
buffer at the entrance of M; (resp. Ms), and p; represent the inventory of
finished products.

7 Qualitative Properties

In this section, we restrict ourselves to the behavioural properties, which
depend on both the structure of the Petri net and the initial marking. In

142 Jean-Marie Proth

terms of applications, behavioural properties depend on the layout of the
system under consideration, the resources available in the system, the way
the system is managed, and its initial state.

7.1 Reachability

When studying the dynamics of a Petri net the initial marking of which is
M,, it is often useful to decide if a marking M can be reached from M,
(i.e. whether M € R(My), or if it cannot be reached from M, (i.e. whether
M ¢ R(Mp)). This kind of problem is referred to as reachability problem.
The reachability tree introduced in Section 3 provides the set of reachable
markings. Unfortunately, its size may be infinite, except if the Petri net
under consideration is bounded, i.e. if the number of tokens in each place is
bounded.
The most useful information about reachability is summarised in the following
theorems, where M is the initial marking.

Theorem 7.1 If a Petri net is bounded, then M € R(Mp) if and only if the
reachability tree contains a node marked with M. If a Petri net is unbounded,
we have to use the coverability tree, and it is impossible to verify whether
M € R(Mpy). It is only possible to verify whether there exists M* € R(M,)
such that M < M*.

A more powerful theorem exists in the case of acyclic Petri nets, i.e. Petri
nets without cycles.

Theorem 7.2 For an acyclic Petri net, M € R(My) if and only if the fol-
lowing equation has at least one solution:

M = Mg + AX?
where A is the incidence matriz, My is the initial marking and the com-

ponents of the solution vector X are non negative integer numbers.
Furthermore, for each solution X, there exists a firing sequence o such that:

My M, andV, =X

where V, is the counting vector of o.

7.2 Boundedness

AvplacerofrarPetrimetristboundedrifithe number of tokens in this place never
exceeds an integer value k. Such a Petri net is said to be k-bounded. A Petri
net is bounded if all its places are bounded.

Petri Nets 143

Theorem 7.3 A Petri net is bounded if and only if the markings of the
nodes of the coverability tree do not contain the symbol w. The Petri net
is k-bounded if and only if the elements of the markings of the nodes never
exceed k. A Petri net is said to be safe if it is 1-bounded.

A sufficient (but not necessary) condition for a Petri net to be k-bounded is
given by Theorem 7.4.

Theorem 7.4 A Petri net is bounded if there exists a positive integer k such
that, for any vector X the components of which are non-negative integer , the
marking M which verifies:

M = M} + AX?

is such that M(p) < k,Vp € P.

A is the incidence matrix and My is the initial marking. Note that a
marking M obtained as expressed in Theorem 7.4 may be not reachable.

7.3 Liveness and Deadlock

The liveness guarantees that the system the model of which is the Petri
net at hand never blocks. It is easy to understand that liveness is of great
importance for dynamic systems.

Formally, a transition ¢ is said to be alive if, VM € R(My),3M* € R(M)
such that ¢ is enabled for M*. In other words, whatever the marking M
which has been reached from the initial marking My, it is always possible to
reach a marking M* from M such that ¢ is enabled for M*. A Petri net is
said to be alive if all its transitions are alive.

A marking M € R(M,) is deadlock if none of the transitions of the Petri
net is enabled for M. A Petri net is deadlock free if, whatever M € R(My),
M 1is not deadlock.

Theorem 7.5 encapsulates most of the properties related to liveness and
deadlock for bounded Petri net. Remember that nodes corresponding to the
same marking are merged in a reachability tree.

Theorem 7.5 1. A bounded Petri net is alive if its reachability tree is
such that, from any node, it is possible to find a directed path which
contains an arc marked with t € T, whatever transition t.

2. A bounded Petri net is deadlock free if it does not contain leaves.
Theorem 7.6 concerns unbounded Petri nets.

Theorem 7.6 1. Assuming that the nodes corresponding to the same mark-
ingnarermergedyinyancoverabilityptree, the first part of Theorem 7.5 holds
for unbounded Petri nets by replacing “reachability tree” by “coverabil-
ity tree”.

144 Jean-Marie Proth

Figure 6: An event graph

2. Similarly, the second part of Theorem 7.5 holds for unbounded Petri
nets by replacing “reachability tree” by “coverability tree”.

7.4 Reversibility and Home State

A Petri net is reversible if My € R(M) whatever M € R(Ms). In other
words, a Petri net is reversible if it is possible to come back to the initial
marking whatever the marking derived from the initial marking by firing
a sequence of transitions. A marking M* is a home state if M* € R(M)
whatever M € R(M,). Theorems 7.7 and 7.8 summarise the conditions to
be fulfilled by a Petri net to be reversible or have a home state.

Theorem 7.7 If a Petri net is bounded:
1. it is reversible if and only if its reachability tree is strongly connected

2. it has a home state if and only if its reachability tree has one and only
one strongly connected component without an outgoing arc.

Theorem 7.8 If a Petri net has a home state, its coverability tree has one
and only one strongly connected component without an outgoing arc.

8 Event Graphs

8.1 General Properties

An event graph is an elementary Petri net in which the arcs are weighted to
one and each place has exactly one input transition and one output transition.
Figure 6 presents an event graph the marking of which is My = [1, 3,0, 4, 2].

The following theorems are of the utmost importance from a practical
point of view.

Petri Nets 145

Theorem 8.1 The number of tokens in an elementary circuit of an event
graph is invariant by any sequence of transitions firing. Another way to
express the same property is to say that X = [z1,%2,... ,T4,] is a p-invariant
if:

g4 1 Fpiey
* 0 otherwise

where <y is an elementary circuit and n is the number of places.

Theorem 8.2 The vector Y = [y1,y2,... ,y4] the components of which are
all equal to 1 is the unique t-invariant of an event graph having g transitions.
Another way to express the same property is to say that we come back to the
same marking after firing exactly once each of the q transitions.

Theorem 8.3 An event graph is deadlock free and alive if and only if each
elementary circuit contains at least one token.

For instance, if we assign the initial marking Moy = [0,3,0,4,0] to the
event graph presented in Figure 6, then the event graph is neither deadlock
free nor alive since the elementary circuit v =< t1, p1, t2, p3, t4, ps > does not
contain tokens.

8.2 Deterministic Event Graphs

We call “deterministic event graph” a timed event graph in which times
are deterministic. Let v be an elementary circuit in such a Petri net, u(v)
the sum of the firing times assigned to the transitions of v and M(y) the
number of tokens in 4. Then C(v) = u(y)/M(v) is the cycle time of ~.
Since, according to Theorem 6, M () is invariant, C(v) is also invariant. In
a strongly connected event graph, the quantity C* = max,er C(7), where T
is the set of elementary circuits, is the cycle time of the event graphs. An
elementary circuit v € I' such that C(y) = C* is called a critical circuit.

Theorem 8.4 Assuming that a transition fires as soon as it is enabled, the
quantity 1/C* is the throughput rate of tokens at any point of the event graph.
As a consequence, if we want to increase the speed at which tokens evolve in
the system, we should add tokens in the critical circuit.

9 Conclusion

In the previous sections, we provided the basics of Petri nets which are re-
quiredrtormodelvandrevaluaterDESwPetri nets are particularly convenient to
analyse manufacturing systems and information networks since their qualita-
tive properties perfectly reflect the desirable properties of these systems. As

146

Jean-Marie Proth

a consequence, the analysis of such a system can be decomposed into qual-
itative analysis, which results in defining if this system is well designed or
not, and quantitative analysis, which concerns the management of the system
and its evaluation. Event graphs have been introduced since they are very
convenient when cyclic systems are concerned.

References

[DHPSV93]

[HPY2]

[Pet62]

[Pet81]

[PX96]

[Ram74]

DiCesare, F., Harhalakis, G., Proth, J.-M., Silva, M., Vernadat, F.,
Practice of Petri Nets in Manufacturing, Chapman and Hall, London,
UK, 1993

Hillion, H. P., Proth, J. M., Mathematical Tools in Production Man-
agement, Plenum, Paris, France, 1992

Petri, C. A., Kommunikation mit Automaten, Bonn, Institut fiir
Instrumentelle Mathematik, Schriften des IIM 3, 1962

Peterson, J.L., Petri Nets Theory and Modeling of Systems, Prentice
Hall, Englewood Cliffs, NJ, USA 1981

Proth, J.-M., Xie, X.-L., Petri Nets: A Tool for Design and Manage-
ment of Manufacturing Systems, John Wiley and Sons, Chichester,
UK, 1996

Ramchandani, C., Analysis of Asynchronous Concurrent Systems
by Timed Petri Nets, Technical Report 120, Project MAC, M.I.T.,
Cambridge, MA, USA, 1974

CHAPTER 7

State Transition Diagrams

Jules Desharnais, Marc Frappier, Ali Mili

State transition diagrams are a graphic notation that has long been used to rep-
resent computing systems. Two basic models of state transition diagrams were
introduced simultaneously by G.H. Mealy and E.F. Moore in the mid fifties, and
have played a major role in hardware design for a long time. These basic mod-
els have been expanded significantly in the recent past to include such features as
the ability to represent hierarchy, timing and communication, and have been used
to model complex software systems. In this contribution, we discuss the original
models of state transition diagrams, their semantic definition and their extensions;
then we discuss current application domains and support tools.

1 Introduction

Graphs and graphic notations play a prominent role in the representation and
analysis of software specifications and software designs: From data flow dia-
grams, to entity-relation diagrams, to modular structure diagrams, to Petri
Nets, the range of application of graphs is very wide, as it varies with how
nodes and arrows are interpreted, and how they are annotated. The purpose
of this section is to give a characterization of state transition diagrams; our
characterization attempts to be specific enough to exclude all other graphic
notations, yet general enough to include all the notations that are typically
considered as such diagrams. Basically, a state transition diagram is a graph
whose nodes represent, states of a system and whose arrows represent transi-
tions between states.

The literature about state transition diagrams is abundant. We have
chosen to restrict our presentation to the initial models of state transition
diagrams, and to present some of their successors which have retained the
attention of both researchers and practitioners. Our presentation starts with
the models of Mealy and Moore, who have first studied several fundamental
aspects of finite state machines. We then present two extensions which were
proposed to.deal with more complex concurrent systems using a graphical

148 Jules Desharnais, Marc Frappier, Ali Mili

representation. Finally, we present a brief overview of the integration of
state transition diagrams in the practice of software engineering.

2 The Basic Model

In two seminal papers [Mea55, Moo56], Mealy and Moore laid the foundations
of finite automata theory. Moore’s paper is concerned with the concept of
experimentation with a finite machine (or finite automaton), that is, with the
conclusions that can be drawn about the internal state of such a machine from
external experiments. An external experiment consists in the observation of
the outputs of the machine after sending it some inputs. Moore proves nu-
merous theorems about the equivalence and the reduction of machines; these
theorems have become standard material in textbooks on automata theory
(e.g., [DDQ78]). Mealy applied Moore’s concepts to the synthesis and reduc-
tion of digital circuits (even though [Mea55] was published before [Moo56],
Mealy knew about [Mo056]). The finite machines Mealy used were a variant
of Moore’s machines. Because they suit our purpose better, we introduce
them first and present Moore’s as a variant.

Definition 2.1 A Mealy machine (or Mealy automaton) [DDQ78, Mea55]
is a siz-tuple

(S) I’ 07 57 7’ 80)7

where

S is a finite set of states,

I is a finite input alphabet,

O is a finite output alphabet,

d:8 xI— S is the state transition function,
v:8 x I = O is the output function and

sg € S is the initial state.

Thus, the ¢ function prescribes what the new state of the machine is after
receiving an input and the -y function prescribes what the output is.

As a simple example, consider the state transition diagram of Figure 1. It
represents a Mealy machine modeling the behavior of a bounded stack with
at most two elements taken from the set {a,b}. There are seven states (the
nodes), labeled with the contents of the stack (¢ denotes the empty stack).
The short arrow indicates that € is the initial state. The input alphabet is
{push,, push,, pop, top}, where

e push, and push, represent the actions of pushing an a or a b on the
stack, respectively,

e pop represents the action of removing the top element from the stack,
and

State Transition Diagrams 149

top/a top/b top/a top/b
push, /error push, /error push, /error push, /error
push, /error pushy/error push, /error push, /error

Figure 1: The state transition diagram of a Mealy machine

e top represents the action of returning the top element of the stack.

The output alphabet is {a,b, A,error}. The § and v functions can be read
directly from the diagram: a label z/y, with z € I and y € O, on a transition
from state s to state ¢ corresponds to d(s,z) = ¢t and ~(s,z) = y. Thus,
an input push, in state a results in a transition to state ab and produces an
output A (the symbol A can be interpreted in a number of ways, including
that the output is a don’t-care value, or a mute message, or the absence of
output). Applying the pop and top operations to an empty stack results in
an error output; similarly, a push, or a push, operation applied to a full stack
yields an error output. The loop labeled top/a over state a means that the
top operation can be applied repeatedly to the stack containing a as a single
element, and that the output of this operation is a.

But what does one define when one draws the state transition diagram
of a Mealy machine? A related question is: When do we say that two Mealy
machines are equivalent? Once the semantics of Mealy machines is defined,
we consider that two machines are (semantically) equivalent if they have the
same semantics.

Before giving the definition of semantics, let us introduce the following
notations:

T the empty sequence,
T+ the set of non-empty finite sequences of elements of set T,
T* ' the set of finite sequences of elements of set T (T* =TT U {r}).

Concatenation of elements or sequences over 7" is denoted by juxtaposition.

150 Jules Desharnais, Marc Frappier, Ali Mili

Definition 2.2 The behavioral abstraction (semantics) of a Mealy machine
Y= (S’Iv07617130)

is the function gz : It — O defined by the following recursive equations,
where ds, : I* — S is an auziliary function, z € I and t € I*.

de(r) =0, du(tz) =6(ds(t),z), gs(tz) =v(ds(t), 7).
Two Mealy machines
¥ =(S,1,0,8,,50) and ¥' = (S',1,0,8',v,s0")
are equivalent if and only if gs(t) = gsi(t) for allt € I'".

In words, dx(t) is the state reached after submitting the input sequence ¢
to the machine, and g»(t) is the last output of the machine. Two machines
are equivalent if they have the same last output for the same sequence of
inputs. Note that the semantics could also be defined as the following function
g5 I* = O™

g5(r) =7, gx(tz) = g5 (t)gs(tz).

That is, the semantics is a function from input sequences to output sequences.
It is easy to see that g&(t) = g% (¢) for all t € I if and only if gx(t) = g/ (2)
forallt e IT.

Moore machines are similar to Mealy machines, except that the output
function v is replaced by a function 4' : S — O. An output is associated
to a state rather than to a transition. Such an output can be viewed as
an action to take after reaching a state. Moore machines can be given a
semantics similar to that of Mealy machines by defining a function that,
when applied to a sequence of inputs, returns the last output (function gs)
or the whole sequence of outputs (function g3) produced by the machine.
A Mealy machine ¥ and a Moore machine X' are equivalent (or similar) if,
for each possible sequence of inputs, the sequence of outputs of X' is exactly
that of ¥ preceded by one arbitrary, but fixed, symbol (the symbol that the
Moore machine outputs in its initial state, before any input is submitted to
it). It is shown in [DDQ78] that, given a Mealy machine X, one can construct
a Moore machine ¥’ that is similar, and conversely.

3 Extensions to the Basic Model
3.1 Statecharts

When the time comes toruse them for the design of large reactive systems,
Mealy machines and Moore machines prove to have significant limitations:
they provide no natural notion of depth or hierarchy, they are inherently

State Transition Diagrams 151

(" airplane_plant)
o idle)

A
start | |stop
[working | Y
(" counter; i assembly N

Zeroy

Figure 2: A statechart

sequential in nature and do not cater for concurrency in a natural way, and
they are very uneconomical because the number of states needed for the
description of a system grows exponentially with a linear increase of the size
of the system [Har88).

Statecharts have been designed by Harel [Har87, Har88] to overcome these
limitations. Their main features are synthetically described by the formula

statecharts = state transition diagrams + depth (2)
+ orthogonality + broadcast communication.

We will explain and illustrate these features with a grossly simplified exam-
ple, that of an airplane assembly plant. The informal specification of the
module airplane_plant follows; it is done in terms of events and signals, as is
appropriate for the description of a dynamic system. The external signals
(inputs) sent to the module are a start signal followed by two sequences of the
body, engine and wings signals, in that order. After receiving these signals,
the module emits a 2_units signal (output) and waits for a restart signal, fol-
lowed by two sequences of the body, engine and wings signals, in that order.
The module then emits a stop signal and stops. Other output signals may
be emitted by the module for synchronization purposes. The statechart of
a possible implementation of this specification is given in Figure 2. The de-
composition has been chosen for illustration purposes and is not the simplest
possible. For instance, two modulo 2 counters are used instead of one modulo
4 counter.

It is not possible to give a short definition of statecharts as we have done
for Mealy machines (Def. 2.1), so we will content ourselves with presenting

152 Jules Desharnais, Marc Frappier, Ali Mili

the main features by means of the airplane assembly plant example. One
can find a full description of the syntax of statecharts, too lengthy to be
presented here, in [HRR92]. Note that the term statechart is not a synonym of
state transition diagram, but specifically refers to the type of state transition
diagrams introduced by Harel.

As one can see from Figure 2, a statechart is a set of labeled nodes (states)
and labeled arrows (transitions), just like any state transition diagram; how-
ever, the organization of these elements is more complex than for Mealy or
Moore machines. Conventionally, the label of a node appears on the left hand
top corner of the node, either inside, like the label assembly, or appended in
a small box, like the label working. Depth (or hierarchy) is obtained by al-
lowing superstates containing substates and internal transitions. There are
two types of superstates, OR-states and AND-states. What distinguishes
them graphically is that AND-states are subdivided by dotted lines. Thus,
airplane_plant, counter;, countery and assembly are OR-states and working is
an AND-state. The initial state of a superstate is indicated by a small arrow;
for instance, init is the initial state of the assembly superstate (we also say
that init is the initial substate of the assembly state).

We now describe informally the semantics of statecharts in an operational
manner. Since a state containing substates and transitions can be viewed as
a program or a machine, we will sometimes use the expression ezecution of a
state, which would be a language misuse if states were unstructured entities.

The execution of a statechart proceeds in discrete time steps. For the
moment, assume that the statechart consists only of the assembly node of
Figure 2. This node is an OR-state. Its transitions have either the form event
or event/signal. The latter form is just the same as for Mealy machines; the
former could be put under the same form by writing it as event/invisible
signal. An event is a signal that takes no time (so that the body event, for
example, may be understood as the end of the assembly of the body of the
airplane rather than the assembly itself). The execution of the assembly state
consists in following an arrow when the event labeling the arrow occurs. The
execution starts from the initial state init. A statechart can be in only one
substate of an OR-state. These OR-states correspond to the state transition
diagrams aspect of Equation 2. The loop body, engine, wings/1_unit depicts
the assembly of an airplane from three parts and the emission of the signal
1_unit when done.

The execution of an AND-state consists in executing in parallel the sub-
states of this AND-state. Execution starts with each substate in its initial
state. This default behavior can be overridden. For example, the start arrow
in Figure 2 could go from the idle node to both the break node and the one;
node (split arrow); in this case, the execution of the statechart in the working
superstate.-would-begin.in.the.combined state (one;,zeros,break), zero; being
used by default.

Table 1 shows the behavior of the statechart of Figure 2 when the external

State Transition Diagrams 153

time state external event internal event
1| idle start
2 | (zeroy, zerog, init) body
3 | (zeroy, zerog, body_ok) | engine
4 | (zerop, zeroy, engok) | wings
(zeroy, zerog, init) 1_unit
5 | (onep, zerog, init) body
6 | (onep, zeros, body_ok) | engine
7 | (oney, zeroy, eng_ok) wings
(oney, zeroy, init) 1_unit
(zeroy, zerog, init) 2_units
8 | (zerop, oney, break) restart
9 | (zerop, oney, init) body
10 | (zeroy, oneq, body_ok) | engine
11 | (zeroy, oney, eng_ok) wings
(zeroy, onez, init) 1_unit
12 | (oney, oney, init) body
13 | (oney, oney, body_ok) | engine
14 | (one;, onez, eng_ok) wings
(oney, ones, init) 1_unit
(zeroy, oney, init) 2_units
(zeroy, zerog, break) stop
15 | idle

Table 1: An execution sequence of the airplane_plant statechart

events occur in the order shown. What happens is that after the start signal,
the assembly system and the two modulo 2 counters, counter; and counters,
enter their initial state and start executing. When assembly has received
the signals body, engine and wings (note here that signals external to the
airplane_plant superstate are visible in the lower levels of the hierarchy), it
outputs 1_unit, thus signaling that one airplane is completed.

When counter; has detected two such signals, it outputs a signal 2.units.
This 2_unit signal becomes visible to all the other nodes, including nodes
outside the airplane_plant node (thus satisfying the requirements concerning
this signal); this is the broadcasting aspect of Equation 2. Now, all nodes
that can react to a given event do so. Thus the signal 2_units increments
countery and changes the sub-state of assembly to break.

Note how a single signal, here wings (at time 7) provokes a cascade of
internal events and transitions. This cascade occurs at the same micro-
instant;whichrisrindicated-insTable:lnby the system being in three different
states at the same time. There are other cascades at times 4, 11 and 14.
Note how the signal stop emitted by counters causes the execution to leave

154 Jules Desharnais, Marc Frappier, Ali Mili

("~ assembly_counter, ™\
2_units/stop

zero, 2_units restart
break) 2_units/stop

oneg
body.ok

3

restart 2_units

2_units/stop| |2_units 2_units/stop| | 2_units

wings/1_unit

N

Figure 3: An unorthogonal statechart for counters and assembly states

each substate of the working AND-state (because of the arrow labeled stop
from the working state to the idle state).

The immediate substates of an AND-state are called orthogonal states.
Thus, AND-states provide the orthogonality aspect of Equation 2. This con-
cept permits a compact description of systems. Removing orthogonality by
replacing an AND-state by an equivalent OR-state results in a large increase
in the number of nodes (which is the product of the number of states of
each substate of the AND-state). For example, an OR-state equivalent to
the AND-combination of the two states counter; and assembly is given in
Figure 3. The number of nodes is 8, which is the product of the number of
nodes of countery and assembly.

Giving a formal semantics to statecharts is not easy, mostly because they
havermany more featuresthannwhatiwethave described here. This has resulted
in quite a few variants, which are described in [Bee94]. For material on the
semantics of statecharts, we refer the reader to [Bee94, Har87a, HRR92].

State Transition Diagrams 155

V(s)

Figure 4: A state transition diagram for the process P

3.2 The Temporal Logic of Actions

Many specification methods are based on a formal language such as predicate
logic, temporal logic or the calculus of relations. Whereas these have a very
precise semantics, their use for the description of complex systems may lead
to formulae that are difficult to understand, thus inhibiting fruitful communi-
cations between clients and specifiers. For that reason, it is desirable to have
a graphical means to depict some of the properties described by the formulae;
moreover, it is desirable that the association between the graphical view and
the formula-based view be formal, so that pictures can be used in a precise
manner. We present here an example showing how this goal is achieved in
the case of the Temporal Logic of Actions (TLA) [Lam94, Lam95].

The example, drawn from [Lam95], uses a semaphore to synchronize two
concurrent processes. A semaphore is a (programming) variable with value
in the set of natural numbers, {0,1,...}, to which two operations, called P
and V, can be applied [Dij68]. Let s be a semaphore. The effect of executing
V(s) is the same as that of executing the assignment s := s+ 1, except that
V is guaranteed to be executed in a single non-interruptible step (an atomic
step). If s > 0, the effect of executing P(s) is the same as that of executing
the assignment s := s — 1 atomically. A process P executing P(s) when s =0
is blocked until another process executes V(s), thus incrementing s that can
then be decremented by P.

Suppose that z is some critical resource, to be protected from arbitrary
access by means of a semaphore s (more precisely, z must be accessed by
only one process at a time). To make things simple, assume that a process P
needs to make the assignment 7 := z + 1. Ignoring all operations other than
those on z and s, the execution of the process might be represented by the
state transition diagram of Figure 4. That is, P repeatedly loops through
the sequence P(s); := z + 1;V(s). Note that if s = 0 when the control is in
node 0, then P is blocked and cannot execute P(s) and access z until V(s) is
executed by another process. Thus, P requests access to z (the P operation),
uses z (the z := z + 1 operation) and releases = (the V operation).

In TLA, a state is a listing of the values of the relevant variables. For the
aboverprocessyPythesesvariablesrarers, © and a control variable c indicating
the control state (that is, before P(s), before z := z + 1, or before V(s)); we
can take ¢ € {0,1, 2}, the set of labels of the nodes of Figure 4.

156 Jules Desharnais, Marc Frappier, Ali Mili

V(s)

zh =2 +1

P(s) £ 0<sAsd=3s5-1
V(s) £ §=s+1
P, 2 =0AcG=0APBAZi=m Azh=22Aci=1Ac,=0
P, £ c,=0Ac=0AP)Azi=m1Agh=22Ac=0Ac,=1
Qi 2 ci=1Ac=0Ad=sAzi=z1+1AZh=129 Ac|=2A
ch=0
Qs 2 61=0/\Cz=1/\51=8/\$11=.’171/\III'2=IL'2+1/\611=0/\
chy=2
Ri 2 c1=2Ac=0AVB)AZi=z1 Azh=2aAc,=0ACch,=0
Ry 2 c1=0Ac=2AVE)AZi=01 ATh=22 A, =0Acy=0
S5 = BAVQLV R
Sy £ P,VQ:VR;
S £ S51VS
w = (c,c2,821,T2)
A 2 ci=0Ac=0A0SVw =w)
Init 2 ¢;=0Ac;=0As=1Az3=0Az,=0
T 2 Init ADO(S Vw' =w) A SF(P1) A SF(P2)

Figure 5: A TLA diagram and specification

Thus, e.g., ¢ = 0,s = 1,z = 3 is a state of P; if the order of presentation of
the variables (c, s, z) is understood, this state can simply be given as (0,1, 3).
Because s > 1, P can execute the operation P(s) and change state for the
state c = 1,5 = 0,z = 3. Since a state in TLA is not a vertex in a diagram,
we will use the term node to refer to vertices in diagrams (while discussing
TLA).

We now introduce a TLA formula ¥ specifying a program with two pro-
cesses P and P, similar to the above process P, and running concurrently.
Assume that Py needs protectedraccess to r; in order to increment it, and
that P needs protected access to z3, for the same purpose. Assume also
that the synchronization between the two processes must be done using a
semaphore s. /The specification ¥ is given in Figure 5, with other formulae

State Transition Diagrams 157

and a diagram, called a predicate-action diagram in [Lam95]. We proceed
with the explanation of these formulae and diagram.

The variables defining a state of the system are s,z1,zs and two control
variables ¢; and c;, taking their values in the set {0,1,2}; these variables
indicate the control state of each process. The diagram of Figure 5 shows how
these variables change when the P,V and increment operations are performed.
Each node of this diagram is labeled by a predicate over the variables ¢; and
¢z (read the two labels in a node as a conjunction). Note how the predicate
c1 = 0 A ¢ = 0, labeling the leftmost node, represents the set of all those
states with ¢; = 0,c2 =0 and s, 1,z arbitrary. In this example, predicates
labeling different nodes are disjoint; the general case is treated in [Lam95).
Each transition is labeled by a predicate defining a relation between the values
of the variables before and after the transition. An unprimed variable refers
to the value before the transition and a primed variable to the value after.
Variables that do not appear in the predicates labeling a transition or the
nodes at the origin or destination of this transition are left unchanged (this
avoids cluttering the diagram); for example, the transition labeled by z} =
z1 + 1 leaves zo and s unchanged. The fully written predicate corresponding
to this transition is

Qi 2 ca=1Ac=0Asd=sAzi=m+1ATh=23Aci=2Ach=0

(the symbols £ and A denote equality by definition and conjunction, re-
spectively); this indeed describes the assignment z; := z; + 1. Note how
the variables of the destination node are primed (c},c;). The predicates
Pi,P,Q1,Q2, Ry, Ry of Figure 5 correspond to the six transitions of the di-
agram given in the same figure (Pi,Q1, R, correspond to process P; and
P5,Q, Ry to process P). These predicates use auxiliary predicates defining
the P and V operations; note how these predicates are much more concise
and precise than the informal presentation of the operations given above.
The predicates S; (¢ = 1,2) associated to each process are obtained
by taking the disjunction (denoted by V) of P;,Q; and R;. The pred-
icate S = S; V S, defines the next step relation of the diagram (recall
that the predicates with primed and unprimed variables relate states before
and after a transition). Such relations and diagrams can also be described
within a relational, rather than logical, formalism; for instance, they are used
in [DKFM97] to give partial descriptions of the interactions between two sys-
tems (scenarios) and to formalize the integration of such partial descriptions.
Finally, the TLA formula associated to the diagram is

AZ2c=0Ac=0A0SVu=uw).

In this formula, w = (c1, ¢a, 5,1, T2) is the list of variables composing a state.
The notation w' = w is an abbreviation for

cy=caAch=ca A s =sAzi =z AzhH=1.

158 Jules Desharnais, Marc Frappier, Ali Mili

The symbol O is read always. To explain the formula of A, we need to
introduce the notion of models of a TLA formula.

The models of a TLA formula are infinite sequences of states wq, w1, ws, . ..
such that wy satisfies the formula. The predicate ¢; = 0 A cy = 0in A specifies
that the initial state wo must correspond to the initial node of the diagram.
The expression S V w’' = w is true at state w; if the pair (w;, w;11) satisfies
the formula S V w' = w, with the substitution w = w; and w' £ wip1- A
formula Op is true at state wp if p is true at state wp and at every state
that follows it in the sequence. Thus, an infinite sequence that is a model of
A must be a sequence of states obtainable by starting in a state such that
c1 =0 A ca = 0 and taking steps in the diagram of S, with the possibility
of repeating a given state (this corresponds to time steps where the system
under consideration does not move). Still put differently, a model sequence
of A is a possible execution of the combination of processes P; and Ps, where
each process may either take a transition or stay in the same state.

The formula, for the specification ¥ is

U = Init AO(S V w' =w) A SF(P1) A SF(Py).
It is similar to A, with some additional constraints:

o The predicate Init dictates the initial values of s, z; and x4, in addition
to those of ¢; and cs.

e The formula A (and the corresponding diagram) allows process Ps to be
stopped forever, with only P; executing its loop. To prevent this pos-
sibility, the specification ¥ adds the strong fairness conditions SF(P;)
and SF(P,), whose explicit formulae we do not present. The condition
SF(P,), for instance, says that if P, is enabled (can take a transition in
the diagram) infinitely often, then it must take a transition infinitely
often. Thus, if only P; were executing, P, would be enabled each time
the control passes in the initial node ¢; = 0 A ¢ = 0; the fairness
condition SF(P;) implies that P2 would eventually have its turn in the
loop. A simple implementation of ¥ could consist in letting P; and P,
execute alternately. The fairness conditions cannot be easily expressed
in a diagram and this is why they are left out.

Thus, the diagram and its formula A give only a partial view (abstraction)
of the whole specification ¥. One can show (see [Lam95]) that ¥ = A.

As a final word, we mention that the diagram given in Figure 5 is only one
possible view of ¥. Depending on the abstraction chosen, other diagrams are
possible. Lamport [Lam95] gives another view of the specification ¥ where
the nodes of the diagram are labeled by predicates over the semaphore vari-
ablersionly»Obviouslypardiagramiof @xwhole specification may be too complex
to be useful, but representing relevant abstractions of a large specification by
simple diagrams promotes understanding.

State Transition Diagrams 159

4 Practice of State Transition Diagrams

The use of state transition diagrams has rapidly spread in the software
engineering practice in various application domains (e.g., telecommunica-
tions, aerospace, defense, transportation, electronics). Several software de-
velopment approaches (e.g., Unified Modeling Language (UML) [UML97],
Real-Time Object-Oriented Modeling (ROOM) [SGW94], Specification and
Description Language (SDL) [EHS97]) have adopted state transition dia-
grams for specifying the behavior of real-time systems or objects. Industrial-
strength tools are now supporting the definition of state transition diagrams
and the execution of state transition diagrams for validation. Several of
these tools use a variant of Harel’s statechart notation. In this section, we
will provide a brief overview of the integration of state transition diagrams
with other elements of these software development approaches and some of
the capabilities of these tools.

4.1 Object-Oriented Modeling

Object-oriented approaches to software development use state transition di-
agrams to illustrate the behavior of objects [Boo94, JCJ092, Rum91]. The
notation used in these approaches is not formally defined; hence we rely here
on the reader’s intuition to understand the informal semantics.

The nodes of an object’s state transition diagram are arbitrarily chosen
by the specifier. As in TLA, we must distinguish between a state {a node) of
a state transition diagram and a state of an object. The state of an object
is given by the list of values for the object’s variables. A node label is a
meaningful name representing a set of object states. For instance, in the
stack example of Figure 6, the node labels are Init, Empty, Loaded and Full.

A perfectly valid state transition diagram for the stack could contain
only one node, but it would not be very meaningful for a reader. Node Init
is the initial state of the stack, where the values of the object’s variables are
undefined. Node Loaded represents the case where some elements have been
added to the stack; hence, there are several possible values for the object’s
variables (i.e., several possible object states) when the object is in this node.
An extended state transition diagram differs from a Mealy state transition
diagram in that the former implicitly contains state variables whereas the
latter does not. Variables, which will explicitly appear in the class definition,
allow a node in an extended state transition diagram to represent several
nodes of a Mealy state transition diagram. For instance, the node Loaded in
Figure 6 represents nodes a, b in Figure 1. The node Full in Figure 6 represents
nodes aa, ab, ba, bb in Figure 1. The number of nodes in Figure 6 is constant
with respect to the number of elements that a stack may contain. In a Mealy
stack state transition diagram, the number of nodes grows exponentially with
the stack capacity.

An arrow in the graph is labeled with a method name. Optionally, an

160 Jules Desharnais, Marc Frappier, Ali Mili

. create
Init >

pop/error

empty?

push/error

Loaded

Figure 6: An extended state transition diagram for a stack object

output may be specified on the arrow, separated from the method name
by a slash, as in the Mealy notation. The object moves from one node
to another when a method of an outgoing arrow is invoked on the object.
The end point of an arrow may be a condition with two outgoing arrows.
The evaluation of the condition determines which outgoing arrow is selected.
The condition usually refers to the object’s variables and to the method
invocation parameters. The behavior of a method (i.e., the modification to
the object’s variables and communication with the environment) is usually
defined in a separate document (either a class description, a use-case diagram
or an interaction diagram [UML97]). The notation used in [JCJ092] allows
a (partial) definition of the behavior directly on the state transition diagram.
In any case, these notations being informal, the designer may write what
seems most appropriate to be understood as precisely as possible within the
limits of an informal notation. Finally, an object extended state transition
diagramymayrberhierarchicallysstructured if the behavior is too difficult to
represent on a single diagram. Figure 7 provides a possible implementation
of the stack extended state transition diagram of Figure 6.

State Transition Diagrams 161

class Stack
{ const MaxStack = 1;
const EmptyStack = -1;
char items[MaxStack];
int index;

public:
Stack();
void create();
status push(char);
status pop();
boolean empty();
boolean full();
char top();

s

Figure 7: A C++ class for the stack state transition diagram

4.2 Real-Time System Modeling

Several approaches for real-time system modeling have adopted variants of
Harel’s statecharts for describing the behavior of communicating processes
[UML97, SGW94, EHS97]. We may take ROOM [SGW94] as an example,
since it restricts Harel’s notation to a simple subset and it adopts a more
explicit communication mechanism between concurrent states. The notation
used in ROOM is object-oriented, in the sense that it allows inheritance for
various syntactic categories.

The main syntactic categories of the ROOM notation are actor, port,
protocol, state machine and data class. A system is modeled using commu-
nicating processes called actors. Actors communicate through ports using
synchronous and asynchronous message exchange. A protocol is the set of
messages that may be sent or received through a port.

An actor is illustrated by two diagrams: a ROOM structure diagram,
to define communication links between actors, and a ROOMchart, to define
the actor’s state transitions. In Figure 8, we present a ROOM structure
diagram for the actor AirplanePlant, whose behavior is the same as that of
the statechart in Figure 2. In this figure, the outlined little square labeled
by externalCom on the outmost rectangle is a port which allows the airplane
plant to communicate with its environment. The AirplanePlant actor contains
three (component) actors: assembly, counterl and counter2. These actors
also have ports. An arc connecting two actor ports allows these actors to
exchange messages: The assembly actor receives the environment messages.
When an airplane unit is built, it sends a message to actor counterl through
port oneUnit.. When two units are built, actor counterl sends a message to

162 Jules Desharnais, Marc Frappier, Ali Mili

b—

externalCom twoUnits twoUnitsR2

assembly l ' counterl
oneUnit oneUnit

stop twoUnitsR1

externalCom

stop twoUnits

counter2

Figure 8: A ROOM actor structure diagram

actors counter2 and assembly through ports twoUnitsR1 and twoUnitsR2, re-
spectively. When four units are built, counter2 sends a message to assembly
through port stop. Note that we have represented the AND-state compo-
nents (the three OR-states) of Figure 2 by three actors, because AND-state
components of a statechart execute in parallel.

Figure 9 illustrates the behavior of the assembly actor. It is very similar
to the OR-state assembly of Figure 2, except that we have inserted the state
idle in order to make the ROOM model simpler. The label of a ROOMchart
transition is not the input signal; it is simply a meaningful annotation. The
input and output signals are given in the transition definition which is not
represented in the diagram. An actor may have variables. They are defined
using data classes: a data class is very similar to a class in an object-oriented
programming language like SmallTalk. When an actor receives a message
in a given node, the transition labeled with this message is triggered. The
transition code is then executed: its effect may be to modify the actor’s
variables or to send messages to other actors through ports. The arrow
labeled initialize contains the initialization code that is executed when the
actor is started. The ROOMcharts for actors counterl and counter2 are the
same as the OR-states counter; and counters of Figure 2.

The main distinguishing characteristics between a ROOMchart and a stat-
echart are the representation of concurrency and the communication mecha-
nism. AND-states are not allowed in ROOMcharts; concurrency is expressed
using actors: Events in-ROOMecharts|are not broadcasted but sent and re-
ceived between actors through ports. An actor may only modify its own
variables.

State Transition Diagrams 163

Figure 9: A ROOM actor behavior diagram (ROOMchart)

4.3 Tools

There exist several verification tools for state transition systems, such as MEC
[Arn89, Arn92], ALDEBARAN [Fer89] and SPIN [Hol91]. These tools allow
one to construct state machines, to apply operations on them and to verify
properties (e.g., safety, liveness, reachability, deadlock). When modeling con-
current systems with state diagrams, the number of states grows extremely
rapidly; these tools become an absolute necessity.

Several other tools support variants of statecharts (e.g., ObjectGEODE
[Verilog], ObjecTime [ObjTim], SDT [Telelog], Statemate [i-Logix]). They
provide graphical diagram editors, syntax checkers and simulators for ani-
mating state transition diagrams and verifying properties about them.

5 Conclusion

State transition diagrams are now well-established notations in the specifi-
cation and design of software systems. Software developers used them in
various application domains and various system types. The seminal ideas
of Moore and Mealy have evolved to mature techniques capable of model-
ing complex system behaviors in an understandable way. A key strength of
stateptransitionndiagramspisstheirrevocative graphical representation. Harel
contributed to the power of this graphical notation by defining hierarchi-
cal state machines and by adding concurrency and communication. Several

164 Jules Desharnais, Marc Frappier, Ali Mili

other contributors have adapted these ideas in different contexts (e.g., hard-
ware design, interface specification, distributed systems, real-time systems,
object-oriented modeling).

Paradoxically, the main weakness of state transition diagrams is related
to their salient characteristic, the graphical representation. Diagrams require
more resources to maintain and adapt than just a plain textual description.
It is almost mandatory to use a graphical tool to maintain them. In addition,
diagrams are not as compact as textual descriptions. Complex diagrams are
decomposed into a hierarchy of diagrams. Thus, the navigation between
several levels of diagrams may sometimes be cumbersome. Obviously, it is
difficult to achieve a balance between cost, concision and clarity.

Acknowledgments: The authors acknowledge the support of NSERC (Natural
Sciences and Engineering Research Council of Canada) and FCAR. (Fonds pour la
Formation de Chercheurs et ’Aide & la Recherche, Québec).

References

[Arn89] Arnold, A., MEC: a system for constructing and analyzing transition
systems, in: J. Sifakis (ed.), Automatic Verification of Finite State
Systems, Lecture Notes in Computer Science, Vol. 407, Springer, 1989,
117-132

[Arn92] Arnold, A., Systémes de Transitions Finis et Sémantique des Processus
Commounicants, Masson, 1992

[Bee94] Von der Beeck, M., A comparison of statecharts variants. in: H. Lang-
maack, W.-P. De Roever, J. Vytopil (eds.), Formal Techniques in
Real-Time and Fault-Tolerant Systems, Lecture Notes in Computer
Science, Vol. 863, Springer, 1994, 128-148

[Boo94] Booch, G., Object-Oriented Analysis and Design with Applications,
2nd edition, Benjamin-Cummings, 1994

[DDQ78] Denning, P. J., Dennis, J. B., Qualitz, J. E., Machines, Languages and
Computation, Prentice Hall, 1978

[DKFM97] Desharnais, J., Frappier, M., Khédri, R., Mili, A., Integration of se-
quential scenarios, in: M. Jazayeri, H. Schauer (eds.), 6th European
Software Engineering Conference / 5th ACM SIGSOFT Symposium
on the Foundations of Software Engineering, Lect. Notes in Comp.
Sci., Vol. 1301, Springer, 1997, 310-326

[Dij68] Dijkstra, E. W., Cooperating sequential processes, in: F. Genuys

[EHS97]

[Fer89]

[Har87]
[Har87aj
[Har88]
[Hol91]
[HRR9?]
fi-Logix]
[J03092)
[Lam94]
[Lam95]
[Mea55]
[MLHS6]

[Moo56]

[Ob;jTim]

[Rum91]

State Transition Diagrams 165

(ed.), Programming Languages: NATO Advanced Study Institute,
Academic Press, 1968, 43-112

Ellsberger, J., Hogrefe, D., Sarma, A., SDL - Formal Object-Oriented
Language for Communicating Systems, Prentice Hall, 1997

Fernandez, J., An implementation of an efficient algorithm for bisimu-
lation equivalence, Science of Computer Programming, 13, 1989, 219
236

Harel, D., Statecharts: A visual formalism for complex systems, Sci-
ence of Computer Programming 8, 1987, 231-274

Harel, D., On the formal semantics of statecharts, Proc. 2nd IEEE
Symposium on Logic in Computer Science, Ithaca, NY, 1987, 54-64

Harel, D., On visual formalisms, Communications of the ACM 31(5),
May 1988, 514-530

Holzmann, G. J., Design and Validation of Computer Protocols, Pren-
tice Hall, 1991

Hooman, J. J. M., Ramesh, S., De Roever, W.-P., A compositional ax-
iomatization of statecharts, Theoretical Computer Science 101, 1992,
289-335

i-Logix Inc. Andover, MA 01810, USA http://www.ilogix.com/

Jacobson, 1., Christerson, M., Jonsson, P., éverga.ard, G., Object-
Oriented Software Engineering: A Use Case Driven Approach,
Addison-Wesley, 1992

Lamport, L., The temporal logic of actions, ACM Transactions on
Programming Languages and Systems 16, May 1994, 872-923

Lamport, L., TLA in pictures, IEEE Transactions on Software Engi-
neering 21 (9), September 1995, 768-775

Mealy, G. H., A method for synthesising sequential circuits, Bell Sys-
tem Tech. J. 34(5), September 1955, 1045-1079

Mills, H. D., Linger, R. C., Hevner, A. R., Principles of Information
Systems Analysis and Design, Academic Press, 1986

Moore, E. F., Gedanken-experiments on sequential machines, Annals
of Mathematics Studies, Vol. 34, Automata Studies, Princeton Uni-
versity Press, Princeton, NJ, 1956, 129-153

ObjecTime Corporation Limited, Kanata, Ontario, Canada,
http://www.objectime.on.ca/

Rumbaugh, J., Object-Oriented Modeling and Design, Prentice Hall,
1991

166

[SGW94]

[UML97]

[Telelog]

[Verilog]

Jules Desharnais, Marc Frappier, Ali Mili

Selic, B., Gullekson, G., Ward, P. T., Real-Time Object-Oriented
Modeling, John Wiley & Sons, 1994

Rational Software Corporation, Unified Modeling Language for real-
time systems design, Santa Clara, CA, USA, 1997, http://www.
rational.com/

Telelogic, Malmé, Sweden, http://www.telelogic.se/
VERILOG, Toulouse CEDEX, France, http://www.verilogusa.com/

CHAPTER 8

PIF
The Process Interchange Format

J. Lee, M. Gruninger, Y. Jin, T. Malone, A. Tate, G. Yost

This document describes the rationales and the specification of the Process Inter-
change Format (PIF). PIF is an interchange format designed to help automatically
exchange process descriptions among a wide variety of process tools such as pro-
cess modelers, workflow software, flow charting tools, planners, process simulation
systems, and process repositories. These tools interoperate by translating between
their native format and PIF. Then any system will be able to automatically ex-
change process descriptions with any other system without having to write transla-
tors for each pair of such systems. This document specifies the PIF-CORE 1.2, i.e.
the core set of object types (such as activities, agents, and prerequisite relations)
that can be used to describe the basic elements of any process. The document
also describes a framework for extending the core set of object types to include
additional information needed in specific applications. These extended descriptions
are exchanged in such a way that the common elements are interpretable by any
PIF translator and the additional elements are interpretable by any translator that
knows about the extensions.

1 Introduction

The needs for sharing process descriptions across heterogeneous representa-
tions abound. One may need to build a process model, the pieces of which
have to or can come from existing models in multiple representations. One
may want to submit that process model to a variety of tools, such as process
analyzer or simulator, that uses their own representations. One may then
want to reengineer a process model by looking up and plugging in various
alternatives for some of its components from a process library that may use
yet another representation.

The goal of the Process Interchange Format project is to support shar-
ing process descriptions through a description format called PIF (Process
Interchange Format) that provides a bridge across different process represen-

168 J. Lee, M. Gruninger, Y. Jin, T. Malone, A. Tate, G. Yost

tations. Tools interoperate by translating between their native format and
PIF.

There are several process representation languages, such as IDEF 0-3
[NIST93a, NIST93b, MME94] and LOTOS [ISO89], which could be poten-
tially used for the purpose of sharing process descriptions. However, most
of these languages are originally designed to satisfy a specific set of domain
and task needs. PIF differs from them for being a translation language or
an interlingua by design. As discussed in Section 3, this difference yields a
different set of design tradeoffs. Generality is preferred over efficiency. Ex-
tensibility is critical as any process representation language is unlikely to ever
completely suit the needs of all applications that make use of business pro-
cess descriptions. Therefore, in addition to the PIF format, we have defined
a framework around PIF that accommodates extensions to the standard PIF
description classes. The framework includes a translation scheme called Par-
tially Shared Views that attempts to maximize information sharing among
groups that have extended PIF in different ways.

The PIF framework aims to support process translation such that:

o Process descriptions can be automatically translated back and forth
between PIF and other process representations with as little loss of
meaning as possible. If translation cannot be done fully automatically,
the human efforts needed to assist the translation should be minimized.

o If a translator cannot translate part of a PIF process description to its
target format, it should:

— Translate as much of the description as possible (and not, for ex-
ample, simply issue an error message and give up)

— Represent any untranslatable parts as such and present them in a
way that lets a person understand the problem and complete the
translation manually if desired

— Preserve any uninterpretable parts so that the translator can add
them back to the process description when it is translated back
into PIF.

These requirements on the translators are very important. We believe that a
completely standardized process description format is premature and unre-
alistic at this point. Therefore, as mentioned earlier, we have provided ways
for groups to extend PIF to better meet their individual needs. As a result,
we expect that PIF translators will often encounter process descriptions writ-
ten in PIF variants that they can only partially interpret. Translators must
adopt conventions that ensure that items they cannot interpret are avail-
able for human inspection and are preserved for later use by other tools that
areable tosinterpret them: Section6:describes PIF’s Partially Shared Views
translation scheme, which we believe will greatly increase the degree to which
PIF process descriptions can be shared.

PIF 169

In the next section, we provide a brief history behind the PIF project
to illustrate our motivation. Section 3 provides the overview of the PIF
language itself. Section 4 discusses the rationales underlying the major PIF-
CORE constructs. The detail specification of the PIF-CORE 1.2 constructs
follow in Section 5. Section 6 discusses the mechanism for extending the
PIF-CORE. Section 7 concludes this document with the discussion of the
directions in which the project is moving.

2 History and Current Status

The PIF project began in October 1993 as an outgrowth of the Process Hand-
book project [MCLB93] at MIT and the desire to share process descriptions
among a few groups at MIT, Stanford, the University of Toronto, and Digital
Equipment Corporation. The Process Handbook project at the MIT Center
for Coordination Science aims to create an electronic handbook of process
models, their relations, and their tradeoffs. This handbook is designed to
help process designers analyze a given process and discover innovative alter-
natives. The Spark project at Digital Equipment Corporation aims to create
a tool for creating, browsing, and searching libraries of business process mod-
els. The Virtual Design Team (VDT) project at Stanford University aims to
model, simulate, and evaluate process and organization alternatives. The
Enterprise Modeling project at the University of Toronto aims to articulate
well-defined representations for processes, time, resources, products, quality,
and organization. These representations support software tools for modeling
various aspects of enterprises in business process reengineering and enterprise
integration.

In one way or another, these groups were all concerned with process mod-
eling and design. Furthermore, they stood to benefit from sharing process
descriptions across the different representations they used. For example, the
Enterprise Modeling group might model an existing enterprise, use the Pro-
cess Handbook to analyze its tradeoffs and explore its alternatives, evaluate
the different alternatives via VDT simulation, and then finally translate the
chosen alternative back into its own representation for implementation.

Over the past years, through a number of face-to-face, email, and tele-
phone meetings, the PIF Working Group members have:

e Articulated the requirements for PIF

o Specified the core PIF process description classes

Specified the PIF syntax

Elaborated the Partially Shared View mechanism for supporting mul-
tiple, partially overlapping class hierarchies

Created and maintained a database of the issues that arose concerning
PIF’s design and the rationales for their resolutions

170 J. Lee, M. Gruninger, Y. Jin, T. Malone, A. Tate, G. Yost

e Implemented several translators, each of which translated example pro-
cess descriptions (such as a portion of the ISPW-6 Software Change
Process) between PIF and a group’s own process representation

e Used the translators to port process descriptions across heterogeneous
representations (between Kappa PC representation and Lotus Notes
representation of process handbook data)

Based on this work, the PIF Document 1.0 was released on December, 1994.
Since then, we have received a number of questions and comments on topics
that range from individual PIF constructs to how certain process descriptions
can be represented in PIF. We have been also assessing the adequacy of the
PIF 1.0 by testing it against more complex process descriptions than before.
AIAT at the University of Edinburgh also joined the PIF Working Group at
this time bringing along their interests in planning, workflow and enterprise
process modeling. The Edinburgh group is also providing a valuable service
as a liaison between the PIF group and the Workflow Management Coali-
tion as well as the AI planning community (in particular the DARPA /Rome
Laboratory Planning Initiative) which has been concerned with the activity
representation issues for a while. The Ontology Group at the Stanford Uni-
versity has also joined the PIF Working Group and is sharing the lessons
from its experiences in providing the ontology library and the editor.

The revised structure of PIF reflects the lessons extracted from these
external and internal input. In particular, two points emerged clearly. One
is that the PIF-CORE has to be reduced to the bare minimum to enable
translation among those who cannot agree on anything else. The other point
is the importance of structuring PIF as a set of modules that build on one
another. This way, groups with different expressive needs can share a subset
of the modules, rather than the whole monolithic set of constructs. As a
result, the PIF-CORE has been reduced to the minimum that is necessary
to translate the simplest process descriptions and yet has built-in constructs
for “hanging off” modules that extend the core in various ways.

Recently we have been working with other groups whose aim is also to
share process descriptions though in their own domains. The goal of the
Process Specification Language (PSL) project at NIST is to facilitate process
sharing in the domain of manufacturing. It has finished compiling the list
of requirements that a process specification language should satisfy and is
evaluating the existing process representations with respect to these require-
ments. We are working with the PSL group in assessing these requirements
and comparing the different process representations in the hope that the PSL
will be compatible with PIF. The goal of the Workflow Process Description
Language (WPDL) is to be an interlingua for sharing workflow descriptions.
Werhave comparedsthes WPDLywitho PIF, identified similarities and differ-
ences, and are communicating with them to make both PIF and WPDL
interoperable.

PIF 171

3 PIF Overview

The PIF ontology has grown out of the efforts of the PIF Working Group
to share process descriptions among the group members’ various tools. We
have used the following guidelines in developing this hierarchy:

o Generality is preferred over computational efficiency when there is a
tradeoff, for the reason that PIF is an interchange language, not a
programming language designed for efficient execution. Therefore, the
organization of the entity classes is not necessarily well-suited to per-
forming any particular task such as workflow management or process
simulation. Instead, our goal has been to define classes that can ex-
press a wide variety of processes, and that can be readily translated into
other formats that may be more suitable for a particular application.

e The PIF constructs should be able to express the constructs of some
existing common process representations such as IDEF (SADT) or Petri
Nets.

e PIF should start with the minimal set of classes and then expand only
as it needs to. The minimal set was decided at the first PIF Workshop
{October 1993) by examining those constructs common to some major
existing process representations and to the process representations used
by members of the PIF Working Group.

e Additions to the standard PIF classes could be proposed by anybody,
but the proposal had to be accompanied by concrete examples illustrat-
ing the need for the additions. The Working Group decided, through
discussions and votes if necessary, whether to accept the proposal. PIF
allows groups to define local extensions at will (see Section 6), so new
classes or attributes should be added to the standard PIF classes only
if they seem to be of sufficiently general usefulness.

A PIF process description consists of a set of frame definitions, which are
typically contained in a file. Each frame definition refers to an entity instance
and is typed (e.g. ACTIVITY, OBJECT, TIMEPOINT) and they form a
class hierarchy (see Figure 1). A frame definition has a particular set of
attributes defined for it. Each of the attributes describes some aspect of the
entity. For example, a PERFORMS definition has an Actor and an Activity
attribute that specifies who is performing which activity. The instance of a
frame definition has all the attributes of all of its superclasses, in addition
to its own attributes. For example, all the instances of ACTIVITY have the
Name attribute, since ENTITY, which is a superclass of ACTIVITY, has the
Name attribute.

When an attribute of one frame has a value that refers to another frame,
the attribute represents a relationship between the two instances that the

172 J. Lee, M. Gruninger, Y. Jin, T. Malone, A. Tate, G. Yost

ACTIVITY

DECISION

OBJECT

iii

i

AGENT

TIME-POINT

RELATION

CREATES

PERFORMS

BEFORE

SUCCESSOR

ACTIVITY-STATUS

Figure 1: The PIF class hierarchy

two frames refer to. For example, if the Begin attribute of ACTIVITY-1
takes TIMEPOINT-32 as its value, then the Begin attribute represents a
relationship between the ACTIVITY-1 and TIMEPOINT- 32 instances. The
value of a given attribute in a PIF file holds independent of time. Figure 2
depicts the relationships among the PIF classes. Section 5 describes all of
the current PIF classes.

An attribute in a PIF entity can be filled with the following and only the
following PIF expressions: a literal value of a PIF primitive value type or an
expression of a composite value type.

The PIF primitive value types consist of: NUMBER, STRING, and SYM-
BOL

e NUMBER: A numeric value. The NUMBER type is subdivided into
INTEGER and FLOAT types.

e STRING: A sequence of characters.

e SYMBOL: Symbols are denoted by character sequences, but have some-
what different properties than strings.

PIF 173

Components

D <STRING>
—

— User-Attribute <QUOTED-LIST> <VALUE TYPE>
Name

l SUCCESSOR ———————bwms
Capabiities 1:n —» <SYMBOL>

Constraints
t PrecadingActiy
Status Activity
e B
Activity
AGENT ACTIVITY t! Activiy
x Object OBJECT
J Activity

Actor 1:n
—AC'M'Y " —‘E‘l:——@'m*ﬂ
Then
Begin 9
TIMEPOINT
End — |

Object Preceding Succeeding DECISION
Timepoint Timepoint

P <PIF-SENTENCE> «If

Figure 2: Relationships among PIF classes

The PIF composite value types consist of: LIST and PIF-SENTENCE.
e LIST: A list.

e PIF-SENTENCE: A logical expression that evaluates to TRUE or FAL-
SE.

An object variable is of the form, object-name[.slot-name]*, which refers to
either the object named or the object which is the value of the named slot (
or, if there are more than one slot-names specified, the object which is the
value of the named slot of the object which is the value of the next named
slot, and so on.)

4 Rationales

The goal of PIF is to support maximal sharing of process descriptions across
heterogeneous process representations. To better serve this goal, PIF consists
of not a monolithic set of constructs, but a partially ordered set of modules.
A module can build on other modules in that the constructs in a module
are specializations of the constructs in the other modules. One can adopt
some modules but not others depending on one’s expressive needs. Hence, a
module typically contains a set of constructs that are useful for a particular
domain or a type of task. More details of this module structure are discussed
in Section 6.

The PIF-CORE, on the other hand, consists of the minimal set of con-
structs necessary to translate simple but non-trivial process descriptions.

174 J. Lee, M. Gruninger, Y. Jin, T. Malone, A. Tate, G. Yost

There is the usual tradeoff between simplicity and expressiveness. The PIF-
CORE could have been chosen to contain only the constructs necessary for de-
scribing the simplest process descriptions such as a precedence network. Such
a PIF-CORE then would not be able to translate many process descriptions.
On the other hand, the PIF-CORE could have contained constructs sufficient
for expressing the information contained in process descriptions of richer com-
plexity. Such a PIF-CORE then would contain many constructs that may
not be needed for many simpler descriptions. The PIF-CORE strikes a bal-
ance in this tradeoff by first collecting process descriptions, starting from the
simplest and continuing with more complex until we have reasonably many
of them, and then by looking for a set of constructs that can translate the
process descriptions in this collection. The following describes the rationales
for each of the constructs in the PIF-CORE. The attributes of each of these
constructs are described in Section 5.

In PIF, everything is an ENTITY; that is, every PIF construct is a special-
ization of ENTITY. There are four types of ENTITY: ACTIVITY, OBJECT,
TIMEPOINT, and RELATION. These four types are derived from the def-
inition of process in PIF: a process is a set of ACTIVITIES that stand in
certain RELATIONS to one another and to OBJECTS over TIMEPOINTS.

The following provides intuitive rationales for each of these four con-
structs. Their precise semantics, however, are defined by the relations they
have with other constructs (cf. Section 5).

ACTIVITY represents anything that happens over time. DECISION,
which represent conditional activities, is the only special type of ACTIVITY
that the PIF-CORE recognizes. In particular, the PIF-CORE does not make
any distinction among process, procedure, or event. A TIMEPOINT repre-
sents a particular point in time, for example “Oct. 2, 2.32 p.m. 1995” or
“the time at which the notice is received.” An OBJECT is intended to rep-
resent all the types of entities involved in a process description beyond the
other three primitive ones of ACTIVITY, TIMEPOINT, and RELATION.
AGENT is a special type of OBJECT.

RELATION represents relations among the other constructs. The PIF-
CORE offers the following relations: BEFORE, SUCCESSOR, CREATES,
USES, MODIFIES, and PERFORMS.

BEFORE represents a temporal relation between TIMEPOINTS. SUC-
CESSOR (Activity-1, Activity-2) is defined to be the relation between AC-
TIVITIES where BEFORE (Activity-1.End, Activity-2.Begin) holds. It is
provided as a shorthand for simple activity precedence relations.

CREATES, USES, and MODIFIES represent relations between ACTIV-
ITY and OBJECT. In these relations, the object is assumed to be created,
used, modified at some non-determinate timepoint(s) in the duration of the
activity(izesnbetweenvits:Beginvandrits End timepoint inclusively). Hence
the object would have been created, used, or modified by the End timepoint,
but no commitment is made as to when the object is actually created, used,

PIF 175

or modified. PERFORMS represents a relation between OBJECT (normally
an AGENT specialization) and ACTIVITY. In the PERFORMS relation,
the actor is assumed to perform the activity at some non-determinant time-
point(s) in the duration of the activity (possibly for the whole duration, but
not necessarily). We understand that there are other possible interpreta-
tions of these relations. For example, we might want to specify that a given
actor is the only one who performs the activity during the whole activity
interval. Such a specification, however, will require a. PSV extension of the
PIF-CORE (for example, by introducing a relation such as PERFORMS-
EXCLUSIVELY, cf. Section 6). SUCCESSOR in PIF may not correspond
exactly to the notions of successor as used in some workflow or enactment
systems because it is common in these systems to bundle into a single re-
lationship a mixture of temporal, causal, and decomposition relationships
among activities. PIF provides precise, separate relationships for all three
of these activities-to-activity specifications. For example, the temporal rela-
tionship is specified with the BEFORE relation, the causal relation with the
Precondition and Postcondition attributes of ACTIVITY, and the decompo-
sition relation with the Component attribute. Its intention is to allow the
exact meaning to be communicated. Hence, one might have to combine some
of these constructs to capture exactly the meaning of SUCCESSOR as used
in ones own system.

The attribute value of a PIF-CORE object holds independent of time (i.e.
no temporal scope is associated with an attribute value in the PIF-CORE).
Any property of an object which can change over time, should be represented
by a RELATION that links the property to a timepoint. An example of-one
such RELATION in the PIF-CORE is ACTIVITY-STATUS which is used
to represent the status (e.g. DELAYED, PENDING) of an ACTIVITY at
different times. The ACTIVITY-STATUS is provided in the PIF-CORE be-
cause it is the one example of a dynamic property of those objects commonly
used in process modeling and workflow systems and modeled in the PIF-
CORE. Other properties of those objects included in the PIF-CORE are, for
the most part, true for all time. As mentioned before, it is possible to extend
the PIF-CORE to express additional temporally scoped properties by intro-
ducing additional RELATIONS. It is also possible to add temporally scoped
version of the static attributes already in the PIF-CORE. In this case, any
such static attributes actually specified in a PIF file holds true for all time.

The attribute value of a PIF object can be one of the PIF value types spec-
ified above. The PIF primitive value types consist of NUMBER, STRING,
and SYMBOL. The PIF composite value types are LIST and PIF-SEN-
TENCE. LIST is used for conveying structured information that is not to
be evaluated by a PIF interpreter, but simply passed along (e.g. as in the
User=Attributerattributerof ENTITY)y PIF-SENTENCE is used to specify a
condition that is either true or false, as required, for example, for the Pre-
condition and the Postcondition attributes of ACTIVITY.

176 J. Lee, M. Gruninger, Y. Jin, T. Malone, A. Tate, G. Yost

PIF-SENTENCE is a logical expression that may include variables, quan-
tifiers, and the Boolean operators for expressing conditions or constraints. A
PIF-SENTENCE is used in the Constraint slot of ENTITY, the Precondi-
tion and the Postcondition slots of ACTIVITY, and the If slot of DECISION.
A variable in a PIF-SENTENCE takes the following positions in the three
dimensions that define the possible usage. (1) The scope of the variable is
the frame. That is, variables of the same name within a frame définition are
bound to the same object, whereas they are not necessarily so if they occur
in different frames. (2) A variable is assumed to be bound by an implicit
existential quantifier. (3) The constraints on variables in a frame definition
are expressed in the Constraints slot of that frame. These constraints are
local to the frame.

These positions are expected to be extended by some PSV Modules. Some
PSV modules will extend the scope of a variable beyond a single object. Some
will introduce explicit existential and universal quantifiers. Yet others will
allow global constraints to be stated, possibly by providing an object where
such global constraints that hold across all the objects in a PIF file (e.g. All
purchase order must be approved by the finance supervisor before sent out.).

Notable Absence:

We have decided not to include ROLE because a role may be defined wher-
ever an attribute is defined. For example, the concept of RESOURCE is a
role defined by the Resource attribute of the USE relation. Any object, we
view, is a resource if it can be USEd by an ACTIVITY. As a consequence,
we have decided not to include ROLE or any construct that represents a role,
such as RESOURCE. ACTOR is not included in PIF because it is another
role-concept, one defined by the Actor attribute of the PERFORMS relation.
Any object, as long as it can fill the Actor attribute, can be viewed as an
ACTOR. Hence we resolved that explicit introduction of the constructs such
as ACTOR or RESOURCE is redundant and may lead to potential confu-
sions. We should note, however, that the PIF-CORE provides the construct
AGENT, which is not defined by a role an entity plays but by its inher-
ent characteristic, namely its capability (for example, of making intelligent
decisions in various domains).

5

PIF 177

Alphabetic Class Reference

| Activity |
Parent Classes: Entity
Attribute Value Type Multiple Values Allowed
Component Activity Yes
Precondition PIF-SENTENCE No
Postcondition PIF-SENTENCE No
Begin TIMEPOINT No
End TIMEPOINT No

Attribute Descriptions:

Component: The subactivities of the activity. For example, if the
activity is “Develop Software”, its Component may include: “Design
Software”, “Write Code”, “Debug Software”, and so on. The field is
inherited from ENTITY, but here it is restricted so that its values must
all be ACTIVITY entities.

Precondition: The conditions that have to be satisfied at the Begin
timepoint of the activity before it can get executed. For example, a
precondition of the activity “Run Software” might state that the ex-
ecutable code must be available. Such conditions are expressed using
PIF-SENTENCES.

Postcondition: The conditions that are true at the End timepoint of
the activity. For example, a postcondition of the activity “Run Soft-
ware” might be that a log file has been updated. Such conditions are
expressed using PIF-SENTENCES.

Begin: The TIMEPOINT at which the activity begins.
End: The TIMEPOINT at which the activity ends.

In the PIF-CORE, the condition in the Precondition is to be true before the
Begin timepoint of the ACTIVITY. Similarly, the condition in the Postcondi-
tion is to be true after the End timepoint of the ACTIVITY. This requirement
may be relaxed later in PSV modules (cf. Section 6) to allow the precondition
and the postcondition to be stated relative to other time points.

Many preconditions and postconditions can be expressed in PIF with-
out using the Precondition and Postcondition attributes of ACTIVITY. For
examplejrtherUSErrelationnbetweenvan activity A and an object O implies
that one of A’s preconditions is that R is available. In general, the Precon-
dition and Postcondition attributes of ACTIVITY should only be used to

178 J. Lee, M. Gruninger, Y. Jin, T. Malone, A. Tate, G. Yost

express conditions that cannot be expressed any other way in PIF. Doing so
will maximize the degree to which a process description can be shared with
others.

| ACTIVITY-STATUS |
Parent Classes: RELATION

Attribute Value Type Multiple Values Allowed

Activity ACTIVITY Yes
Status SYMBOL Yes
When TIMEPOINT No

Attribute Descriptions:
e Activity: The activity whose status is being specified.
e Status: The status being specified such as DELAYED and PENDING.

e When: The timepoint at which the status of the activity is being
specified.

| AGENT |
Parent Classes: OBJECT — ENTITY

Attribute Value Type Multiple Values Allowed
Capability SYMBOL Yes
Component AGENT Yes

Attribute Descriptions:

e Capability: Its possible values are SYMBOLS that represent the kinds
of skills the agent is capable of providing. The symbols are supplied by
the source language and simply preserved across translations by PIF.
A PSV Module may introduce a restricted set of symbol values.

An AGENT represents a person, group, or other entity (such as a computer
program) that participates in a process. An AGENT is distinguished from
other ENTITIES by what it is capable of doing or its skills.

PIF 179

| BEFORE |
Parent Classes: RELATION — ENTITY

Attribute Value Type Multiple Values Allowed

Preceding- TIMEPOINT No
Timepoint
Succeeding- TIMEPOINT No
Timepoint

Attribute Descriptions:

e Preceding Timepoint: The time point that is before the Succeeding
Timepoint.

¢ Succeeding Timepoint: The time point that is after the Preceding
Timepoint.

BEFORE is a relation between TIMEPOINTS not between ACTIVITIES.

A shorthand for a common example of the BEFORE relation is available via
the SUCCESSOR relation.

I CREATES l
Parent Classes: RELATION — ENTITY

Attribute Value Type Multiple Values Allowed
Activity ACTIVITY No
Object OBJECT Yes

Attribute Descriptions:

e Activity: The activity that creates the object. The object is assumed
to be created at some non-determinate timepoint(s) between its Begin
and its End timepoint inclusive.

e Object: The object that the activity creates.

180 J. Lee, M. Gruninger, Y. Jin, T. Malone, A. Tate, G. Yost

[DECISION]
Parent Classes: ACTIVITY — ENTITY
Attribute Value Type Multiple Values Allowed
If PIF-SENTENCE No
Them ACTIVITY Yes
Else ACTIVITY Yes

Attribute Descriptions:

e If: The condition being tested to decide which successor relations to
follow. Such conditions are expressed using PIF-SENTENCES.

e Then: The activity to follow if the condition in the If field holds (that
is, if the PIF- SENTENCE in the If field evaluates TRUE).

¢ Else: The activity to follow if the condition in the If field does not hold
(that is, if the PIF-SENTENCE in the If field evaluates to FALSE).

A DECISION is a special kind of activity that represents conditional branch-
ing. If the PIF Sentence in its If attribute is TRUE, the activity specified in
its Then attribute follows. If not, the activity in its Else attribute follows.
If the Else attribute is empty, it means no activity follows the DECISION
activity in the case where the decision condition is false. If more than one
activity in a process is dependent on a decision, then they may be included
in the multiple value then or else attributes. To ease description of a com-
plex sub-process which is dependent on the decision, it is possible to describe
a set of sub-activities (and any ordering or other constraints on them) in a
separate process and to include that process itself within the “then” or “else”
attributes.

i ENTITY J
Parent Classes: None. ENTITY is the roof of the PIF class hier-
archy

Attribute Value Type Multiple Values Allowed
Name STRING 3 No
Documentation STRING No
Component ENTITY Yes
Constraint PIF-SENTENCE No

User-Atiribute LIST No

PIF 181

Attribute Descriptions:

e Name: The entity’s name.

e Documentation: A description of the entity.

Component: This attribute is used to specify an homogeneous aggre-
gate of the type itself. For example, in an AGENT object, this attribute
can be used to specify that the agent is in fact a group of sub-agents. In
an ACTIVITY object, this attribute is used to specify its subactivities
that make up the activity. If one needs to specify a group of objects
of different types, then one can do so by going up to an object of their
common ancestor type and specify them in the Component attribute of
this object. When interpreted as a relation, this relation holds between
the entity and each value, not between the entity and the set of all the
values.

Constraint: This attribute is used to specify any constraint that
should be true of the other attribute values in the current entity, e.g.
constraints on the variables.

User-Attribute: This attribute is used to store additional ad-hoc attributes
of an entity that are not part of its class definition. For example, a process
modeling application might allow users to specify additional attributes for
AGENT entities that are not included in AGENT’s PIF definition ~ the user
might want to add an attribute recording the AGENT’s age, for example.
Such additional attributes can be stored in the User- Attribute attribute,
which all PIF entities inherit from ENTITY. Another common use is in the
Partially Shared Views translation scheme that we propose for interchanging

PIF

files (see Section 6). Each value of User-Attribute is a list containing

an attribute name and its value(s). For example, an OBJECT entity might

have

(User-Attribute (Color RED GREEN) (Weight 120))

MODIFIES]

Parent Classes: RELATION — ENTITY

Attribute Value Type Multiple Values Allowed

"_Actimit-y ACTIVITY No
Object OBJECT Yes

Attribute Descriptions:

Activity: The activity that modifies the object. The object is assumed
to be modified at some non-determinate timepoint(s) between its Begin
and its End timepoint inclusive.

e Object: The object that the activity modifies.

182 J. Lee, M. Gruninger, Y. Jin, T. Malone, A. Tate, G. Yost

| OBJECT J
Parent Classes: ENTITY

Attribute Descriptions: No Attributes.

An OBJECT is an entity that can be used, created, modified, or used in
other relationships to an activity. This includes people (represented by the
AGENT subclass in PIF), physical materials, time, and so forth. The PIF
Working Group has discussed adding OBJECT attributes such as Consum-
able, Sharable and so forth, but so far no decision has been made on what
attributes are appropriate.

[PERFORMS |
Parent Classes: RELATION — ENTITY

Attribute Value Type Multiple Values Allowed
Actor OBJECT Yes
Actwity ACTIVITY Yes

Attribute Descriptions:
e Actor: The object that performs the activity.

e Activity: The activity that is performed. The actor is assumed to
perform the activity at some non-determinate timepoint(s) between its
Begin and its End timepoint inclusive.

| RELATION
Parent Classes: ENTITY

Attribute Descriptions: No Attributes.

RELATION entities have no attributes of their own. PIF uses it as an ab-
stract parent class for more specific relation classes such as USES and PER-
FORMS.

PIF 183

| SUCCESSOR |
Parent Classes: RELATION — ENTITY
Attribute Value Type Multiple Values Allowed
Preceding-Activity ACTIVITY No
Succeeding-Activity ACTIVITY Yes

Attribute Descriptions:
¢ Preceding-Activity: The preceding activity.
e Succeeding-Activity: The succeeding activity.

SUCCESSOR, with the Preceding-Activity ACTIVITY-1 and the Succeeding-
Activity ACTIVITY-2 is exactly the same as BEFORE with Preceding-
Timepoint TP-1 and Succeeding-Timepoint TP-2, where TP-1 is the Begin
timepoint of ACTIVITY-2 and TP- 2 is the End timepoint of ACTIVITY-1.
That is, the SUCCESSOR relation is true if the ACTIVITY-1 ends before
the ACTIVITY-2 begins.

| TIMEPOINT |
Parent Classes: ENTITY

Attribute Descriptions: No Attributes.

TIMEPOINT represents a point in time. In PIF-CORE, it is used, for ex-
ample, to specify the Begin and End times of an Activity or the Preceding
and Succeeding time points of the BEFORE relation.

l USES |
Parent Classes: RELATION — ENTITY

Attribute Value Type Multiple Values Allowed
Activity ACTIVITY No
Object OBJECT Yes

Attribute Descriptions:

e Activity: The activity that uses the object from its Begin timepoint
to its End timepoint. The USES relation is true from the Begin to
the End timepoint of the activity. The object is assumed to be used
at some non-determinate timepoint(s) between its Begin and its End
timepoint inclusive.

e Object: The object that the activity uses.

184 J. Lee, M. Gruninger, Y. Jin, T. Malone, A. Tate, G. Yost

6 Extending PIF

PIF provides a common language through which different process represen-
tations can be translated. Between two process representations that support
translations into PIF, one can be translated into a PIF description, which can
then be translated into the other representation, thus reducing the number
of required translators from n*(n-1) to n. However, because there will always
be representational needs local to individual groups, there must also be a
way to allow local extensions to the description classes while supporting as
much sharing as possible among local extensions. The Partially Shared Views
(PSV) scheme has been developed for the purpose [LM90]. PSV integrates
different ways of translating between groups using different class hierarchies
(e.g. pairwise mapping, translation via external common language, transla-
tion via internal common language) so as to exploit the benefits of each when
most appropriate.

A PSV Module is a declaration of PIF entities which specialize other
entities in the PIF- CORE or other PSV modules on which it builds. The class
definitions in a PSV Module cannot delete or alter the existing definitions
but can only add to them. Examples of PSV Modules are given at the end
of this section. A group of users may adopt one or more PSV Modules as
necessary for its task.

A group using a PSV module translates a PIF object X into their native
format as follows:

1. If X’s class (call it C) is known to the group and the group has de-
veloped a method that translates objects of class C into their native
format, then apply that translation method. C is known to the group
if either C is defined in one of the PSV Modules that the group has
adopted or the group has set up beforehand a translation rule between
C and a type defined in one of the PSV Modules adopted.

2. Otherwise, translate X as if it were an object of the nearest parent
class of C for which (1) applies (its parent class in the most specific
PSV Module that the group and the sender group both share, i.e. have
adopted).

This translation scheme allows groups to share information to some degree
even if they do not support identical class hierarchies. For examples, suppose
that Group A supports only the standard PIF AGENT class, and that Group
B in addition supports an EMPLOYEE subclass. When Group A receives
a process description in Group B’s variation on PIF, they can still translate
any EMPLOYEE objects in the description as if they were AGENT objects.
Whatrhappensitorany informationthatiis in an EMPLOYEE object that is not
in a generic AGENT object? That will vary according to the sophistication of
the translator and the expressive power of the target process representation.

PIF 185

However, the translator will preserve the additional information so that it
can be viewed by users and reproduced if it is later translated back into PIF.

For example, suppose EMPLOYEE has a “Medical-plan” attribute, which
is not part of the AGENT object in the PIF-CORE. Then Group A’s trans-
lator would

e Translate any Medical-plan attributes into a form that the user could
view in the target system (even if it only as a textual comment) AND

o When the information is re-translated into PIF in the future (from
Group A’s native format), it is emitted as an EMPLOYEE object with
the same value for the Medical-plan attribute (and not simply as an
AGENT object with no Medical-plan attribute). MIT researchers are
currently investigating this general problem of preserving as much in-
formation as possible through “round trips” from one representation to
another and back [Cha95].

Translators that can follow these conventions will minimize information loss
when processes are translated back and forth between different tools. The
details of PSV can be found in [LM90]. In the current version of PIF, each PIF
file begins with a declaration of the class hierarchy for the objects described
in the file. PSV uses this class hierarchy to translate objects of types that
are unknown to a translator. To eliminate the need for PIF translators to
do any other inheritance operations, however, all PIF objects should contain
all of their attributes and values. For instance, even if the value of a given
attribute is inherited without change from a parent, the attribute and value
are repeated in the child.

As the number of PSV modules grows large, we need a mechanism for
registering and coordinating them so as to prevent any potential conflict
such as naming conflict. Although the exact mechanism is yet to be worked
out, we are envisioning a scenario like the following. The user who needs
to use PIF would first consult the indexed library of PSV modules, which
documents briefly the contents of each of the modules and the information
about the other modules it presupposes. If an existing set of modules does
not serve the users purpose in hand and a new PSV module has to be created,
then the information about the new module and its relation to other modules
is sent to a PSV registration server, which then assigns to it a globally unique
identifier and updates the indexed library. We foresee many other issues to
arise such as whether any proposed PSV module should be accepted, if not
who decides, whether to distinguish an ad-hoc module designed for temporary
quick translation between two local parties from a well- designed module
intended for global use, and so on. However, rather than addressing these
issues in this document, we will address them in a separate document as we
gain more experience with PSV modules.

To date, two PSV Modules have been specified: Temporal-Relation-1 and
IDEF-0 Modules. The Temporal-Relation-1 Module extends the core PIF by

186 J. Lee, M. Gruninger, Y. Jin, T. Malone, A. Tate, G. Yost

adding all possible temporal relations that can hold between two activities (cf.
Figure 3). The IDEF-0 Module adds the constructs necessary for translating
between IDEF-0 descriptions and PIF. IDEF-0 is a functional decomposition
model, which however has been historically used widely as a process model
description language. IDEF-0 has been used in various ways with no single
well-defined semantics. Hence, the IDEF-0 PSV Module supports transla-
tion between PIF and one particular version of IDEF-0. It introduces two
additional relations, USES-AS-RESOURCE and USES-AS- CONTROL, as
specializations of the USES relation. They are meant to capture the Control
and Mechanism input of IDEF-0. The Input and Output relations of IDEF-
0 may be translated into PIF by using the Precondition and Postcondition
attribute of ACTIVITY. The mapping between IDEF and PIF is shown in
Figure 4. These modules have not been officially registered. They are pre-
sented here only to provide examples of PSV modules. We are soliciting
further inputs before we register them.

- T
S) |
o [I
o |)
oo []
oo []

Figure 3: Possible Temporal Relations between Two Activities

7 Future Directions

Following the release of PIF version 1.2, PIF developments are expected to
follow the following directions.

e We plan to coordinate further development of PIF with other knowl-
edge sharing projects so as to produce compatibility, if not convergence,
amongthemmetasmodelssproduced. We will continue working closely
with the NIST PSL Group in order to make PSL and PIF compatible.
We also plan to work with the International Workflow Management

PIF 187

IDEF-0 PIF
X
|
Coniro ACTIVITY
o l <:> Precondition: W
_" Postcondition: Z
. An input will be represented as a
Ouput ; PIF sentence specifying the
Input ; condition that the input exist.
R ACTIVITY A —— z .
USES-AS-CONTROL
Activity. ACTIVITY-1
Object: X
:Both slots inherited from USES
T USES-AS-RESOURCE
Mechanism Activity: ACTIVITY-1
L Object Y
Y :Both slots inherited from USES

Figure 4: Mapping between IDEF-0 and PIF Constructs

Coalition (http://www.aiai.ed.ac.uk/WIMC), whose goal is to produce
interoperability among workflow applications. We have been also talk-
ing to the people in the Knowledge Sharing Initiatives [NFFGPSS91],
which has produced KIF (Knowledge Interchange Format) described
earlier, tools and protocols for sharing knowledge bases, and Web-based
ontology libraries among other things. We plan to intensify these co-
ordination efforts through more structured and active forms such as
workshops and regular meetings.

We plan to elaborate on the PIF extension mechanism. We need to dis-
cuss and work out the details on such issues as Who can propose and
accept PSV modules in which domain and How the modules should be
named, registered, organized, and accessed. We also need to carefully
lay out the space of PSV modules by identifying an initial set of gener-
ally useful ones extending the PIF-CORE. Again, this work will require
close interactions with the other knowledge sharing groups as well as
the experts in various domains. We hope to pursue this objective as a
part of pursuing the first objective of coordination with other groups.

In order to use PIF to share process descriptions automatically, we need
a PIF- translator for each of the local process representations involved.
For example, each of the groups represented in the PIF Working Group
built a translator for translating between PIF 1.0 and its own repre-
sentation. Building PIF-translators are ultimately the responsibility
of individual groups who want to use PIF. However, we would like to
provide a toolkit that will help future groups build PIF-translators.

188 J. Lee, M. Gruninger, Y. Jin, T. Malone, A. Tate, G. Yost

Acknowledgments: The PIF Working Group’s activities are supported by DARPA,
NSF, Corporate Sponsors of the MIT Center for Coordination Science, sponsors and
organizations of the PIF Working Group members. This article is a revised ver-
sion of Lee, J. et al (1998) “The Process Interchange Format and Framework” in
Knowledge Engineering Review 13 (1), pp. 91-122.

References

[Cha95] "~ Chan, F. Y., The Round Trip Problem: A Solution for the Process
Handbook, unpublished Master’s Thesis, MIT Dept. of Electrical
Engineering and Computer Science, May 1995

[GF92] Genesereth, M., Fikes, F., Knowledge Interchange Format v. 3
Reference Manual, available as a postscript file via anonymous
ftp from www-ksl.stanford.edu:/pub/knowledge-sharing/papers/
kif.ps, 1992

[Gru93] Gruber, T., Ontolingua: A Translation Approach to Portable
Ontology Specifications, Knowledge Acquisition 5(2), 1993, 199-
200, available via anonymous ftp from www-ksl.stanford.edu:/pub/
knowledge-sharing/papers/ongolingua-intro.ps

[ISO89] International Standard Organization Information processing sys-
tems — Open Systems Interconnection — LOTOS - A formal de-
scription technique based on the temporal ordering of observational
behaviour, ISO-8807, 1989

[LM90] Lee, J., Malone, T., Partially Shared Views: A Scheme for Commu-
nicating between Groups Using Different Type Hierarchies, ACM
Transactions on Information Systems 8(1), 1990, 1-26

[MCLB93] Malone, T., Crowston, K., Lee, J., Pentland, B., Tools for Inventing
Organizations: Toward a Handbook of Organizational Processes,
Proceedings of the 2nd IEEE Workshop on Enabling Technologies
Infrastructure for Collaborative, IEEE Computer Society Press,
1993

[MME94] Menzel, C., Mayer, R., Edwards, D., IDEF3 Process Descriptions
and Their Semantics, in: A. Kusiak, C. Dagli (eds.), Intelligent
Systems in Design and Manufacturing, New York, ASME Press,
1994

[NIST93a) National Institute of Standards and Technology Integration Defi-
nition for Function Modeling (IDEF0), Federal Information Pro-
cessing Standards Publication 183, Computer Systems Laboratory,
1993

[NIST93Db] National Institute of Standards and Technology Integration Defi-

[NFFGPSS91]

[Ste90]

[Tat95]

PIF 189

nition for Function Modeling (IDEF1X), Federal Information Pro-
cessing Standards Publication 184, Computer Systems Laboratory,
1993

Neches, R., Fikes, R., Finin, T., Gruber, T., Patil, R., Senator, T,
Swartout, W. R., Enabling Technology for Knowledge Sharing, Al
Magazine 12(3), 1991, 36-56

Steele, G., Common Lisp: The Language, Second edition, Digital
Press, 1990

Tate, A., Characterizing Plans as a Set of Constraints - the <I-
N-OVA> Model - a Framework for Comparative Analysis, ACM
SIGART Bulletin, Special Issue on: Evaluation of Plans, Planners,
and Planning Agents, Vol. 6 No. 1, January 1995, available as a
postscript file via ftp://ftp.aiai.ed.ac.uk/pub/documents/1995/95-
sigart-inova.ps

CHAPTER 9

GPN

(Generalised Process Networks

Ginter Schmidt

Business process management is the task to accomplish work in organisations such
that processes are carried out in some form of “optimal” way. Two important
tasks of business process management are planning and scheduling. Planning is
concerned with structuring the processes i.e. determining what needs to be car-
ried out and in what sequence to achieve the objective of the process. Scheduling
is concerned with assigning limited resources over time to competing activities of
business processes. A modelling language is presented for the purposes of planning
and scheduling in support of business process management.

1 Introduction

Modelling languages are required for building models in various application
areas. We shall focus on the management of business processes which require
the modelling of time-based activities for planning and scheduling purposes.
A business process is a stepwise procedure for transforming some input into a
desired output while consuming or otherwise utilising resources. Some generic
examples are: “Product Development”, “Procurement”, or “Customer Order
Fulfilment”; some more special examples would be “Claims Processing” in
insurance companies or “Loan Processing” in banks. The output of a business
process should always be some kind of achievement (good or service) which is
required by some customer. The customer might be either inside or outside
the organisation where the process is carried out [Sch97].

Two major tasks of business process management are planning and schedul-
ing. Planning is concerned with determining the structures of processes be-
fore they are carried out the first time. Scheduling in turn is concerned with
assigning resources over time to competing processes. Both planning and
scheduling focus on dependencies among transformations within one process
or between different processes. Malone and Crowston [MC94] formulated

192 Ginter Schmidt

the need to merge the paradigms of business process planning and busi-
ness process scheduling concerning the management of dependencies among
transformations. The reason is not only to increase the potential of applying
results from planning and scheduling theory to the management of business
processes but also to consider the relevance of problems arising from business
process management for a theoretical analysis within this area.

Planning and scheduling require a specialised model of the business pro-
cess. To build the required process model we propose Generalised Process
Networks (GPN) [Sch96], a graphical language related to CPM type of net-
works [SW89]. We will show that GPN are expressive enough to formulate
problems related to planning and scheduling of business processes within the
same model. Doing this we use a semi-formal kind of presentation of the
syntax and the semantics of GPN.

We start with a short discussion of business processes. Then we intro-
duce a framework for systems modelling to define requirements for business
process models. Based on this we describe the GPN language and discuss its
application to business process planning and scheduling. Finally, we use an
example to demonstrate the modelling capabilities of the approach.

2 What is a Business Process?

A business process is a stepwise procedure for transforming some given input
into some desired output. The transformation is consuming or using re-
sources. A business process has some form of outcome, i.e. goods or services
produced for a customer or customers either outside or inside the enterprise.
There are two usual meanings attached to the term “business process”; a
business process may mean a process type or a process instance.

The process type can be described by defining the general structure of a
process; the process instance is a real process following the rules and structure
of a given process type. A process type can be interpreted as a pattern; the
behaviour of a corresponding instance matches with the pattern. A process
type might be a pattern called “Product Development”, and the correspond-
ing instance could be “Development of Product X” carried out according to
the pattern of “Product Development”. In the sequel a process instance will
also be referred to as a job.

The process type is defined by its input and output, functions to be
performed, and rules of synchronisation. The process input and output are
related to tangible and intangible achievements. For example the major shop
floor functions in production have as input different kinds of raw materials
which are transformed into various types of output called processed material;
office functions are mainly transforming data or information into new data
ormmewrinformationwImgenerabinputiand output will consist of material and
information simultaneously.

A function represents the transformation of some input into some out-

GPN 193

put. Functions are related through precedence relations which constrain the
possible ways a process can be executed. E.g. a precedence relation requires
synchronisation if the output of a predecessor function is part of the input
of the successor function. Before a function can be executed certain pre-
conditions have to be fulfilled and after a function has been executed certain
post-conditions are fulfilled.

Starting and ending a function is caused by events. In general an event
represents a point in time when certain conditions come about, i.e. the condi-
tions hold from that time on until the next event occurs. Conditions related
to events are described by values of attributes characterising the situation
related to the occurrence of an event.

These event values are compared to pre-conditions and post-conditions of
functions. Before carrying out some function its pre-conditions must match
with the conditions related to its beginning event and after carrying out
a function the conditions related to its ending event must match with the
post-conditions of the function. Synchronisation means that there must be
some order in which functions might occur over time; in its simplest form a
predecessor-successor relationship has to be defined.

To fully determine a process type a number of variables related to the
input and output of functions need to be fixed. The input defines the producer
who is responsible for carrying out a function, the required resources, and the
required data; the output defines the product generated by a function, the
customer of the product, and the data available after a function is carried out.
Once a process type is defined its instances can be created. A process instance
is performed according to the definition of the corresponding process type.
The input, output, functions, and synchronisation of a process instance relate
to some real job which has to be carried out. The input must be available,
the output must be required. Functions that make up a process type have to
be instantiated. A function instance is called task. It is created at a point in
time as a result of some event and is executed during a finite time interval.
To ensure task execution scheduling decisions need to be taken considering
the synchronisation and the resource allocation constraints as defined by the
process type and resource availability.

Scheduling process instances means to allocate all actual or predicted
instances of different process types to resources over time. The process type
represents constraints for the scheduling decision [BEPSW96]. In terms of
scheduling theory an instance of a business process is a job which consists of
a set of precedence constrained tasks. Additional attributes to tasks and jobs
can be assigned [Sch96b]. Questions to be answered for process scheduling
are: which task of which job should be executed by which resource and at
whatstime: Typically; performancesmeasures for business process instances
are time-based and relate to flow time or completion time of jobs; scheduling
constraints are related to due|/dates or deadlines.

194 Ginter Schmidt

3 Views to be Modelled

Modelling is a major component in planning and scheduling of business pro-
cesses. A framework for system modelling is given by an architecture. An
architecture shows the requirements for building models and defines the nec-
essary views on a system. Many proposals of architectures have been devel-
oped and evaluated with the objective to find a generic enterprise reference
architecture [BN96]. An architecture which fits in such a framework is LISA
[Sch96a). LISA differs between four views on models:

1. the granularity of the model,
2. the elements of the model and their relationships,
3. the life cycle phase of the model, and

4. the purpose of modelling.

According to granularity models for process types and for process instances
have to be considered. Concerning the elements and their relationships mod-
els of business processes should represent the inputs (data, resources), the
outputs (data, products), the organisational environment (producer, cus-
tomer), the functions, and the synchronisation (events, conditions, depen-
dencies). According to life cycle phase models are needed for analysis, de-
sign, and implementation. Finally, concerning the purpose of modelling we
need models for the problem description and for the problem solution. The
problem description states the objectives and constraints and the problem
solution is a proposal how to meet them. Figure 1 shows the different views
to be represented by business process models in the framework of LISA.

Life Cycle

Implementation

Design

Analysis

/ A

Business

Problem
Representation

Process
Type

Process
Instance

Problem

Processes ¢
Solution

o »woT e oy

/

Bl e N L o)

Input

Function

Synchronisation
Output

Elements

Figure 1: Views on business processes defined by LISA

GPN 195

The views thus identified need to be represented by an appropriate mod-
elling language. First we concentrate on the views concerning the purpose
of modelling. We will show that GPN supports the formulation of planning
and scheduling models suited both for the problem description and for the
problem solution.

4 Generalised Process Networks

There exist many modelling languages to describe business processes. Promi-
nent examples can be found in this volume. Most of these languages have
been developed for planning purposes with a focus on the problem descrip-
tion. Models suited for scheduling purposes in particular for optimisation
require, a representation which is suited for combinatorial problem solving.
Existing modelling languages do not support process-description which would
be suitable for the modelling of the combinatorial structure of the problem,
and therefore they are not well suited for the task of scheduling business
processes [CK092]. For this reason GPN was developed.
The modelling language has to fulfil two basic requirements:

¢ Completeness and consistency. All relevant views of a system must
be covered and the various view definitions must be defined in a seman-
tically consistent way,

e Understandability. The syntax and semantics must be easy to un-
derstand and easy to use by the target audience.

The relevant system views for business processes are defined in LISA:

e Life Cycle. It is not useful to have only one monolithic modelling lan-
guage covering all phases of the life cycle. Every phase requires different
details to be represented, and different expertise which is best reflected
by the selected syntax and associated semantics of the language. GPN
is designed for the analysis phase.

e Granularity. There are two levels of granularity, i.e. the type of a
process and its instances. As these two levels are very much interrelated
the modelling language should cover both. GPN models both process
types and process instances.

¢ Elements. The inputs, outputs, functions, and synchronisation needs
of business processes are modelled. GPN considers all business process
elements which are required for planning and scheduling.

o Purpose: Most businessiprocess models are of descriptive nature and
there is no link from these to building constructive models for prob-
lem solving. Descriptive models help to answer questions like “what

196 Ginter Schmidt

happens if ...?”. In contrast, the purpose of constructive models is to
answer the question “what has to happen so that ...?”. Descriptive
models are mainly used to get an understanding of a problem; the do-
main of constructive models is more related to (analytical) problem
solving. While using GPN a common model for process planning and
process scheduling can be formulated which is accessible by descriptive
and constructive techniques [Sch96a.

We shall differentiate between a model for a process type (used for planning)
and a model for a process instance (used for scheduling), i.e. descriptive
modelling is used to represent process types and constructive modelling is
used to represent process instances. However, both models are described
using one language. The basic syntactical elements of GPN are nodes, arcs,
and labels assigned to nodes and arcs (see Figure 2).

——P
Nodes Arcs

Xyz Label

Input Part Output Part

Figure 2: Basic elements of GPN

The semantics of GPN are defined in six layers. The first layer defines the
meaning of the basic elements, the second layer is dedicated to the functional
specifications, the third to synchronisation aspects representing relationships
between functions, the fourth to input and output data, the fifth to required
resources and generated products, and the sixth layer describes the customer-
producer relationship as related to a function. These semantic layers are
shown in Figure 3.

Arcs represent functions. Connected to each function is a number of pre-
conditions and a number of post-conditions. The pre-conditions must be
satisfied for the function to be carried out; post-conditions are satisfied as a
result of performing the function.

Nodes represent events defining constraints for synchronisation of func-
tions. An event separating two functions represents the constraint that the
two functions cannot be carried out in parallel but only in a certain sequence.
Functions which have no separating event can be performed in parallel. The
occurrence of an event is a necessary condition to perform a function. Each
event is described by a value list defining the environmental conditions repre-
sented by the event. The occurrence of an event is also a sufficient condition
for performing a function if its value list meets the pre-conditions of the func-
tion adjacent to this'event: There are two events connected to each function;
one represents its start and the other one its end. Figure 4 is a graphical
representation of a function (i,j) with its beginning and ending events i and

GPN

Producer and Customer

Resources and Products

Data

Synchronisation

Functions

Basic Elements

Figure 3: Semantic layers of GPN

197

j, pre- and post-conditions and the value lists of the input and output parts

of the associated events.

i Function (i, j)

Pre-condition Post-condition

Value List (i)

Value List (j)

Figure 4: First three layers of GPN

Additional labels may be assigned to the arcs as shown in Figure 5.

e Producer-Customer label: The producer is responsible for carrying
out some function and the customer needs the results from this function.
The inputs of the function are transformed under the responsibility
of the producers, and the output of the function is consumed by the

customers.

¢ Resource-Product label: Resources are the physical inputs of the
function, products are its physical outputs (resources required, products

generated).

e Data-Data label: Input data represent the information required for
performing a function and output data represent the information avail-
able after performing it (data needed, data generated).

198 Ginter Schmidt

Producer Customer
Resources Required Products Generated
Data Needed Data Created

Function (i, j)

Pre-condition Post-condition

Value List (i) Value List (j)

Figure 5: Labelling nodes and arcs of GPN

Nodes represent the dependencies in processing functions. We differentiate
between six possible dependencies: three for beginning events and three for
ending events (see Figure 6).

S
Y

AND OR XOR
Figure 6: Beginning and ending events

¢ begin-AND: all functions triggered by this event have to be processed
(all pre-conditions of all functions must be fulfilled by the value list of
the triggering event),

e begin-OR.: at least one function triggered by this event has to be
processed (at least the pre-conditions of one function must be fulfilled
by the value list of the triggering event),

. begin-XOR: one and only one function triggered by this event has to

GPN 199

be processed (the pre-conditions of one and only one function must be
fulfilled by the value list of the triggering event),

¢ end-AND: this event occurs only if all functions ending with this event
have been processed (all post-conditions of all functions must be fulfilled
by the value list of the ending event),

e end-OR: this event occurs if at least one function ending with this
event-has been processed (at least the post-condition of one function
must be fulfilled by the value list of the ending event),

¢ end-XOR: this event occurs if one and only one function ending with
this event has been processed (the post-condition of one and only one
function must be fulfilled by the value list of the ending event).

We shall now discuss how GPN can be used to model process types and
process instances for planning and scheduling purposes.

4.1 Process Types

When building a model for describing process types we represent the process
structure on a level where all attributes are defined but their values are
not given. To represent a specific process type in some application domain
all nodes, arcs and all labels will refer to objects or object types of this
application, e.g.

e a producer and a customer might be two distinct organisational units
of an enterprise,

e resources might be specific machines or employees with certain qualifi-
cations as well as material or incoming products to be processed,

e products might be types of goods or services,

¢ business functions represent specific activities for the transformations
of material and information,

o the value lists of the events, all pre- and post-conditions of the functions,
and all input and output data are specific to the application domain.

An example of a process type represented as a GPN schema is shown in Figure
7. The function “Generate Purchase Order” can be interpreted as an activ-
ity of a procurement process. Pre-conditions represent the assumption that
there must be some “Budget Available” for purchasing. The post-condition
“Ready for Ordering” which should be fulfilled after the function “Generate
Pirchase Order” is processed: The'meaning is that the purchase order is
ready for sending out. Both conditions match with some values of the list of
the beginning and the ending events. Data needed for preparing a purchase

200 Ginter Schmidt

order are the “Vendor” (address of vendor) and the “Items” (list of items)
to be purchased; data created are all purchase order related: “Total Sum”
or “Tax” (to be paid). Required resources might be a “Secretary” and a
“Computer”; the product generated is a “Purchase Order Document”. The
manufacturing department “MD” (the customer) asks the purchasing de-
partment “PD” (the producer) to process the function “Generate Purchase
Order”.

PD MD
Secretary, Computer Purchase Order Doc
Vendor, Items Total Sum, Tax
i Generate Purchase Order j
Budget Available Ready for Ordering

. Order Ready,
Demand Exists, Demand Exists,

Budget Available Budget Available

Figure 7: An example for process planning

4.2 Process Instances

In the planning phase the required attributes are defined; their values are
determined once an instance of a business process is known. For example
the data for “Vendor” or “Items” might be “Vendor ABC” and “Item 123”.
The emphasis of models for process instances is to find answers to schedul-
ing questions, such as timing and resource allocation, taking into account
competing process instances (jobs).

On an instance level a GPN will have detailed labels describing individual
jobs, and there will be as many arcs (tasks) and nodes (events) as there are
instances of the process. Events will be labelled by the value list describ-
ing the actual environmental situation which the event is representing for a
particular process instance.

Correspondingly, the labels for the tasks refer to operational aspects es-
sential for scheduling the process instances, such as processing times and
actual required resources: Duestorthercompetition for resources between jobs
not all events can occur simultaneously. If two tasks require the same re-
source which cannot be shared only one of those tasks can proceed, i.e. the

GPN 201

two tasks cannot be processed in parallel, i.e. neither the two beginning
events nor the two ending events can occur at the same time. In case two
or more tasks cannot be processed simultaneously, a hyperedge is introduced
between the beginning events of the corresponding tasks. A hyperedge is an
arc connecting events which cannot occur simultaneously but have to occur
in some sequence (e.g., to be determined by the scheduler). In Figure 8 there
are four events which are connected by a set of five edges showing five pairs
of events which may not happen simultaneously and the corresponding hy-
peredge consists of nodes 1, 2, 3, and 4 connected by the five edges (1,2),
(1,3), (1,4), (2,3) and (2,4).

Figure 8: Nodes and edges forming hyperedges

In case of two events the hyperedge consists of one edge and two nodes
only; if there are more than two events which are not allowed to occur si-
multaneously the hyperedge consists of all events and all edges connecting all
pairs. Tasks associated with events representing nodes of a hyperedge create
conflicts concerning the usage of resources. The scheduling decision has to
resolve these conflicts such that a resource-feasible schedule can be generated
(compare [Sch89] and [EGS97]).

A GPN schema representing the instance level is shown in Figure 9. There
are two instances of the process type “Generate Purchase Order” which are
“Generate Purchase Order 1” and “Generate Purchase Order 2”; both tasks
have to be performed by the same resource, the employee “Smith”. The
producer and the customer are the same for both jobs. In order to resolve
resource competition for the employee we have to introduce a hyperedge con-
sisting of a single edge between the two beginning events triggering “Generate
Purchase Order 1” and “Generate Purchase Order 2”. The edges between the
events represent the situation that there exists a resource conflict between
the two tasks and this has to be resolved by a scheduling decision.

The introduced edges represent the combinatorial structure of the schedul-
ing problenyontheinstancelevelmTorsolve the problem all conflicting events
have to be put in some sequence such that a resource-feasible schedule can
be constructed. Algorithms to solve this kind of problem are given in [ES93].

202

Ginter Schmidt

PD 011 MD 012
Smith Order 1
Vs Generate Purchase
/ Order 1
/
[
|
\
\
AN Generate Purchase
Order 2
Smith Order 2
PD 011 MD 012

Figure 9: Edges representing a scheduling problem

5 Case Study

We shall now demonstrate how GPN can be used for integrated modelling of
a business process on the planning and the scheduling levels. The example
problem is related to procurement. This process deals with purchasing goods
and paying corresponding bills. Let us start to explain how to build a model
on the planning level considering the following setting.

If the manufacturing department (MD) of a company is running out of
safety stock for some material it is asking the purchasing department (PD)
to order an appropriate amount of items. PD fills in a purchase order and
transmits it by mail or fax to the vendor; a copy of the purchase order is
passed to the accounts payable department (APD). The vendor is sending
the goods together with the receiving document to the ordering company;
with separate mail the invoice is also sent.

Once the invoice arrives PD compares it with the purchase order and
the goods sent via the receiving document. The documents are checked for
completeness and for correctness. If the delivery is approved APD will pay
the bill; if not PD complains to the vendor. Invoices for purchased goods
come in regularly and have to be processed appropriately.

This process is shown in Figure 10. To be precise there are two processes
shown which-belong tortwordifferentscompanies. Arcs leading from left to
right represent the functions of the purchaser’s process and arcs leading from
the top to the bottom represent functions of the vendor’s process. Each

GPN 203

function mentioned above is represented by an arc. The purchasing order
can be sent either by fax or by mail. This is represented by the two functions
“Fax Order” and “Mail Order”. Once the order is confirmed by the vendor
a copy of the order is also sent to APD represented by the function “Send
Copy”. If the ordered goods and the corresponding invoice have arrived the
function “Check Invoice” can be carried out. Depending on the outcome of
the checking procedure the functions “Pay” or “Complain” are performed.
In case there are complains only about part of the delivery both functions
are carried out.

Figure 10: Procurement process

In Figure 10 the labels for most of the layers were omitted. In order to
give a small example how labelling is done we concentrate on the function
“Check Invoice” using all six GPN layers. The result is shown in Figure
11. We assume that PD has the responsibility for this function and MD and
APD need the results. The resource needed is an auditor who is generating
a report. Data needed for the “Check Invoice” function are the order and
the invoice data; the function creates “Annotated Invoice” data. Before the
function can be carried out the ordered goods and the invoice should have
arrived; after carrying out the function the condition holds that the invoice
has been checked. The remaining parts of the process have to be labelled in
an analogous way.

Let us assume that the process structure which is defined on the planning
level is agreed on. We now investigate the scheduling decisions considering
various instances of the procurement process. We want to assume that with
each individual invoice discount chances and penalty risks arise. A discount
applies if the invoice is paid early enough and a penalty is due if the payment
is overdue.

Now we show how GPN can be used to model this business process for
scheduling purposes. Let us focus again on the function “Check Invoice”.
The corresponding tasks require some processing time related to the work
required for checking a current invoice. Moreover, for each instance two dates
are important. One relates to the time when the invoice has to be paid in

204 Ginter Schmidt

PD MD / APD
Auditor Report
Order, Invoice Annotated Invoice
i Check Invoice j
Goods and Invoice Invoice
Arrived Checked
Value List (i) Value List (j)

Figure 11: GPN representation of a selected function

order to receive some discount, the other relates to the time after which some
additional penalty has to be paid. For the ease of the discussion we assume
that discount and penalty rates are the same. Let us furthermore assume
that there is only one auditor available to perform these tasks and that there
are three invoices waiting to be processed. It is obvious that the sequence of
processing is of major influence on the time of payment considering discount
and penalty possibilities. Table 1 summarises the scheduling parameters
showing invoice number (J;), total sum of the invoice (w;), time required to
check an invoice (p;), discount date (dd;), penalty date (pd;), and the rate
for discount and penalty (r;), respectively.

Ji | wj | pj|ddj | pd;| 7

Jy 200 5 | 10 | 20 | 0.05
Jo | 400 6 | 10 | 20 | 0.05
J; | 400 | 5 | 10 | 15 | 0.05

Table 1: Scheduling parameters for the example problem

In general there are n invoices with n! possibilities to process them using a
single resource. The range of the results for the example is from net savings
of 30 units of cash discount up to paying additional 10 units of penalty
depending on the sequence of processing.

A GPN scheduling model is shown in Figure 12. All labels except re-
sources, input data, and function are omitted. Events 1, 2, and 3 cannot
occur simultaneously because there'is only one “Auditor X” available for
checking the invoices. To show the conflicts between. the events a hyperedge
is introduced which consists of the/nodes 1, 2, and 3 and of the edges (1,2),

GPN 205

(2,3), and (1,3). The data required for scheduling relate to the processing
times p;, the amount of the invoice w;, the discount and penalty rates s,
the discount dates dd;, and penalty dates pd;; the scheduling objective is
assumed to be to maximise the sum of cash discount minus the penalty to
be paid.

Auditor X

rpwpPpdd) pd)

71 Check J;

Auditor X

72 Wy, P2, ddy, pd)
M2 Check J,

Auditor X

73, W3, P3. dds, pds

Check J 3

Figure 12: Scheduling model for problem representation

The scheduling decision has to determine the sequence of occurrences of
the three events, i.e. the three edges have to be converted into arcs represent-
ing a predecessor-successor relationship of the events. The GPN representa-
tion is suited to apply directly a scheduling procedure which tries to find an
optimal sequence by converting edges into arcs. This is a standard formalism
forrepresentingrandisolvingrscheduling problems [Pin95]. If the direction of
the arcs is determined a complete schedule for the three instances can be
generated. The optimal schedule is shown in Figure 13.

206 Giunter Schmidt

Auditor X

rpwp Py dd pd

Check J 1

/ Auditor X
]
" \\\ rz,Wz.Pz.ddz.sz
! \
: Check J b
|
|
\
\
\
\
\
\ Auditor X
\
\ r3, w3, p3, dd3, pd3
\
S~ Check J;

Figure 13: Scheduling model for problem solution

6 Conclusions

We have presented the language GPN to plan and schedule business processes
within a single model. The language has the capabilities to structure prob-
lems from a descriptive point of view and to show how to optimise business
processes when they have to be carried out. The language is easy to under-
stand and easy to use and it is especially suited for modelling time-based
assignment problems with a combinatorial structure.

We have not discussed how to evaluate process plans and have not pre-
sented algorithms to solve the arising scheduling problems. The scope of this
contribution is to demonstrate that planning and scheduling problems can be
modelled using a common and easy to use notational framework. We have
illustrated this by an example case study. There are many business processes
which can be analysed and optimised using the notational framework of GPN.

GPN 207

References

[BEPSW96] Blazewicz, J., Ecker, K., Pesch, E., Schmidt, G., Weglarz, J., Schedul-

[BN96]

[CKO92]

[EGS97]

[ES93]

[SWS89]

[MC94]

[Pin95)

[Sch89]

[Sch96]

[Sch96a]

[Sch96b)

[Sch97]

ing Computer and Manufacturing Processes, Springer, Berlin, 1996

Bernus, P., Nemes, L., Modelling and Methodologies for Enterprise
Integration, Chapman and Hall, London, 1996

Curtis, B., Kellner, M. I, Over, J., Process modeling, Communica-
tions of the ACM 35(9), 1992 75- 90

Ecker, K., Gupta, J., Schmidt, G., A framework for decision support
systems for scheduling problems, European Journal of Operational
Research, 101, 1997, 452-462

Ecker, K., Schmidt, G., Conflict resolution algorithms for scheduling
problems, in: K. Ecker, R. Hirschberg (eds.), Lessach Workshop on
Parallel Processing, Report No. 93/5, TU Clausthal, 1993, 81-90

Slowinski, R., Weglarz, J., (eds.), Recent Advances in Project
Scheduling, Elsevier, Amsterdam, 1989

Malone, T. W., Crowston, K., The interdisciplinary study of coordi-
nation, ACM Computing Surveys 26(1), 1994, 87-119

Pinedo, M., Scheduling: Theory, Algorithms, and Systems, Prentice
Hall, Englewood Cliffs, 1995

Schmidt, G., Constraint-satisfaction problems in project scheduling,
in: [SW89], 135-150

Schmidt, G., Scheduling models for workflow management, in: B.
Scholz-Reiter, E. Stickel (eds.), Business Process Modelling, Springer,
1996, 67-80

Schmidt, G., Informationsmanagement - Modelle, Methoden, Tech-
niken, Springer, Berlin, 1996

Schmidt, G., Modelling production scheduling systems, Int. J. Pro-
duction Economics 46-47, 1996, 109-118

Schmidt, G., ProzeBmanagement - Modelle und Methoden, Springer,
Berlin, 1997

CHAPTER 10

The IDEF Family of Languages

Christopher Menzel, Richard J. Mayer

The purpose of this contribution is to serve as a clear introduction to the modeling
languages of the three most widely used IDEF methods: IDEF0, IDEF1X, and
IDEF3. Each language is presented in turn, beginning with a discussion of the
underlying “ontology” the language purports to describe, followed by presentations
of the syntax of the language — particularly the notion of a model for the language
— and the semantical rules that determine how models are to be interpreted. The

level of detail should be sufficient to enable the reader both to understand the
intended areas of application of the languages and to read and construct simple

models of each of the three types.

1 Introduction

A modeling method comprises a specialized modeling language for represent-
ing a certain class of information, and a modeling methodology for collecting,
maintaining, and using the information so represented. The focus of this
paper will be on the languages of the three most widely used IDEF methods:
The IDEF0 business function modeling method, the IDEF1X data modeling
method, and the IDEF3 process modeling method.

Any usable modeling language has both a syntax and a semantics: a set
of rules (often implicit) that determines the legitimate syntactic constructs of
the language, and a set of rules (often implicit) the determines the meanings
of those constructs. It is not the purpose of this paper is to serve as an exhaus-
tive reference manual for the three IDEF languages at issue. Nor will it dis-
cuss the methodologies that underlie the applications of the languages. There
are other sources that discuss these issues ([NIST93a, NIST93b, MMP93]).
Rather, the purpose of this paper is simply to serve as a clear introduction to
the IDEF languages proper, that is, to their basic syntax and semantics. It is
thus hoped that the paper will quickly enable the reader both to understand
the intended areas of application of the languages and, more specifically, to
read and construct simple models of each of the three types.

210 Christopher Menzel, Richard J. Mayer

2 Background to the IDEF Languages

The IDEF suite of modeling languages arose in the 1970s out of the U.S.
Air Force Integrated Computer Aided Manufacturing (ICAM) program. The
goal of ICAM was to leverage computer technology to increase manufac-
turing productivity. A fundamental assumption of the program was the
need for powerful but usable modeling methods to support system design
and analysis. Consequently, the program undertook the development of a
suite of “ICAM DEFinition,” or IDEF, methods. These included an activ-
ity, or “function,” modeling method (IDEF0), a conceptual modeling method
(IDEF1), and a simulation model specification method (IDEF2). IDEF0 was
based loosely upon the Structured Analysis and Design Technique (SADT)
pioneered by Douglas Ross [Ros77] and IDEF1 upon the Entity, Link, Key
Attribute (ELKA) method developed chiefly at Hughes Aircraft by Timothy
Ramey and Robert Brown [RB87]. Since the ICAM program there have been
several important developments. First, in 1983, the Air Force Integrated In-
formation Support System (I2S?) program added several constructs to the
IDEF1 method that were felt to make it more suitable as a database schema
modeling method. The result was IDEF1X, which is now more widely used
than IDEF1. Beginning in the late 1980s, work began on a process modeling
method known as IDEF3, and was completed under the Air Force Information
Integration for Concurrent Engineering (IICE) program. IDEF3 subsumes
much of the original role of IDEF2, as it can be used for the specification
of effective first-cut simulation models. Additionally, the IDEF3 language
has an object-state component that can be used for modeling how objects
undergo change in a process. The early 1990s saw the emergence of IDEF4
and IDEF5. IDEF4 is an object-oriented software design method that inte-
grates requirements specified in other methods through a process of iterative
refinement. It also supports the capture and management of design ratio-
nale. IDEF5 is a knowledge acquisition and engineering method designed to
support the construction of enterprise ontologies [Gru93]. Because of space
limitations, these newer methods will not be discussed further in this paper.
Interested readers are referred to [MKB95] and [MBM94].

Recent developments have focused on refinement and integration of the
IDEF languages. That is, the focus has been on the development of both
theory and techniques to support the easy exchange of information between
different IDEF (and non-IDEF) models, and, ultimately, on the automated
exchange and propagation of information between IDEF (and non-IDEF)
modeling software applications. To reflect these developments, “IDEF” is
now usually taken to be an acronym for Integration DEFinition.

The IDEFO0, IDEF1X, and, increasingly, IDEF3 methods are widely used
in both government and the commercial business sectors. The focus of this
paper will-be on the languages of these methods. In many presentations of
one or another IDEF language, syntax and semantics are intermingled so as
to make them difficult to distinguish. A goal of this paper is to keep this

The IDEF Family of Languages 211

distinction sharp. Thus, each major section begins with a discussion of the
basic semantic, or ontological, categories of the method at hand, indepen-
dent of any syntactic considerations. Only then is the syntax of the language
introduced, first its lexicon (i.e., its more primitive elements), then its gram-
mar (i.e., the rules determine how complex expressions are ultimately built
up from the elements of the lexicon).

3 The IDEFO0 Function Modeling Language

We begin with the IDEF0 function modeling language, the method for build-
ing models of enterprise activities.

3.1 The IDEFO0 Ontology: Functions and ICOMs

In general, an activity is a thing that happens, whether (in effect) instanta-
neously or over some (possibly fragmented, discontinuous) period of time.
Simple examples of activities include the death of Caesar, Jessie Owens’ run-
ning of the 100 yard dash in the finals of the 1936 Olympics, and the writing
of this paper. In IDEF0 modeling, however, attention is often focused not
just on actual “as-is” activities, but possible activities as well — the activities
of a merely envisioned company, for example, or those of a proposed virtual
enterprise. Thus, one might say, the primary focus of IDEF(0’s ontology —
the things that exist according to IDEF0 — is the class of all possible activi-
ties, whether actual or not. However, it is not concerned with just any sort of
activity, but with a certain kind, known in IDEFO as a function. Thus, IDEF0
is often referred to as a “function modeling method.” An IDEFO function is a
special kind of activity, namely, one that, typically, takes certain inputs and,
by means of some mechanism, and subject to certain controls, transforms the
inputs into outputs — note the parallel with the notion of a mathematical
function wherein a given set of arguments (inputs) is “transformed” into a
unique value (output). (That noted, we shall follow common practice and
usually use the generic term ‘activity’.) The notions of input and output
should be intuitively clear. Controls are things like laws, policies, standards,
unchangeable facts of the environment, and the like that can guide or con-
strain an activity, and mechanisms are resources that are used in bringing
about the intended goals of the activity. Thus, for example, in an Implement
Software Prototype activity, relevant controls might be such things as a high-
level software design, software documentation standards, and the operating
systems of the development environment. And the most salient mechanisms
would likely be the programmers on the project (together with their com-
puters). Intuitively, there are no salient inputs to this activity, as nothing is
actually transformed.or.destroyed.as.the activity is actually carried out, and
the output is, of course, the completed prototype.

Inputs, controls, outputs, and mechanisms are referred to generally in

212 Christopher Menzel, Richard J. Mayer

IDEFO as concepts, or ICOMs (an acronym for the four types of concept).
The former term is a bit of a misnomer, for, unlike the ordinary meaning of
the term, an IDEF0 concept needn’t be an abstract or mental entity. Hence,
because it has no connotations from ordinary language, the latter term will be
used here. An ICOM, then, can be any entity — mental or physical, abstract
or concrete — that plays a certain role in an activity. Note, however, that the
same entity might play different roles in different activities. Thus, a particular
NC machine might both be the output of a Make-NC-machine activity, and
the main mechanism for transforming material input into output in a Make-
widget activity. Note also that an ICOM can be a complex object (a car
body, for example) that is composed of many other objects.!

3.2 IDEFO Syntax: Boxes and Arrow Segments

The world according to IDEFO0, then, consists of activities (functions) and
ICOMs. Accordingly, the graphical language of IDEF0 contains two basic
constructs: boxes, representing activities, and arrow segments, representing
ICOMs. Arrow segments have a head — indicated explicitly by an arrowhead
when necessary — and a tail. Arrow segments combine to form arrows,
which will be discussed below. The basic constructs of IDEF0 are built up
by connecting boxes and arrow segments together in certain allowable ways.
Specifically, the head of an arrow segment can only connect to the bottom,
left side, or top of a box, or to the tail of another arrow segment. The tail of
an arrow segment can only connect to the right side of a box, or to the head
of another arrow segment. The most basic construct of IDEFO0 is depicted in
a general fashion in Figure 1, along with indications of the type of entity in
the IDEF0 ontology each component of the construct signifies.

Notice that the box side to which an arrow segment attaches indicates
the type of ICOM that it represents relative to the activity represented by
that boz. Arrow segments representing inputs, controls, and mechanisms for
the function in question attach at the head to the left side, top, and bottom
of a box, respectively, and are said to be the incoming segments of that box.
Arrow segments indicating outputs attach at the tail end to the right side
of a box, and are said to be the outgoing segments of that box. Every box
in a model must have at least one incoming control arrow segment and one
outgoing output arrow segment. A control segment is required because there
must be something that guides, determines, or constrains a well defined en-
terprise function; random, unstructured, unrepeatable activities are beyond
the scope of the IDEF0 method. An output segment is required because oth-

11t should be noted that, when talking in general about a certain kind of activity, as they
are wont, by an ICOM a modeler often means a corresponding class of particular ICOMs,
e.g., the class of NC machine outputs from all Make-NC-machine activities of a certain
sort. Context typically determines whether one is speaking about classes or instances,
and, accordingly, we shall not be overly zealous in specifying which “level” we ourselves
intend at every point in this article.

The IDEF Family of Languages 213

(controls)

A
Q
=}
&
=3
E
v
_<conceptname> | <Function name:> | <concept name>
(inputs) | . (outputs)

<n>

g

§

(=3

3

\%

(mechanisms)

Figure 1: The Basic IDEF0 Construct

erwise there would be no purpose served by the activity, and hence it would
add no value to the enterprise. Inputs, though typical, are not required, as
not every function involves the consumption or transformation of some ob-
ject, e.g., writing an email message. Similarly, some activities, e.g., high-level
planning, may require no separate, identifiable mechanism.

3.3 IDEFO Diagrams

Boxes and arrow segments are combined in various ways to form diagrams.
The boxes in a diagram are connected by sequences of arrow segments, which
can fork and join within a diagram as depicted in Figure 2.

S1 S3
Joining arrow segments
S2 ﬂ
S4 S5
Forking arrow segments
S6

Figure 2: Arrow Segment Forking and Joining

In IDEFO, a join typically indicates either (physical or conceptual) com-

214 Christopher Menzel, Richard J. Mayer

position or generalization. Hence, a (three-segment?) join is often said to
indicate the bundling of two ICOMs into another, and the more complex or
more general ICOM is sometimes referred to as a “bundle.” Thus, in Fig-
ure 2, S1 might signify the ICOM Ad and S2 the ICOM Envelope and S3 the
composite ICOM, or bundle, Mail-promo, whose instances consist of sealed
envelopes containing copies of the advertisement in question. (In cases of
composition there is often an underlying enterprise activity, but one which is
not considered significant enough to warrant explicit representation.) Again,
S1 might signify the ICOM Inventory Entry, S2 the ICOM Billing Entry, and
S3 the more general, bundled ICOM Account Entries. As the term indicates,
it is usually best to think of bundled ICOMs like fiber bundles in fiber-optic
cables: instances of two ICOMs that are bundled together into a third are
not mingled indistinguishably together, as in a confluence of two rivers; they
are simply packaged together and, without losing their original characters,
both delivered as inputs, controls, or mechanisms to the same functions.

A join can also simply indicate recognition of a single ICOM whose in-
stances stem from different sources. In this case, all three segments involved
in a join indicate exactly the same ICOM. Such cases are usually signified by
attaching a label only to the “merged” segment (S3 in Figure 2).

A fork, naturally, is the “dual” of a join. That is, a fork indicates either
(physical or conceptual) decomposition or specialization. Forks are therefore
also commonly said to indicate an unbundling of one ICOM into two others
(one of which might be identical with the initial ICOM). As with joins, a fork
can also simply indicate the recognition of a single ICOM whose instances
are used as inputs, controls, or mechanism for different functions.

To illustrate, consider the diagram in Figure 3 which represents, from an
accounting perspective, the activities initiated by the receipt of a customer
order. As illustrated, the connected boxes in an IDEF0 diagram are repre-
sented in a “stair step” fashion (on a page or computer screen) from top left
to lower right. Each box from top left to lower right is numbered sequen-
tially beginning with 1 (with one exception, noted below); this is the box’s
box number. In the diagram in Figure 3, the two forks following the arrow
segment labeled ‘Fulfillment Files’ indicate that the bundled ICOM Fulfillment
Files includes both Customer Records that are used as controls on the Deliver
function and the Price Tables and Tax Tables that serve as controls on the
Bill function. Similarly, the join that merges into the arrows segment labeled

2Because arrow segments in standard IDEF0 syntax must be either horizontal or vertical
except perhaps for 90 degree bends, forks and joins can involve no more than four arrow
segments — to the join in Figure 2 one could add a segment symmetrical to S2 that joins
the other three from above; analogously for the fork. Theoretically, this is no limitation, as
one can get the semantic effect of an n-segment fork or join simply by means of a series of
three-segment forks or joins. This semantic equivalence is one example of why one ought
not_to read any temporal significance into arrow segments. For example, a series of joins
in a model all indicating physical compositions would not have any implications for how
(instances of) the indicated ICOMs are actually composed in instances of the activity being
modeled.

The IDEF Family of Languages 215
Tax Requirements

l Fulfillment Files

Ord
rders Record L
f_-’ ; AR
3
Customer Records - Price Tables —™ - Tax Tables
Inventory Entry
Deliver Delivered Products
Ordered Products . N _Account Entities T
2 Billing Entry
T \ 4
Transactions Bill
Invoices
3 } -
\.
- Y
Deliveryman Account clerk

Figure 3: An IDEF0 diagram

‘Account Entries’ indicates that the Account Entries bundle includes both In-
ventory Entries and Billing Entries. The fact that the segments forking from
the segment labeled ‘Account Clerk’ are unlabeled indicates that an Account
Clerk is used as a mechanism in both the Bill and Record functions.

An arrow is a certain kind of sequence of arrow segments within a dia-
gram. An arrow originating at one box and ending at another indicates a
resource connection between the indicated functions — though one of those
functions may be only implicit if one end of the arrow’s initial or final seg-
ment is not attached to anything in the diagram. Thus, syntactically, an
IDEF0 arrow within a diagram D is defined to be a connected sequence of
arrow segments in D such that at least one end (i.e., the tail of its initial
segment or the head of its final segment) is attached to a box and the other
is either attached to a box or unattached to anything in the diagram. Thus,
for example, in Figure 3, the Orders arrow segment is itself an arrow, as is the
sequence consisting of the Fulfillment Files segment, the unlabeled segment
itvisrattachedstorits(which;by convention, also signifies the Fulfiiment Files
bundle), and the segment labeled ‘Tax Tables’. Arrows (arrow segments) that
are unattached at one end are known |as boundary arrows (boundary arrow
segments).

216 Christopher Menzel, Richard J. Mayer

3.4 IDEFO0 Models

An IDEFO0 model is a hierarchically arranged collection of IDEF0 diagrams.?
The hierarchy is actually an (inverted) tree: there is a single root node, and
each node of the tree has some finite number of “daughters”; every node
except the root has only one “mother”. The root node of an IDEF0 model is
known as the top-level, or context, diagram of the model.* Unlike every other
diagram in the model, the top-level diagram contains only one box. This box
represents — at the coarsest granularity — the single high-level activity that
is being represented by the entire IDEF(Q model.

The mother-daughter relation holding between two diagrams in an IDEF0
model signifies that the daughter node is the decomposition of a box in the
mother node. A decomposition of a box B is a diagram that represents a
finer-grained view of the function signified by B. Such a diagram D is known
variously as a decomposition diagram, detail diagram, or child diagram for B,
and B is known as the parent bor of D. Only one detail diagram per box is
allowed in an IDEF0 model.

By convention, a detail diagram contains three to six boxes. The tradi-
tional justification for this is that a diagram with fewer than three boxes does
not contain sufficient detail to constitute a useful decomposition; similarly, a
diagram with more than six boxes contains detail that should be suppressed
within that diagram and unpacked in a decomposition. Many users have
found this “3-6 box rule” too constraining and have proposed replacing it
with a “2-9 box rule,” and in fact the latter rule has been incorporated into
a proposed IEEE IDEFO standard [IEEE97).5

A simple IDEF0 model for a computer assembly activity can be found
in Figure 4. Each diagram within a model has a diagram number, and each
box within a diagram a unique node number. The top level diagram of a
model has the diagram number A-0 (“A-minus-zero”) and its single box has
the node number AQ. The number of every other diagram is simply the node
number of its parent box (as every diagram but the top-level diagram is the
child diagram of some box). The node number of a box in the A0 diagram
(i.e., the child diagram of the A0 box) is An, where n is box’s box number
within the diagram. The node number of a box within every other child
diagram is simply the result of concatenating the diagram’s diagram number
with the box’s box number. Thus, the node number of Assemble CPU is A1,
while that of Install Storage Devices is A13.

Let B be a box and D a diagram within a model M. B is an ancestor
of D (within M) just in case B is either the parent box of D (in M), or the

3This is not strictly correct, as an IDEF0 model is typically taken also to include textual
annotations and glossary, but as the focus of this article is the graphical language proper,
we have chosen to ignore these more pragmatic elements of a model.

41In fact the top-level diagram for a model can itself be embedded within other, “envi-
ronmental” context diagrams, but this subtlety will not be discussed in this paper.

5At the time of this writing, this document had successfully gone to ballot, and was
under revision.

The IDEF Family of Languages 217

Assembly instr.

Parts

A-0]

CPU+
nnect | Monitor
itor
R 2
Keyboard ﬁ,"m"""“‘ Computer
| SS——

Devicesy

Mouse

JTechnicians

A0 |

LAsssmbry Instructions
CPU

Components
’/ " Cage+MB
rd
Y e Case 4 VT
Instal
Power I

Power|Supply

Storage| bsvicetﬂ

Technicians

At |

Figure 4: A Simple IDEF0 model

parent box of a diagram containing some ancestor of D (that is, just in case
B is either the parent box of D, or the parent box of the diagram containing
the parent box of D, or the parent box of the diagram containing the parent
box of the diagram containing the parent box of D, and so on). Conversely,
D is a descendent of B in M just in case B is an ancestor of D in M. Given
this, we note that boundary arrow segments in a non-context diagram D
within a model indicate ICOMs that are present in the activity indicated
by some ancestor B of D — for D is simply a decomposition of B or of an
activity indicated by a box in one of the descendents of B. Consequently,
a boundary arrow segment that is unattached at its tail (respectively, head)
can be correlated with an incoming (respectively, outgoing) arrow segment for
some ancestor of D. Such a correlation is typically accomplished by labeling
both arrows with the same name. Conversely, and more strongly, every
incoming or outgoing segment of a box with descendents should be correlated
with an appropriate boundary arrow segment in one of its descendents (else

S Traditionally, IDEF0_has used a somewhat awkward system of “ICOM codes” to
achieve such correlations. However, ICOM codes are both unnecessary, as the same ef-
fect can be achieved by the consistent use of names, and are also largely rendered otiose
by modern modeling support software which can track such correlations with ease.

218 Christopher Menzel, Richard J. Mayer

the exact function of the indicated ICOM must not be clear).

If an arrow segment S attached to a parent box is correlated with a bound-
ary segment S’ that is not in its child diagram, then S is said to be tunneled
downwards, and the arrow segment S’ with which it is correlated is said to be
tunneled upwards. Tunneling simply provides a mechanism for “hiding” the
role of a given ICOM in a function through the successive decompositions of
the box representing that function until the appropriate level of granularity
is reached.

4 The IDEF1X Data Modeling Method

Just as IDEF0 introduces a specialized ontology tailored for capturing busi-
ness activities, and a specialized language for building models of those activ-
ities in terms of that ontology, so IDEF1X introduces a specialized ontology
and a corresponding language tailored to build database models. We begin
with a discussion of its ontology.

4.1 The IDEF1X Ontology: Entities, Attributes, and
Relationships

Not surprisingly, the ontology of IDEF1X corresponds closely to the ontolo-
gies other database modeling languages such as the Entity-Relationship (ER)
and NIAM modeling languages. The basic ontological categories of IDEF1X
are entities, attributes, and relationships. We discuss each category in turn.”

4.1.1 Entities

Entities are simply classes of actual or — when “to be” situations are being
modeled — possible things in the world. Entities can comprise concrete
objects, such as employees and NC machines; more idealized objects such
as companies and countries; and even abstract objects like laws and space-
time coordinates. The things comprised by a given entity are known as the
members or instances of the entity. IDEF1X entities thus correspond to ERA
entity sets and NIAM entity classes.®

It should be noted that we will only be discussing so-called “key-based” views. Offi-
cially, IDEF1X models can contain numerous “views”, where a view, like the notion of a
model here, is a structured collection of entity boxes and relationship links. Views differ
in the constraints they satisfy. Specifically, the ER view does not require the identification
of keys, and allows “nonspecific’, many-to-many relationships (see below for definition of
these notions). For the sake-of brevity, in this paper we are identifying models with what
are known as “fully-attributed” views in IDEF1X, in which keys must be identified and all
many-to-many relationships must _be resolved, into functional relationships.

8The term ‘entity’ is rather unfortunate, since in ordinary language it is a rough syn-
onym for ‘thing’ or ‘object’, i.e., for individual instances of classes rather than classes
themselves. IDEF 1 uses the more appropriate term ‘entity class’.

The IDEF Family of Languages 219

4.1.2 Attributes

Every entity has an associated set of attributes. Attributes are simply func-
tions, or mappings, in the mathematical sense: an attribute associates each
instance of a given entity with a unique value. An attribute « is for a given
entity E if it is defined on all and only the instances of E.° In IDEF1X,
the set of values that an attribute can return is known as the attribute’s
domain.!® The domain of every attribute referred to in an IDEF1X model
is always one of several familiar data types; specifically, it is either the type
string, a numerical type of some ilk, the type boolean, or else a subtype of one
of these basic types. So, for example, common attributes for an EMPLOYEE
entity might be Name (of type string), Citizenship (subtype of string, viz.,
names of countries), Yearly-salary (positive integer), Marital-status (boolean),
and so on.

A central notion in IDEF1X is that of a candidate key, or simply, key.
A key for an entity F is a set of attributes for E that jointly distinguish
every instance of the entity from every other. More exactly, where a is an
attribute, let a(e) be the value of a applied to e. Let A be a set of attributes
for an entity E. Then A is a key for E just in case, for any distinct instances
e,e' of E, there is an attribute o € A such that a(e) # a(e'). Ideally, a key
should be a smallest set of this sort, in the sense that no proper subset of a
key is also a key. If an attribute « is a member of a key, it is said to be a key
attribute.

4.1.3 Relationships

Relationships are classes of associations between instances of two (possibly
identical) entities. In the context of IDEF1X, one of the two entities is
identified as the parent entity and the other as the child entity. Let R be a
relationship, and let Eﬁ be its parent entity and Eg its child. Then the one
general requirement on relationships is that for each instance e of EE there
is at most one instance e’ of EF such that e is associated (by R) with e'.!
Also, typically, in an IDEF1X model, no instance of a relationship’s child
entity fails to be associated with an instance of its parent, though this is not
always required. (See the notion of an “optional” non-identifying relationship
below.) If E is the child of a relationship R and E' the parent, then R will
be said to link E to E'. (This is not standard IDEF1X terminology, but it
proves very useful for exposition.)

9Partial attributes — i.e., attributes that are not defined on all the instances of an

entity — are allowed in ER views.

10This is another unfortunate choice of terminology, as the term ‘domain’ in mathematics
is the usual name for the set of arguments for a function, and the term ‘range’ denotes the
set.of its possible values, i.e., the attribute’s “domain” in the sense of IDEF1X.

111 ER views, “non-specific’ relationships are allowed that don’t satisfy this require-
ment; specifically, in a non-specific relationship an instance of the child might be associated
with more than one instance of the parent.

220 Christopher Menzel, Richard J. Mayer

It is convenient to think of a relationship R as a class of ordered pairs
(a,b) such that the first element a of each such pair is an instance of R’s
child entity and the second element b is an instance of its parent entity. The
general requirement on relationships, then, can be expressed simply as the
requirement that a relationship R be functional, in the sense that, for a € EE
and b € EE, if Rab (i.e., if (a,b) € R) and Rac, then b = c. leen this, to
say that a glven instance e of R’s child entity ER is associated (by R) with
an instance e’ of R’s parent entity EE is simply to say that eRe'; likewise, to
say that a given instance e of EE is associated with an mstance e’ of Eg is
to say that Re'e. We say that R is total if for each instance e of EE there is
an instance e’ of ER such that Ree'. Otherwise R is said to be partzal Since
relationships R are functional, we will sometimes write ‘R(a)’ to indicate the
unique object b such that Rab (when it is known that there is such an object
b).

4.1.3.1 Cardinality The cardinality of a relationship R signifies how
many instances of the child entity a given instance of the parent is associated
with. Often a relationship has no specific cardinality; one instance of the
parent might be associated by R with two instances of the child, another with
seventeen. The most that can be said in such cases is that the relationship has
a cardinality of zero, one, or more, which is true under any circumstances.
But often enough this is not the case. IDEF1X marks out in particular the
following cardinalities for R: one or more (signifying that R, viewed as a
function from EZ to EE, is onto, or surjective); zero or one (indicating that
R, viewed as a function, is one-to-one, or injective); exactly n; and from n to
m.

4.1.3.2 Attribute Migration The functionality of relationships leads
to the important notion of key attribute migration. Suppose R links E to
E' and let o be a key attribute for the parent entity E'. Because R maps
each instance e of E to a unique instance e’ of E', a new (migrated) attribute
for E can be defined as the composition R o o of a and R.}? Thus, more
procedurally, to discover the value Roaf(e) of the migrated attribute Roa on
a given instance e of E, one first finds the instance e’ of E' associated with
e by R, and then applies a to €’; i.e., Ro a(e) = a(R(e)). This is the value
of the migrated attribute on e. (An example is given below.)

The notion of migration is often documented misleadingly so as to suggest
that a migrated attribute in the child entity of a relationship is the very
same attribute as the migrating attribute in the parent entity. Since they are
attributes for different entities, however, the two must be distinct. It is more
correct to characterize migration as a relation involving two attributes and a
relationship. More exactly, let R be a relationship and a and o' attributes,
and let £ be the child entity of R and E' the parent entity. Then we say that

12Where, as usual, f o g(z) = g(f(z))-

The IDEF Family of Languages 221

o' migrates from E' to E as « via R if and only if (i) & and o' are attributes
for E and E', respectively, (ii) R links E to E' and (iii) for all instances e
of E, ae) = o/(R(e)). We will call o the migrating attribute and o the
migrated attribute (relative to R). Note that a migrated attribute relative to
one relationship can itself be a migrating attribute relative another. '

4.1.3.3 Categorization Relationships A particularly important type
of relationship in IDEF1X is a categorization relationship. Basically, a cat-
egorization relationship is just the identity relation restricted to a certain
subclass of a given entity; that is, a categorization relation maps a mem-
ber of a subclass of a given entity to itself in that entity. The importance
of these relationships is that they are used to form categorization clusters,
which divide a given entity — known as the generic entity in the cluster —
into several disjoint subclasses or category entities. Thus, the generic entity
in a cluster might be the entity EMPLOYEE, and SALARIED .EMPLOYEE and
HOURLY_EMPLOYEE the category entities in the cluster. A category cluster
is complete if the category entities jointly constitute a partition of the generic
entity, i.e., if every instance of the category entity is an instance of a (unique)
category entity.

Tt is often useful to identify a discriminator attribute for a category cluster
that returns, for each instance of the generic entity, a standard name for its
category. Thus, the discriminator attribute for the EMPLOYEE cluster above
would return either the string ‘SALARIED EMPLOYEE’ or ‘HOURLY_EMPLOYEE’
on each generic entity instance. (For incomplete clusters, a discriminator
attribute would have to be either undefined on generic instances that are in
no category, or else would have to return a string indicating this, e.g., ‘NIL’.)

4.2 The IDEF1X Language and its Semantics

Entities, attributes, and relationships constitute the basic ontology of IDEF1X
the basic categories of things that one talks about in the IDEF1X language.
In this section we describe the language itself and its semantical connections
to these objects.

The basic syntactic elements of the IDEF1X language are entity bozes,
attribute names, and various kinds of relationship links. These elements,
of course, signify entities, attributes, and relationships, respectively. An
IDEF1X model is a collection of entity boxes, attribute names, and relation-
ship links that satisfy certain conditions, which we will state in the course
of our exposition. As with our account of IDEFO0, then, we will continue
to use the term ‘model’ to indicate a certain kind of complex syntactic en-
tity. However, an entity, attribute, or relationship can be said to be “in”
a model insofar as that entity, attribute, or relationship is indicated by a
corresponding entity box; attributername, or relationship link in the model.

Entity boxes come in two varieties, ones with square corners and ones
with rounded corners, as indicated in Figure 5.

222 Christopher Menzel, Richard J. Mayer

<entity-namelentity-number> <entity-namelentity-number>

oy al

Qn Qn
qn-l-l a.n+1
Qn4m Qn+4+m

Figure 5: Entity Boxes

The a; are attribute names. The names o, ..., ay,, written above the line,
indicate the members of a distinguished key for the indicated entity, known
(in the context of a model containing the given entity box) as the primary key
for the entity. n here must be at least 1; that is, it is required that a primary
key be identified for every entity indicated in a model. The same entity, of
course, could have a different primary key in a different model, although,
of course, it would have to be denoted by a correspondingly different entity
box in that model. apt1, ..., @ntm indicate other, non-key attributes for the
entity.

Which of the two kinds of box to use for an entity in a model depends on
the kinds of relationships that link that entity to other entities indicated in
the model. Perhaps the most common type of relationship between entities
in a model is an identifying relationship, the IDEF1X syntax for which is
given in Figure 6. To define this notion, note first that it is a requirement on
IDEF1X models that, for any relationship R, all and only the attributes in
the primary key of R’s parent entity migrate to its child entity via R.1®* R
is an identifying relationship if all of the attributes in the parent’s primary
key migrate via R as attributes in the child’s primary key; otherwise R is a
nonidentifying relationship. The idea here is that, procedurally, an instance
e of the child entity in a relationship can be identified — i.e., its key attribute
values determined — only by first identifying e’s associated instance e’ in the
parent entity, i.e., by first determining all of its (e'’s) key attribute values. If
an entity F is the child entity in an identifying relationship R in a model, then
a box with rounded corners is used to indicate F in that model. Otherwise,
a box with square corners is used.

A simple example is given in Figure 7. In this example, the primary
key attribute Dept_number migrates as the attribute Works.in.Dept_number,
which appears as a primary key attribute of EMPLOYEE. The relationship
is therefore, by definition, an identifying one. In the example, Emp_numbers
alone are not in general sufficient to distinguish one EMPLOYEE from an-

13Migrated attributes are sometimes referred to as “foreign keys”, or, a bit less problem-
atically, “foreign key attributes”, and are often marked with the expression ‘(FK)’. This
marking is otiose if the full name of the migrated attribute is given (i.e., if a role name is
used in naming the attribute; see below) but can be heuristically useful if role names are
suppressed.

The IDEF Family of Languages 223

EI

(231

~®—2___ Parent Entity Box

An41

L = Relationship Link
Relationship Name ~———s— p

E Oln]=— Cardinality Indicator

L ' ~%—z__ Child Entity Box
Bm+1 J

Figure 6: Syntax for Identifying Relationships

other; Emp_numbers are unique only within DEPARTMENTs. Hence, one
must also know the Dept_number of the DEPARTMENT in which an EM-
PLOYEE works to distinguish him or her from every other EMPLOYEE.
Hence, the primary key for EMPLOYEE also contains the migrated attribute
Works_in.Dept_number. Note that the relationship name ‘Works_in’, or some
related identifier (known in the context as a “role name”), becomes part of the
name of the migrated attribute. This is to indicate the relationship relative
to which the migration has occurred. By convention, if there is no possibility
of confusion, the very same name is used for the migrated attribute. Thus,
because there is no such possibility in the example (since there is only one re-
lationship linking EMPLOYEE to DEPARTMENT), ‘Dept_number’ could have
been used in both entity boxes. An attribute like Dept_number or SSN that
is not migrated relative to any relationship in the model is said (relative to
that model) to be owned by the entity it is defined on.

One further construct in Figure 6 requires comment, viz., the cardinality
indicator x. This marker, of course, indicates the cardinality of the relation.
The brackets around & signify that cardinality indicators are optional. If no
indicator is present, then the relationship in question can have any cardinality.
‘P’, by contrast, indicates the relationship is many-to-one; ‘Z’ that it is one
to zero or one; a specific numeral 7indicates that the cardinality is exactly
n, where v denotes n; and v-p indicates a cardinality of n to m, where v and
1 denote n and m, respectively.

224 Christopher Menzel, Richard J. Mayer

DEPARTMENT

Dept_number

Dept_name
Bldg_number

Works_in

EMPLOYEE
Works_in.Dept_number
Emp_number

Emp_name
SSN (AK)
Address

Figure 7: Example of an Identifying Relationship

As noted above, if R is not an identifying relationship (and no identify-
ing relationship links Eg to any other entity in the model), then a square-
cornered box is used to indicate the child entity. A dashed line rather than a
solid line is used to indicate non-identifying relationships. A non-identifying
relationship R is said to be mandatory if R is a total function from EE to
Eﬁ, i.e., if every instance of R’s child entity is associated with an instance of
R’s parent entity; otherwise R is said to be optional. For example, let E' be
a class of offices in a business and let E be the class of computers that exist
in the business, and let R be the Located-in relationship. Most, but perhaps
not all, computers will be located in offices, but some might, e.g., have been
sent out for repair, and hence are not located in any office. If this can be the
case, then Located-in is an optional relationship.!*

An optional relationship is indicated by a dashed line with a small dia-
mond at the parent end of the link, as shown in Figure 8.

14Gtrictly speaking, the difference between mandatory and optional relationships really
applies more accurately to the labeled relationship links in a model. Entities, attributes
and relationships form what in mathematical logic are known as interpretation of the basic
syntactic elements of IDEF1X. An interpretation can be said to validate an IDEF1X model
if its entities, attributes, and relationships comport with the constraints expressed in the
model (e.g.,.if the relationship associated with a one-to-n link really is one-n). To call a
relationship link mandatory, then, is to say that it can only be associated semantically in
any interpretation with a relationship that is a total function. The interested reader is
referred to [End72].

The IDEF Family of Languages 225

E E’
o i
Qn41 Qn41

©
A~

o ---
o ---

B B1

Bm+1 Bm+1

Figure 8: Syntax for Non-identifying Relationships

Any subset of an entity’s attributes in a model that constitute a further
key is known as an alternate key for the entity (relative to that model). The
names of members of an alternate key are marked with the string ‘(AK)’, as
illustrated by the attribute SSN in Figure 7. Should there be more than one
alternate key, then the keys are ordered (arbitrarily) and the names of the
attributes in the first key are marked with the string ‘(AK1)’, those in the
second with ‘(AK2)’, and so on. (It is possible, but uncommon, that the same
attribute be in different alternate keys, and hence for an attribute name to
be marked by more than one of the terms ‘(AKn)’).

Finally, the syntax for a complete categorization cluster with three cate-
gory entities is exhibited in Figure 9. A name for the discriminator attribute
is written alongside the circle beneath the generic entity box. In general, clus-
ters with n category entities are represented with n relationship links running
from the lower of the two horizontal lines beneath the circle to n entity boxes.
Note that the names of the primary key attributes for every category entity
are identical with their counterparts in the generic entity. This reflects the
fact, noted previously, that the relationship linking a category entity to its
generic entity is the identity relation. Hence, each key attribute in the generic
entity migrates to each category entity as a restricted version of itself that
is defined only on those instances of the generic entity that are instances of
the category entity. This “near identity” of the migrating and migrated at-
tributesywarrantsusingithe:ssameattribute name in the boxes for both generic
and category entities.

Incomplete categorization relationships are indicated in precisely the same

226 Christopher Menzel, Richard J. Mayer

(251

an = Generic Entity Box

Qn41

{ 26 ~%———2_ __ Discriminator Name
T

Cc3

|
D S
~_ t

Figure 9: Complete Categorization Cluster Syntax

Category Entity Boxes

way, except that a single rather than a double horizontal line is used beneath
the circle.

5 The IDEF3 Process Modeling Method

The IDEF3 modeling method is used to construct models of general enterprise
processes. Like IDEF0 and IDEF1X, it has a specialized ontology and, of
course, a corresponding language, which we detail in the following sections.

5.1 The IDEF3 Ontology: UOBs, Objects, and
Intervals

Because the terms ‘process’ and ‘activity’ are rough synonyms in ordinary
language, one might wonder what distinguishes the subject matter of IDEF(
from that of IDEF3. In one sense, nothing; both are concerned with the
modeling of actual and possible situations. The difference is a matter of focus:
features of situations that are essential to IDEFQ activities are generally
ignored in IDEF3; and, conversely, features essential to IDEF3 processes are
ignored in"IDEF 0. More specifically; because IDEF0 is concerned primarily
with the ways in which business activities are defined and connected by their
products and resources, IDEF0 activities are characterized first and foremost

The IDEF Family of Languages 227

in terms of their associated inputs, outputs, controls and mechanisms. By
contrast, because IDEF3 is intended to be a general process modeling method
without, in particular, a specific focus on products and resources, an IDEF3
process — also known as a unit of behavior, or UOB, to avoid the connotations
of more familiar terms — is characterized simply in terms of the objects it
may contain, the interval of time over which it occurs, and the temporal
relations it may bear to other processes. Thus, IDEFO0 (by default) ignores
the temporal properties of situations (in particular, it is not assumed that
an activity must occur over a continuous interval), and it highlights certain
roles that objects play in them. By contrast, IDEF3 (by default) ignores those
roles and simply records general information about objects in situations and
the temporal properties of, and relations among, situations. IDEF3 is thus
particularly well-suited to the construction of models of general enterprise
processes in which the timing and sequencing of the events in a process is
especially critical. Notably, it is a particularly useful language to use in the
design of complex simulation models.

5.2 The IDEF3 Language and its Semantics

The basic elements of the IDEF3 lexicon for building process models are
illustrated in Figure 10. UOB boxes, of course, in the context of an IDEF3

UOB box Junctions
& (@) X
<UOB Label>
AND OR XOR
<Node ref#>{ <IDEF refi>
& O
Precedence Link Sync Sync
AND OR

Figure 10: The Basic IDEF3 Process Description Lexicon

model, signify UOBs, and precedence links signify a certain kind of temporal
constraint. Every UOB box has an associated elaboration, i.e., a set of logical
conditions, or constraints, written either in English or, more ideally, in a
formal logical language. A UOB box can signify a given UOB A only if the
lattersatisfiestherlogicaliconstraintsinithe elaboration of the former. In such
a case we say that A is an instance of the UOB box. Junctions, too, can have
elaborations.

228 Christopher Menzel, Richard J. Mayer

5.2.1 Syntax for the Basic IDEF3 Construct
The basic construct of IDEF3 is illustrated in Figure 11. Box 1, with the

A B

Figure 11: The Basic IDEF3 Construct

label ‘A’ at the “back” end of the link is known as the source of the link and
box 2 with label ‘B’ at the “front” end of the link is known as the destination
of the link. If Figure 11 is considered as a complete IDEF3 model, box 1
is known as the (immediate) predecessor of box 2 in the model, and box 2
the (immediate) successor of box 1. The ‘1’ in box 1 and the ‘2’ in box 2
are the node reference numbers of the boxes, and are assumed to be unique
within a model. The corresponding area to the right of the node reference
number in a UOB box is optionally filled by an IDEF reference number, a
broader identifier for the purpose of locating that model element with respect
to numerous IDEF models.

5.2.2 Semantics for the Basic Construct

The meaning of an IDEF3 model is best understood in terms of its possi-
ble activations, the possible real world situations that exhibit the structure
specified in the model. In the simplest case, an activation of a model is a
collection of UOBs that satisfy the temporal constraints exhibited by the
structure of the precedence links in the model. In general, there are many
different patterns of activation for a given model. However, there is only one
possible activation pattern for simple two box models like Figure 11, viz.,
when a single UOB A of the sort specified in the box 1 is followed by a UOB
B of the sort specified in box 2. More precisely, a legitimate activation of
Figure 11 as it stands is any pair of situations A and B that are instances of
boxes 1 and 2, respectively, and where B does not start before A finishes.

5.2.3 Junctions

Junctions in IDEF3 provide a mechanism to specify the logic of process
branching. Additionally, junctions simplify the capture of timing and se-
quencing relationships between multiple process paths.

5:2:3:1vvdJunctions TypessAnIDEF 3 model can be thought of as a general
description of a class of complex processes, viz., the class of its activations.
Such a description is rarely linear, in the sense that the processes it picks out

The IDEF Family of Languages 229

always exhibit the same linear pattern of subprocesses. More typically, they
involve any or all of four general sorts of “branch points:”

1. Points at which a process satisfying the description diverges into mul-
tiple parallel subprocesses;

2. Points at which processes satisfying the description can differ in the
way they diverge into multiple (possibly nonexclusive) alternative sub-
processes;

3. Points at which multiple parallel subprocesses in a process satisfying
the description converge into a single “thread;” and

4. Points at which processes satisfying the description that had diverged
into alternative subprocesses once again exhibit similar threads.

IDEF3 introduces four general types of junction to express the four general
sorts of branch points. The first two sorts are expressed by “fan-out” junc-
tions: Conjunctive fan-out junctions represent points of divergence involving
multiple parallel subprocesses, while disjunctive fan-out junctions represent
points of divergence involving multiple alternative subprocesses. The last two
sorts of branch point are expressed by “fan-in” junctions: conjunctive fan-
in junctions represent points of convergence involving multiple parallel sub-
processes, while disjunctive fan-in junctions represent points of convergence
involving multiple alternative subprocesses. There is one type of conjunc-
tive, or AND, junction, indicated by ‘&’. There are two types of disjunctive
junction: inclusive and exclusive junctions, or OR and XOR junctions, re-
spectively, depending on whether the alternatives in question are mutually
exclusive. OR junctions are indicated by an ‘0’, and XOR junctions by an
X

Junction syntax is illustrated in Figure 12, where =y is either ‘&’, ‘O’, or
‘X’. Although this figure shows only two UOB boxes to the right of a fan-out
junction and to the left of a fan-in, arbitrarily many are permitted in an
IDEF3 model in general.

Figure 12: Junction Syntax

230 Christopher Menzel, Richard J. Mayer

5.2.3.2 Junction Semantics The intuitive meaning of junctions is straight-
forward. It will be enough to use Figure 12. Letting vy be ‘&’ in the figure,
an activation of the model on the left will consist of an instance A of box

1 followed by instances B and C of boxes 2 and 3. If the junction is syn-
chronous, then B and C will begin simultaneously. (Note in particular that,
for nonsynchronous junctions, there are no constraints whatever on the tem-
poral relation between B and C; all that is required is that both occur after
A.) Similarly, an activation of the right model in the figure will consist of
instances A and B of boxes 1 and 2 followed by a single instance C of box 3;
and if the junction is synchronous, then, A and B will end simultaneously.

For OR (XOR) junctions, if v is ‘O’ (‘X’), then an activation of the model
on the left in the figure will consist of an instance A of box 1 followed by either
an instance B of box 2 or an instance C of box 3 (but, for XOR, junctions, not
both). If the OR junction is synchronous, then, should there be instances of
both boxes 2 and 3, they will begin simultaneously. Similarly, an activation
of the right model in the figure will consist of an instance of either box 1 or
box 2 (but, for XOR junctions, not both) followed by an instance of box 3.
If the OR junction is synchronous, then, should there be instances of both
boxes 1 and 2, they will end simultaneously.

These semantic rules generalize directly, of course, for junctions involving
arbitrarily many UOB boxes. Control conditions on branching and concur-
rency on a class of processes — e.g., the conditions that determine which of
two paths to follow at an XOR junction — are often placed in the elaboration
of a junction.

5.3 Models and Schematics

An IDEF3 model is a collection of one or more IDEF3 process schematics,
which are built from UOB boxes, precedence links, and junctions in natural
ways. Intuitively, a schematic is simply a single “page” of a model, a view
of (perhaps only a part of) a process from a given perspective at a single
uniform granularity.

Request
bids
4 1
Identi
potential Evaluate
suppliers bids
2 | 2 = i
Request Notify Order
materls] X manager ﬁgtue%'s:rd
1T i 3| T
Identi
current
supplier
3

Figure 13: A Small IDEF3 Schematic

The IDEF Family of Languages 231

A simple example of a schematic is seen in Figure 13. In this schematic,
a request for material is followed by either the identification of the current
supplier or the identification of potential suppliers. (A condition attached
to the junction might indicate that the latter path is taken only if there is
no current supplier; but this common sense condition, of course, cannot be
derived from the bare semantics of the language alone.) If a current supplier
is identified then an order is placed. Otherwise, the identification of potential
suppliers is followed by both a report to the manager and a request for bids
from the potential suppliers. When both of these tasks are complete, the bids
that have arrived are evaluated and an order placed to the winning bidder.'®

The formal syntax for IDEF3 process schematics is rather laissez-faire;
the onus is on the modeler to construct coherent models, i.e., models with
possible activations. However, although basically straightforward, the syntax
requires more mathematical apparatus than is appropriate here to specify
precisely. Informally, though, there are essentially two main rules:

1. A UOB box can be the source or destination of no more than than one
precedence link; and

2. A schematic must contain no loops.

The motivation behind the first rule is that precedence links with the same
box as source or destination would indicate a point at which there are par-
allel subprocesses diverging or converging, or a point at which alternative
subprocesses can be seen to diverge or converge across different processes
satisfying the description. The purpose of fan-out and fan-in junctions is
to indicate just such points in a description meant to capture the general
structure exhibited by many possible processes.

Regarding the second rule, a path through a schematic is a sequence
of UOB boxes, junctions, and precedence links such that each element of
the sequence (save the last, if there is a last element) is connected to its
successor. A loop, or cycle, in a schematic is a path in the schematic whose
first element is identical to its last. At first blush, the second rule might seem
highly undesirable, as loops appear to be very common structural features of
many processes. Consider, for example, the process depicted in Figure 14
(in apparent violation of Rule 2).

The problem with loops is that they are inconsistent with the semantics of
the precedence link. As noted above, the precedence link indicates temporal
precedence. This relation is transitive, that is, if UOB A is before B in time,
and B before C, then A is before C as well. Given that, suppose box bl
is linked to box b2, and b2 to b3 in a model M, and that A, B, and C are
instances of bl, b2, and b3, respectively, in some activation of M. By the basic
semantics of the precedence link, A must precede B and B must precede C.
But then, by the transitivity of temporal precedence, A must precede C. Now,

15 Henceforth, junction numbers will be suppressed.

232 Christopher Menzel, Richard J. Mayer

Y

Paint part Test paint Move to
1 job X - Assembly
1] 2| 3 |

Figure 14: Process with an Apparent Loop

notice that, on this understanding of the precedence link, a loop in a model
would mean that one point in an activation of the model — one point in a
possible or actual process — could return to an earlier point, and hence that
the later point could precede the earlier point. Clearly, though, given the
direction of “time’s arrow,” this is not possible; the past remains ineluctably
past and inaccessible; once past, no point in time can be revisited.

Why then is there a temptation to use loops in process models? The
answer is clear; in some processes — the one depicted in Figure 14, for
instance — a particular pattern is instantiated many times. It is therefore
convenient and, often, natural simply to indicate this by reusing that part
of a model that represents the first occurrence of this pattern, rather than
iterating separate instances of it. As noted, though, this is not compatible
with the general semantics of the precedence link. Strictly speaking, then,
loops must be “unfolded” into noncycling structures. If there is a bound on
the number of iterations, the corresponding noncycling model will be finite.
Otherwise it will be infinite; the infinite unfolded model corresponding to
Figure 14 is exhibited elliptically in Figure 15.

Paint part (1) Test paint Move to
—*1ieb (1) | assembly (1)
| 2 | Nl
Paint part (2) Test paint Move to
job (2 [x] assemby (2)
] 5 | 6]
Paint part (3)
-
7]

Figure 15: Unfolded Model of the Process Depicted in Figure 14

That noted, it has already been acknowledged that models with loops
are often convenient and natural. Indeed, given the ubiquity of processes
withriteratedspatternsytorrequiresmodelers explicitly to unfold loops in gen-
eral would rob IDEF3 of a significant degree of its usability. Consequently,
IDEF3 allows models with loops — however, importantly, these are under-

The IDEF Family of Languages 233

stood syntactically not as primitive constructs but as macros for their un-
folded counterparts. So understood, loops are semantically innocuous and
can be used without qualms.

5.3.1 Referents

Loops are typically indicated in IDEF3 by means of referents in process
models. Referents are theoretically dispensable, but are useful for reducing
clutter. In the context of a process model, referents are used to refer to
previously defined UOBs. Referents therefore enhance reuse, as one can
simply refer to the indicated schematic or UOB box without explicitly copying
it into the referring model.

Referents come in two varieties: call-and-wait and call-and-continue. Their
syntax is seen in Figure 16. The referent type of a referent can be either

<Referent type/ <Referent type/
<Label> <Label>
<Locator> <Locator>
Call and Continue Referent Call and Wait Referent

Figure 16: Referent Syntax

‘U0B’, ‘SCENARIO’, ‘TS’, or ‘GOTO’. A UOB referent points to a previ-
ously defined UOB box, a scenario referent points to a model (‘scenario’ is
the name for the complex UOB described by a model), a TS referent points
to an object state transition schematic (see below), and a GOTO points to a
UOB box or model. A GOTO referent indicates a change of process control
to a UOB or scenario indicated by the referenced UOB box, model, or junc-
tion. In each case, the locator in a referent specifies the (unique) reference
number of the UOB, scenario, or state transition in question. Referents, too,
have associated elaborations.

As the names suggest, a call-and-wait referent calls a particular UOB or
transition, and execution of the calling model halts until the called UOB or
transition completes. By contrast, a call-and-continue referent simply calls
a UOB or transition without any halt in the execution of the calling model.
Typically, in IDEF3, a GOTO referent, rather than a backward-pointing
precedence link, is used to express looping;'® thus, on this approach, the
process intended by Figure 14 would be captured as in Figure 17. Use of
precedence links to express looping, however, is permitted.

16More than anything, perhaps, this simply reflects the way most IDEF3 support soft-
ware works.

234 Christopher Menzel, Richard J. Mayer

Paint part Test paint Move to
job X assembly
1] 2 3 |
GOTO:
Paint part

Figure 17: Looping with a GOTO Referent

5.3.2 Decompositions

A decomposition of a UOB box in a model is simply another IDEF3 schematic,
one that purports to provide a “finer-grained” perspective on the UOB signi-
fied by the box. In a fully-fledged IDEF3 model, each schematic is either the
decomposition of a UOB box in some other schematic, or else is the unique
“top-level” schematic which is not the decomposition of any other schematic.
That a given box in a schematic in a model has a decomposition in the model
is indicated by shading, as illustrated in Figure 18.

Paint part

1]

Figure 18: Decomposition Syntax

5.4 Object State Transition Schematics

Initially, process schematics were the only part of the IDEF3 language. How-
ever, it soon became apparent that modelers often desired to take “object-
centered” views of processes, views that focus not so much on the situations
that constitute a process, but on the series of states that certain objects
within those processes pass through as the process evolves. This led to the
addition of object state transition schematics, or simply transition schematics
to the IDEF3 language.

5.4.1 Syntax for Basic Transition Schematics

The basic lexicon for transition schematics is shown in Figure 19.
Asrcanrbeseeny thelabel-forrasstate symbol displays the name of a state

and, optionally, the name of the general kind of thing that is in the state.

For example, the state of being hot might be labeled simply by means of

The IDEF Family of Languages 235

State Symbol Transition Junctions

® @ ©®

[<Kind label>:]
<State label>

<Node ref#> | <IDEF ref#>
Transition Link

——___»

Figure 19: Lexicon for State Transition Schematics

the label HOT. If it is hot water in particular, though, and that fact is
relevant, then the more complex label WATER:HOT could be used. (Node
references and IDEF numbers in state symbols have the same role as in
process schematics, and will be suppressed in the examples to follow.) An
arrow (indistinguishable from a precedence link), known as a transition link,
is used to indicate a transition from one state to another, as illustrated in
Figure 20. ‘K1’ and ‘K2’ indicate optional kind (class) names, and ‘S1’ and
‘52’ names for states.

Figure 20: Basic Transition Schematic Syntax

5.4.2 Semantics for Basic Transition Schematics

In general, the semantics of a basic transition schematic is simply that, in
an occurrence of the indicated transition, there is first an object x (of kind
K1) in state S1, and subsequently an object y (of kind K2) that comes to
be in state S2; that is, to have an instance of the transition schematic in
question, it is required that x be in state S1 before y comes to be in state S2.
It is permitted, though perhaps not typical, that x # y; and it is permitted,
though perhaps not typical, that x remain in state 51 after y comes to be in
state S2.

It issimportant to note that; despite having the same appearance, the
semantics of the arrow of transition schematics is somewhat different than the
semantics of the precedence link. The precedence link implies full temporal

236 Christopher Menzel, Richard J. Mayer

precedence: in an activation of a simple precedence connection, an instance
of the UOB box at the tail of the link must end no later than the point
at which an instance of the UOB box at the head of the link begins. By
contrast, in an object schematic, the arrow implies precedence only with
regard to starting points: the object that is in the state indicated at the tail
of the arrow must be in that state before the transition to an object in the
state indicated at the head of the arrow. The reason for this weaker sort
of precedence in state transition schematics is simply the point noted in the
previous paragraph: a transition only involves a change from an object in one
state to an object (possibly the same object, possibly different) in another;
though it may not be typical, the object in the initial state of the transition
needn’t cease being in that state after the transition. To allow for this type
of transition, the weaker semantics is used for the arrow in object transition
schematics. There is no potential for confusion, however, as the meaning of
the arrow remains constant within each type of schematic.

5.4.3 Using UOB Referents in Transition Schematics

Because (in the context of process modeling) objects are in states within
UOBs, and because transitions occur inside UOBs, it is useful and infor-
mative to be able to record information about related UOBs in a transition
schematic. This is accomplished by attaching UOB referents to various parts
of a transition schematic. The most common use of UOB referents is to attach
them to the arrow in a transition schematic, as illustrated in Figure 21.

uos/
A

Figure 21: Use of a UOB Referent in a Transition Schematic

The default semantics here is fairly weak. The figure signifies only that in
transitions of the indicated sort there will be an object x in state S1 prior to
or at the start of a UOB A (satisfying the conditions specified in the referent),
and subsequently an object y at some point after the beginning of A. Stronger
conditions — e.g., that x=y, that x and y occur in A, that x be in S1 at the
start of A and y in S2 at its end, etc. — can be added to the elaborations of
appropriate components of the schematic.

Additional referents can be added to a transition link to indicate more
information about associated processes. Relative placement on the transition

The IDEF Family of Languages 237

arrow indicates the relative temporal placement of the associated UOBs.
For instance, the schematic in Figure 22 indicates a transition involving the
occurrence of a pair of UOBs A and B that start simultaneously, and a third
UOB C that starts after A and B. Additionally, because the “B” referent
is a call-and-wait, in any instance of the transition, UOB B must complete
before C can begin. (This will generally be the only sort of context in which
call-and-wait referents are used in transition schematics.)

UOB/ uoB/
A B
UOB/
Cc

Figure 22: Multiple UOB Referents in a Transition Schematic

The semantics for transitions in schematics with multiple referents is
slightly more involved than for simple schematics. In the case of the schematic
in Figure 22, for example, the indicated object x in any such transition is in
S1 at the start of A and B, and it is in state S2 by the end of C. This semantics
generalizes straightforwardly to other cases of multiple referents.

If the relative temporal ordering of the UOBs involved in a transition is
unknown or indeterminate from case to case, a small circle is used to “anchor”
the referents indicating those UOBs, as illustrated in Figure 23.

uoB/ uoB/ uoB/
A B C

Figure 23: Temporally Indeterminate UOB Referents in a Transition Schematic

It is not uncommon for a given situation to “sustain” an object in a given
state; a refrigeration process, for example, might sustain a given substance

238 Christopher Menzel, Richard J. Mayer

in a solid state. Situations of this type can be represented by the construct
in Figure 24.

uos/

Figure 24: Sustaining an Object in a State

More generally, in any instance of the schematic in Figure 24, there is
a UOB A of the sort specified by the referent and an object x in state S1
throughout the duration of A. This requires that such an x must exist when
A begins. x could, however, be in state S1 prior to the start of A; that
is, it could be brought into state S1 by some other process prior to A (the
substance noted above might actually become solid through some sort of
chemical reaction), and then sustained in that state by A.

5.4.4 Complex Transition Schematics

More complex transition schematics can be constructed by adding further
transition arrows and state symbols to existing schematics or by using tran-
sition junctions. A complex schematic is illustrated in Figure 25.

uoB/ uos/
Develop Develop
initial design prototype

Project: Project: Project:
Initial State P Milestone 1 Milestone 2
UoB/ uoB/
Refine initial Write final
design report

Figure 25: A Complex State Transition Schematic

The IDEF Fomily of Languages 239

For the most part, the semantics of complex schematics such as this is a
straightforward generalization of simple schematics, only instead of a single
transition there are several successive transitions. Thus, the schematic in
Figure 25 expresses a transition in which a project evolves from an initial
state to a first milestone state and thence to a second milestone state via the
UOBs of the sort indicated.

Transition junctions permit the construction of more subtle schematics
that express concurrent and alternative paths in a series of transitions. Junc-
tions can take any of the three forms illustrated in Figure 26.

Figure 26: Transition Junctions

The semantics of these junctions parallels their process schematic coun-
terparts. If * is ‘&’ in schematic (A) in Figure 26, for example, then the
schematic indicates a transition in which objects xi, ..., x; in states Sy, ...,S;,
respectively, transition to an object y in state S. If * is ‘X’ in (B), then the
schematic indicates a transition of an object x to an object y in exactly one of
the states Ty, ..., T;. Form (C) allows for even more complex transitions. For
example, if * is ‘O’ and ** is ‘&’, then the schematic indicates a transition
in which one or more objects xy, ..., x; in states Si, ..., S; transition to objects
Y1,-.,Y; in the states Ty,...,T;, respectively. Similarly for the remaining
possibilitiesm Thersyntaxrandisemantics of referents with transition junctions
is straightforward but subject to a number of conventions. The reader is
referred to [MMP93] for details.

240 Christopher Menzel, Richard J. Mayer

5.5 General Kind Schematics

Early in its development, IDEF3 was focused entirely on the representation
of process knowledge, and its language included no transition schematics
(see, e.g., [MME94]). The desire of modelers to describe processes from an
object-centered perspective led to the introduction of transition schematics.
Realization of the importance of general ontologies for understanding, shar-
ing, and reusing process models, however, has led to a deeper integration
of the IDEF3 method with the IDEF5 ontology capture method. Indeed,
the IDEF5 ontology description language has become incorporated into the
IDEF3 transition schematic language. This language permits a modeler to
express, not only information about state transitions, but general information
about the objects, classes, and relations. Space limitations prevent a detailed
discussion of this component of IDEF3. Once again, interested readers are
referred to [MMP93].

Acknowledgments: Christopher Menzel would like to thank Alexander Bocast for
numerous illuminating discussions concerning IDEF0, and for allowing the authors
to borrow heavily from several figures that he designed.

References

[End72] Enderton, H., A Mathematical Introduction to Logic, New York, Aca-
demic Press, 1972

[Gru93] Gruber, T., A Translation Approach to Portable Ontologies, Knowledge
Acquisition 2, 1993, 199-220

[IEEE97] Standard Users Manual for the ICAM Function Modeling Method —
IDEF0, IEEE draft standard, P1320.1.1, 1997

[MMP93] Mayer, R. J., Menzel, C., Painter, M., deWitte, P., Blinn, T., Ben-
jamin, P., IDEF3 Process Description Capture Method Report, Wright-
Patterson AFB, Ohio, AL/HRGA, 1993

[MKB95] Mayer, R., Keen, A., Browne, D., Harrington, S., Marshall, C.,
Painter, M., Schafrik, F., Huang, J., Wells, M., Hisesh, H., IDEF4
Object-oriented Design Method Report, Wright-Patterson AFB, Ohio,
AL/HRGA, 1995

[MBM94] Mayer, R., Benjamin, P., Menzel, C., Fillion, F., deWitte, P., Futrell,
M., and Lingineni, M., IDEF5 Ontology Capture Method Report,
Wright-Patterson AFB, Ohio, AL/HRGA, 1994

[MMEY94]| | Menzel, C., Mayer R., Edwards, D., IDEF3 Process Descriptions and

[NIST93a]

[NIST93b]

[RB87]

[Ros77]

[Sof81]

The IDEF Family of Languages 241

Their Semantics, in: A. Kusiak, C. Dagli (eds.), Intelligent Systems in
Design and Manufacturing, New York, ASME Press, 1994

Integration Definition for Function Modeling (IDEF0), Federal Infor-
mation Processing Standards Publication 183, Computer Systems Lab-
oratory, National Institute of Standards and Technology, 19937

Integration Definition for Information Modeling (IDEF1X), Federal In-
formation Processing Standards Publication 184, Computer Systems
Laboratory, National Institute of Standards and Technology, 1993

Ramey, T., Brown, R., Entity, Link, Key Attribute Semantic Informa-
tion Modeling: The ELKA Method, ms, Hughes Aircraft, 1987

Ross, D., Structured Analysis (SA): A Language for Communicating
Ideas, TSE 3 (1), 1977, 16-34

SofTech, Inc. Integrated computer-aided manufacturing (ICAM) archi-
tecture, Pt. II, Vol. V: Information modeling manual (IDEF1), DTIC-
B062457, 1981

17 At the time of this writing, the IDEF0, IDEF1X, IDEF3, IDEF4, and IDEFS5 reports
listed here are available on the World Wide Web at http://www.idef.com.

CHAPTER 11

The CIMOSA Languages

Frangois Vernadat

CIMOSA is an open system architecture for Enterprise Integration (EI), and espe-
cially for integration in manufacturing. The architecture comprises an Enterprise
Modelling Framework, an Integrating Infrastructure and a System Life Cycle. This
contribution presents the modelling languages used in the Enterprise Modelling
Framework. The CIMOSA languages are based on an event-driven process-based
model and cover functional, information, resource and organisational aspects of
an enterprise (including a workflow language for specifying enterprise behaviour).
They can be used at various modelling levels along the system life cycle, including
requirements definition, design specification and implementation description. Prin-
ciples of these languages have influenced standardisation work in the field (CEN
and ISO) as well as the development of commercial tools for business process mod-
elling and analysis.

1 Introduction

Enterprise Integration(EI) is a concept emerging from three major Informa-
tion Technology areas: open distributed processing, co-operative information
systems (especially federated databases) and integration in manufacturing,
originally named Computer-Integrated Manufacturing (CIM). However, it
is now well understood that in addition to these technical aspects, EI also
strongly relies on organisation and human resource management principles to
include organisational aspects and place people at the heart of the paradigm
[BN96, Ver96].

EI is concerned with breaking down organisational barriers and facilitat-
ing information exchange and sharing throughout an enterprise to make it
more competitive and more reactive in a dynamic and global economy.

Information Technologies, and especially information systems, are of para-
mount importance in the development of enterprise integration solutions in
terms of high speed computer communications networks, distributed data-
bases, distributed computing environments, information exchange (adminis-

244 Frangois Vernadat

trative or product data exchange), application interoperability, inter-working
or computer supported co-operative work.

Enterprise Modelling(EM) is another fundamental component in the plan-
ning and development of EI projects [Ver96]. EM is a generic term which
covers the set of activities, methods and tools related to developing models
for various aspects of an enterprise.

The aim of EM is threefold: (1) to assist in building an enterprise model
or common view of the enterprise which can be shared by the various actors,
i.e. building a consensus, (2) to support enterprise analysis and decision
making about the parts to be integrated, and (3) to support model-based
integration, i.e. using the enterprise model as a federation mechanism to
integrate humans, business processes and information systems.

This article presents the CIMOSA languages used for enterprise modelling
in the CIMOSA architecture. They cover functional, information, resource
and organisation aspects of a manufacturing enterprise at various modelling
levels: requirements definition, design specification and implementation de-
scription. An application example is provided.

2 CIMOSA

CIMOSA [AMI93] is an Open Systems Architecture for Enterprise Integra-
tion. It has originally been developed for Computer-Integrated Manufactur-
ing (CIM) applications as a series of ESPRIT Projects (EP 688, 5288 and
7110) over a period ranging from 1986 until 1994 with the support of the
European Commission. More than 30 European companies (including CIM
users and IT vendors) as well as academic institutions have contributed to
its design and validation.

Its aim is to provide the manufacturing industry with (1) an Enterprise
Modelling Framework (EMF), which can accurately represent business oper-
ations, support their analysis and design, and lead to executable enterprise
models; (2) an Integrating Infrastructure (IIS), used to support application
and business integration as well as execution of the implementation model
to control and monitor enterprise operations; and (3) a methodology to be
used along the System Life Cycle (SLC) to assist users in applying CIMOSA
principles [CIM96].

CIMOSA provides a Reference Architecture (known as the CIMOSA
cube) from which particular enterprise architectures can be derived. This Ref-
erence Architecture and the associated enterprise modelling framework are
based on a set of modelling constructs, or generic building blocks, which alto-
gether form the CIMOSA modelling languages. These languages are based on
an event-driven process-based model centered on two fundamental and com-
plementary concepts: business process to model enterprise behaviour and
enterprise activity to model enterprise functionality [Ver93]. Other concepts,
defined as modelling constructs, are also used to represent various aspects

The CIMOSA Languages 245

of an enterprise as summarised by Figure 1. For the sake of simplicity, this
figure does not show constructs of the organisation view.

The System Life Cycle defines the set of essential and generic phases
that an enterprise integration project has to go through, irrespectively of
their sequence. It is based on the GERAM (Generalised Enterprise Ref-
erence Architecture and Methodology) life cycle [BN96] and comprises the
following phases: identification phase, concept phase, requirements definition
phase, design specification phase, implementation description phase, opera-
tion phase and maintenance and decommissioning phase.

The CIMOSA Integrating Infrastructure is not discussed in this paper.
The interested reader is referred to [AMI93] for more details.

9—> 1111 Domain ;{aned by% Domain
) Relationship
j
9—6 m:n .
contains subject-to
triggers Domain __g Objective/
Event } E Process) Constraint
subject-t(;(
employs
Enterprise Business 6 Capability
Object Process requires Set
state \\Jemploys provides
(I of
uses/produce; Enterprise |~ necds
iect nterprise
?fg&c {J Activity [6 Resource
. N
des];:nbed employs isisubclass of
A2 tedby [
execu .
External uses Functional | Y Functional
Schema 3 \J Operation |/ Entity
Information Function Resource
View View View

Figure 1: Relationships among essential CIMOSA constructs

3 Business Process Modelling

The earlier methods for enterprise modelling focused very much on the func-
tional aspects, providing an activity constructs and the principle of functional

246 Frangois Vernadat

decomposition (such as IDEF0 or GRAI). Later on, new methods have been
proposed to focus on causal and precedence relationships among activities and
information flows (e.g. ARIS, CIMOSA, IDEF3, IEM). However, in addition
to traditional functional and information aspects as found in most business
process modelling languages, resource and organisation aspects must also be
covered to model industrial business processes [Ver96].

CIMOSA defines an enterprise as a large collection of:

e concurrent processes being executed on request to achieve business
goals, and

e interacting agents, or functional entities, executing processes, i.e. pro-
cessing enterprise objects.

Thus, CIMOSA emphasises a clear separation between processes (what has to
be done) and resources (the doers). The link between the two is materialised
by primitive actions, called functional operations (as required by process steps
and provided by functional entities). Functional operations are grouped into
enterprise activities to form elementary process steps.

The processes can be logically organised into functional areas called do-
mains to break down system complexity. These processes must be synchro-
nised over time and compete for resources. Top-level processes are called
domain processes. They are triggered by nothing but events. An event is
a solicited or unsolicited happening. Sub-processes are called business pro-
cesses in the CIMOSA jargon. They employ enterprise activities which con-
sume time and require resources for their complete execution to transform
input object states into output object states. These object states are called
object views (Figure 1).

Three separate types of flows can be distinguished within any enterprise
with CIMOSA:

e the control flow defined as a workflow, which defines the enterprise
behaviour,

e the material flow, which defines the flow of products or physical com-
ponents, and

e the information flow, which defines the flow of information objects and
decisions.

These flows can be modelled separately or altogether. For the sake of clarity,
it is recommended to model them separately starting with the control flow,
then adding the material flow and finally analysing the information flow. The
information flow can be further specialised into a document flow, a data flow
or a decision flow, if necessary.

The model must then be enriched with resource constraints indicating for
each process step what are the resources required. Conflicts occur in the case

The CIMOSA Languages 247

of shared resources among several processes and resolution policies must be
foreseen.

Finally, according to Bussler [Bus96], business processes can be classified
as:

o well-defined processes (or deterministic processes), i.e. processes for
which the sequence of steps is known and deterministic, and

o ill-structured (or semi-structured) processes, i.e. processes for which
the complete sequence of steps is partially known.

These are important aspects to be taken into account in business process mod-
elling languages in addition to synchronisation, co-operation, non-determinism
and exception handling features of processes. In [Bus96], Bussler presents a
workflow modelling language to specify business processes which addresses
some of these issues. This language has some similarities with the CIMOSA
languages presented in the subsequent sections.

4 The CIMOSA Languages

The CIMOSA modelling paradigm is based on an event-driven process-based
modelling approach to cover business requirements definition, system de-
sign and implementation description [Ver93]. It places the business process
concept at the heart of the approach and it is supported by a set of mod-
elling languages. These languages are made of modelling constructs for each
modelling level. A workflow language is also included to describe enterprise
behaviour.

Note: A business process is a partially ordered set of activities, as per-
ceived by the business user. It is defined in terms of a flow of control, a
flow of materials, a flow of information and resource needs and allocation to
process steps. A workflow is a computer representation of the flow of control
(or sequence of steps) of a business process.

4.1 Workflow Language

Process behaviour is expressed in terms of a simple declarative workflow
language in which all statements are defined as ‘HEN (condition) DO action’
rules called behavioural rules. A complete process behaviour is defined by a
Behavioural Rule Set (BRS) as follows in Backus-Naur form:

behavioural _rule_set ::= <starting_rules> <behavioural_rules>
<starting_rules> ::= <simple_starting _rule> <event_driven_rules>
<simple_starting rule> ::= WHEN (START) DO <action>
<event_driven_rules> ::= <event_driven_rule> <event_driven_rule>

<next_event_driven_rules>

248

Frangois Vernadat

<next_event_driven_rules> ::= <event_driven_rules> nil
<event_driven_rule> ::= WHEN (<event_condition>) DO <action>
<event_condition> ::= START WITH <event_list>

<event_list> ::= event-id <next_event>

<next_event> ::= AND event-id <next_event> nil

<behavioural_rules> ::= <behavioural_rule> <next_behavioural_rules>
<next_behavioural_rules> ::= <behavioural_rules> nil
<behavioural_rule> ::= WHEN (<triggering conditions>) DO <action>
<triggering_conditions> ::= <triggering_condition>

<next_triggering_condition>

<next_triggering_condition> ::= AND <triggering_condition>

<next_triggering_condition>
AND event-id <next_triggering_condition> nil

<triggering_condition> ::= ES (process-step-id) = <ESvalue>

<ESvalue> ::= ending-status-id ANY

<action> ::= process-step-~id <asynchronous_spawning>
<synchronous_spawning> FINISH

<asynchronous_spawning> ::= process-step-id <other_steps>

<other_steps> ::= & process-step-id <other_steps> nil

<synchronous_spawning> ::= SYNC (<asynchronous_spawning>)

where: event-id is the identifier of an event, process-step-id is the identifier of
a process step (process or activity), ending-status-id is the name of an ending

status of a process step, & is the parallel operator in the action clause.

Using this syntax, it is therefore possible to specify the following situa-

tions:

1. Process triggering rules: There are two possible cases:

(a) Starting a domain process by means of one or more events. In the
following case, a domain process starts with process step EF1 any
time after an occurrence of both event-i and event-j occurred (not
necessarily at the same time):

WHEN (START WITH event-i AND event-j) DO EF1

(b) Starting a business process called by a parent process using a sim-
ple starting rule:

WHEN (START) DO EF1

2. Forced sequential rules: These rules are used when a process step EFx
must follow another step EFy whatever the ending status (given by the
built-in function ES) of EFx is.. The reserved word ‘ANY’ is used in
this case (not an ending status).

WHEN (ES(EFz) = ANY) DO EFy

The CIMOSA Languages 249

3. Conditional sequential rules: These rules are used to represent branch-
ing conditions in a flow of control. For instance, if EF1 has three
exclusive ending statuses, one can write:

WHEN (ES(EF1) = end_stat.1) DO EF2
WHEN (ES(EF1) = end_stat_.2) DO EF3
WHEN (ES(EF1) = end_stat-3) DO EF}

4. Spawning rules: These rules are used to represent the parallel execution

of process steps in a flow of control. Two types of spawning rules can
be defined:

(a) Asynchronous spawning: For instance, when EF1 finishes with
status ‘value’, EF2, EF3 and EF4 will all be requested to start
as soon as they are enabled, i.e. when their preconditions are
satisfied (& is the parallel operator).

WHEN (ES(EF1) = value) DO EF2 & EF3 & EF

(b) Synchronous spawning: For instance, when EF1 finishes with sta-
tus ‘value’, EF2, EF3 and EF4 will all be requested to start exactly
at the same time assuming that they are all enabled (SYNC indi-
cates the synchronisation).

WHEN (ES(EF1) = value) DO SYNC (EF2 & EF3 & EF})

5. Rendez-vous tules: These rules are used to synchronise the end of
spawning rules. For instance, if EF5 must be started after EF2 fin-
ishes with status value_2 and EF3 finishes with status value_3 and EF4
finishes with status value_4, we will write:

WHEN (ES(EF2) = value_2 AND ES(EF3) = value_3
AND ES(EF4) = value_4) DO EF5

6. Loop rules: These rules are used to execute the same process step(s)
several times as long as a loop condition is true. For instance, the
following statement repeats EF1 as long as EF1 finishes with status
loop_value:

WHEN (ES(EF1) = loop_value) DO EF1

7. Process completion rules: These rules are used to indicate the end of
a process and only contain the word FINISH in their action part. For
instance,

WHEN (ES(EF1) = end_stat.x AND ES(EF2) = end_stat_y)
DO FINISH

Using these rules, a process behaviour is said to be consistent if FINISH can
be reached from all STARTS and all process steps used in the rules belong to
at least one path from START to FINISH (no isolated process steps and no
dead-ends are allowed) in the control flow.

250 Frangois Vernadat

Remark: Using this syntax, it is correct to write in CIMOSA:

WHEN (START) DO FINISH

In this case, the process behaviour is limited to one behavioural rule. This is
the empty process, i.e. a process which does nothing (neutral element in the
set of processes).

Two types of behavioural rules have been added to the previous set to
model semi-structured processes: run-time choice rules and unordered set
rules. In these rules, the action part refers to a compound action (variable
S), meaning that it is considered as a whole to make possible the definition of
its ending status. The extension of the language syntax is as follows (where
XOR is the exclusive choice operator):

<action> ::= ... <run_time_choice> <unordered_set>
<run_time_choice> ::= compound-action-id = (process-step-id XOR
process-step-id <other_run_time_steps>)
<other_run_time_steps> ::=
XO0R process-stép-id <other_run_time_steps> nil

<unordered~set> ::=

compound~action-id = { process-step-id , process-step-id

<other_unordered_set_steps> }
<other_unordered_set_steps> ::=

process-step-id <other_unordered_set_steps> nil

1. Run-time choice rules: These rules are used when there is an exclusive
choice among several alternatives. Exactly one process step in the list
will be executed as decided by the resource at run-time, which must be
common to all steps in the list.

WHEN (ES(EF1) = end_stat.1) DO S = (EF2 XOR EF8 XOR EF})

2. Unordered set rules: They are used to indicate that a set of process
steps must be executed next but the order of execution is unknown. In
this case, all steps must be executed at least once (the semantic is the
semantic of the AND logical operator).

WHEN (ES(EF1) = end_stat.1) DO S = {EF2, EFS, EF{}

4.2 Functional Languages

Within a domain, domain processes are made of enterprise activities and sub-
processes, also called business processes, and are triggered by events. Let P
denote the set of process classes, A the set of activity classes, OV the set of
object view classes, R the set of resources and E the set of event classes of a
business entity. Let also 2° denote the power set of S.

Activities: " Enterpriseractivitiesiare functional units which require the
allocation of time ‘and resources for their full execution. By essence, an
activity performs something (at least it consumes time), except the activity

The CIMOSA Languages 251

NIL which does nothing (neutral element of set A). By definition, an activity
class A of A is a function f which transforms inputs into outputs when some
pre-conditions are satisfied. In other words, its occurrences transform an
initial state into a final state under the condition C f (i.e. alogical expression
called a guard). We can therefore write:

A: final state = f(initial state) if C; (initial state) = true,

Input states and output states are defined in terms of object views of OV.
The guard can be used to specify special triggering conditions or resource
requirements. It is always possible to associate with each activity class A of
A a finite set ES4 of so-called ending statuses. Ending statuses are defined
as 0O-argument predicates. They summarise the termination status of the
execution of an occurrence of the activity (such as ‘successful execution’,
‘aborted’, ‘done’ or ‘less than 100 items produced’). The generic function
ES returning the ending status at the end of an activity execution can be
defined as follows:

ES: A—UA¢€ A ES4 such that ES(A) € ESy

In CIMOSA, an activity class A is defined as a 10-tuple A = < A4, Fl4,
FO,,CI14,C04,RI4,RO4,64A,Caps, ES4 > where A;q is the name of
the activity class, FI4,FO4,CI14,C04,RI4, RO are the function input,
function output, control input, control output, resource input and resource
output of A, respectively (with FIq UFO4UCI4 # @; FI4aNCIy = ©;
FIs,FOA,CI4,RO4 C2°V;RIs C2R;C04 C 2F),54 defines the activity
behaviour, i.e. the function f and guard Cy performed by occurrences of A
(usually defined as an algorithm for machines and a script for humans) such
that §4(F14,CIa,RIs) = (FO4,C04,R04),Capy is the set of required
capabilities for this activity (defined in the resource view) and ES4 is the
finite set of ending statuses. Function input and function output provide the
list of object views which are respectively transformed and produced by the
activity. Control input indicates object views used by the activity but not
modified (control information). Control output provides the list of events
which can be generated by the activity. Resource input defines resource
requirements. Resource output provides data on resource status after the
execution of the activity (optional). If an input (output) receives (sends) a
flow of object views, we then use the term STREAM OF <object-view-class>

At the design level, time is added in the form of minimum and maximum
durations (real numbers dmin and dmaz, dmin < dmaz), defining the time
it takes to execute an activity (dmin = dmaz for deterministic activities and
dmin # dmaz for stochastic activities). An average duration davg with stan-
dard deviation could also be specified. Furthermore, the activity behaviour
d4 is defined in terms of elementary actions performed by the activities of
class A. These elementary actions are called functional operations. These
are atomic operations either performed on request by functional entities, i.e.

252 Frangois Vernadat

active resources or actors of the system (e.g. drill a hole, move a part, write
a letter or fetch data in a data store), or by a CIMOSA model execution
service. Each functional operation is formally denoted as (by analogy to a
message sent to a method of an agent):

FE.FO (parameter-list)

where FE is the name of the functional entity able to execute the func-
tional operation FO and parameter-list is the list of formal (input/output)
arguments of the operation. Input/output arguments are syntactically dif-
ferentiated (such as in languages like Ada or CORBA IDL).

A special built-in functional operation, defined as CreateEvent (e), can be
used in any activity. It will be used within an activity to raise an occurrence
of event class e of E. Using this function, it is possible to raise an event within
an activity of process P! which will trigger another process P2 (within or
outside the domain considered). This facility makes it possible to synchronise
processes using events.

The activity behaviour d4 of an activity class A has the following syntax
[Ver94]:

Activity Behaviour : { <A-behaviour> } [Exception Handling :
<exceptions>]

<A-behaviour> ::= <declarations> <pre-conditions> <statements>
<post-conditions>

where <declarations> is used to declare local variables, <pre-conditions> is a
set of predicates defining pre-conditions on the execution of the activity (e.g.
access to non-empty files, availability of necessary function or resource inputs,
variable initialisation, ...), < statements> are either functional operation calls
or Pascal-like procedural statements (including variable assignments, if-then
structures, case structures, loops, etc.) involving functional operation calls,
<post-conditions> defines a (possibly empty) set of actions to be executed at
the end of the activity (e.g. forcing variables to values, closing files or setting
ending status values). The <ezceptions> clause (optional) allows the defini-
tion of exception handling mechanisms (such as time-outs or watch-dogs) to
face non-deterministic situations (e.g. detection of an infinite loop, conditions
never realised or deadlock situations). It has the following structure:

<ezxception> : <ezxcep-action> ;

where <ezception> is a Boolean condition (e.g. elapsed-time = 100 or Not
(C1) or Var-A > Threshold-A) and <ezcep-action> is a set of statements to
be applied if the exception condition becomes true or a call to raise an event
(using the CreateEvent operation).

An activity can only be executed within a process workflow if its trig-
gering conditions and all its pre-conditions are satisfied, and if its required
resources are available. If the pre-conditions are not satisfied, control is ei-
ther passed to.the exception handling mechanism, which can either force the

The CIMOSA Languages 253

value of the ending status for normal process continuation or call an exception
handling procedure if one is defined, or suspend execution and pass control
to a supervisor level (i.e. CIMOSA model execution services).

Co-operative Activities: Co-operative activities are activities which in-
volve the exchange of messages (i.e. data, information or object views) and
need synchronisation (synchronous or asynchronous mode). Thus, they make
use of the following predefined functional operations (where a is an activity
identifier, m is the message and c is a communication channel):

e request (a, m, ¢) to ask a for message m via channel ¢

receive (a, m, c) to receive message m via channel ¢ from a

send (a, m, c¢) to send message m via channel ¢ to a

broadcast (m, c¢) to send message m via channel ¢ to anyone interested

acknowledge (a) to let a know that its message has been received

Events: Events are unsolicited happenings (e.g. customer orders, signals, or
machine failures) or solicited happenings (e.g. requests, planned orders, or
timers) conditioning the execution of the enterprise operations, i.e. execution
of business processes and their activities. An event class E of E is defined as
a 4-tuple:

E =< Eidaqa OVat >

where E;; is the name of the event class, ¢ is a first-order logic predicate,
OV is an object view class (optional) defining information carried by events
of this class, if any, and ¢ is a time-point indicating when the occurrence of
the event happened. ¢ defines a condition describing a real-world situation
in the enterprise. When it evaluates to true, an occurrence of the event class
is created. For instance, the arrival of a customer order is an event, the
customer order itself is an object view. Starting or terminating an enterprise
activity can also be considered as events if required.

Processes: Enterprise processes describe the enterprise behaviour, i.e. the
order in which activities are chained and executed. Let P be a process class
of P. P is defined as a 5-tuple:

P =< -Pid,aP,,BPyéP,ESP >

where P;; is the name of the process class, ap is called the alphabet of P
and represents the set of steps (i.e. activities) in which occurrences of P
can engage, (Op is the set of triggering conditions ¢ (see workflow language)
under which a process of P can be started (8p = (¢/(c = P)), dp is a set of
behavioural rules which defines the process behaviour and ESp is a finite set
of ending statuses of processes of P such that ESp = s/,s5,...,8p,;,1 <J <
Card(P), mj.€ N (set of natural numbers). Ending statuses are 0-argument

254 Frangois Vernadat

predicates indicating the termination status of the process. They must be
ending statuses or logical combinations of ending statuses of enterprise ac-
tivities employed in the process.

At the design specification modelling level, functional models can be auto-
matically translated into timed Petri nets, and especially generalised stochas-
tic Petri nets. This allows for qualitative analysis (liveness, boundedness,
reversibility, p-invariants, etc.) and quantitative analysis (cycle times, bot-
tlenecks, etc.) of business processes using Petri net theory [DHP93, Mur89].
Petri nets are directed graphs made of two types of nodes: places (repre-
sented by circles) and transitions (represented by bars). Time is associated
to transitions. Translation rules can be provided in graphical form as indi-
cated by Figure 2 (where EF; denotes a process step, e represents an event,
sj is an ending status, § denotes an immediate transition represented by a
black bar with firing time equal to zero and places with double circles are con-
trol places, i.e. their marking is controlled by an external agent to represent
external actions on the system).

4.3 Information Languages

At the requirements definition modelling level, CIMOSA uses two constructs
in the information view: enterprise objects and object views.

Enterprise objects are actual entities of the enterprise. They are defined
by their object class (i.e. structure), their state (i.e. occurrence values) and
are characterised by their unique identifier. An enterprise object class O of
O is defined as a 3-tuple O =< Ojq4, {ak }r=1,2, {Pi}i=1,n > Where Oyq is the
object class name, aj, is an abstraction mechanism (a; is the generalisation
mechanism for ‘is-a’ links associated to property inheritance and ag is the
aggregation mechanism for ‘part-of’ links) and each p; is an object property
({pi}izo) such that:

p; : O = D; where D; is a basic domain (i.e. a set of values such as integers,
reals, character strings, etc.), if p; is an atomic property.

pi: 0 — 0,0 € O, if p; is defined as an object (for compound objects).
p;: 0 — 20" 0' € 0, if p; is defined as a set of objects of class O’.

Methods, i.e. procedural attachments, can be added to object class defini-
tion, but this is not necessary for the scope of this paper. Integrity constraints
can also be defined on properties.

Object Views: Material and information objects of the enterprise used as
control input, function input and/or function output of at least one enterprise
activity are described as object views. An object view, or object state, is a
representation or physical manifestation of an object as perceived by users or
applications at a given point in time. It is characterised by its embodiment
and is described by a set of properties. A class OV of V of similar object
views can be defined as a 4-tuple (object views are occurrences of the class
oV):

The CIMOSA Languages 255

OV =< OVjq4,nature, {p;}i=1,n, {0;}j=1,m >

where OVjq is the name of the object view class, nature = ‘physical’ if the
object view class represents physical objects (e.g. materials, work-pieces or
tools) or nature = ‘information’ if the object views are only made of data
(e.g. forms, computer screens, reports, files or messages), {p;}: is a set of
properties of objects of classes {O;}; of O on which the object views of the
class OV are defined.

At the design specification modelling level, all object views are specified
as external schemas of one global conceptual schema derived from enter-
prise object specification. The conceptual schema defines the structure of
the databases to be implemented to support the integrated system. Both the
conceptual schema and the external schemas can either be expressed in terms
of an extended entity-relationship model or an object-oriented model accord-
ing to users’ requirements. These specifications can then be implemented
using the relational model and the SQL language at the implementation de-
scription modelling level [JV90].

4.4 Resource Languages

CIMOSA provides two modelling constructs for resource modelling: resource
and capability set. Resources can be classified into active resources (func-
tional entities) and passive resources (components) in the sense that one
class can execute functional operations and the other cannot. Components
and functional entities can be aggregated to form new resources.

Resources: Resources represent any kind of physical enterprise means used
to perform tasks (e.g. machines, tools, materials handling systems, devices,
computers or database systems) as well as application systems such as CAD
systems, CAPP systems or MRP systems and also human beings. Thus, the
set of resource classes R is such that R C O.

Functional entities are active resources offering a finite set of capabilities
and able to perform a defined set of so-called functional operations on request
or on their own. They represent actors or doers of the system. A class R of
functional entities of R can be defined as a 5-tuple:

R =< R;4,0Vg,Capr, FORr, fr >

where R;q is the name of the functional entity class, OVg defines the ob-
ject view providing the set of descriptive properties (variables) describing
the state of a resource of class R, Capg is the finite set of capabilities of-
fered by resources of class R, FOp is the set of functional operations (basic
commands) that resources of class R can understand and execute and fg
is a table (optional) indicating for a given resource of R when and for how
long this resource object is allocated to|specific activities (resource scheduling
problem). Allocation and assignment modes can also be added.

256 Frangots Vernadat

Basic building blocks Equivalent Petri net structures
t
START
1) 1 EF o START ()]

ev e t 1
2) :5 EF ©
START START

Figure 2: Workflow translation rules into generalised stochastic Petri nets

Functional entities are similar in their definition to the one of agents
as used in artificial intelligence. They can receive, send, process or even
store information. Active and passive resources can be aggregated into larger
functional entities: CIMOSA classifies functional entities into three generic
classes: machines (for any device having some degree of autonomy or intelli-
gence), applications (for computer applications) and humans [AMI93]. Each

The CIMOSA Languages 257

class has characteristics of its own, especially in terms of the set of provided
capabilities (i.e. skills, abilities or and competencies) and can in turn be
further specialised.

Capability Set: Capability set is a construct used to define capabilities
required by an activity and capabilities provided by a resource. When the
activity is executed, the resource(s) allocated to the activity must offer the
right capabilities.

Capabilities are defined in terms of technical characteristics or constraints
for machines and applications (e.g. repeatability or reachability of a robot
arm, data access time for a database server or speed and feed range of a
machine-tool). They are defined in terms of qualifications, skills and compe-
tencies for human beings (for instance, to have a driver’s licence for cars and
trucks, to speak English, French and German or to be a certified industrial
engineer). CIMOSA distinguishes between function, object, performance and
operation related capabilities of a resource (for instance, to be able to move
50 Kg heavy parts over a distance of 10 meters, 20 times per hour).

At the requirements definition modelling level, only required capabilities
are defined for each activity as resource input. At the design specification
modelling level, resources, and especially functional entities, are defined with
their complete sets of provided capabilities and functional operations. The
same constructs are used at the implementation description level.

4.5 Organisation Languages

CIMOSA defines the organisation view of an enterprise in terms of responsi-
bilities and authorities to be allocated to managerial units being in charge of
a particular job or various elements of a particular enterprise architecture (i.e.
processes, activities, object views, resources). Two constructs are defined:

Organisation Units: An organisation unit is a decision centre reduced to
one functional entity with a specified job profile and well-defined responsibil-
ities and authorities.

Organisation Cells: An organisation cell is an aggregation of organisation
units to form a higher level decision centre in the organisation hierarchy. It
is placed under the management of one functional entity (must be a human)
and it has a set of well-defined responsibilities and authorities on specified
elements of the enterprise architecture, i.e. processes, activities, object views,
resources or lower level organisation units.

These constructs are used at all modelling levels.

5 Application Example

Let us consider a customer order processing domain. The domain consists of
two domain processes: a customer order processing procedure (process-cust-
order), occurrences of which ‘are triggered by the arrival of new customer

258 Frangois Vernadat

orders (order-Al-arrival events) and a procedure for sending acceptance no-
tification with price and delay (send-notification). The process-cust-order
domain process uses four classes of activities: check-customer, check-order,
process-order and reject-order. Check-customer and check-order can be done
in paraliel.

The definitions of the domain, the process-cust-order process and the
order-Al-arrival event follow. The domain construct provides a ‘table of con-
tents’ of this part of the model, stating domain objectives and constraints,
listing involved domain processes, events and object views. The domain
process template has been provided with entries for process objectives and
constraints, which must be sub-objectives and constraints of the domain. It
has also an entry for declarative rules which are imperative rules (business
rules, administrative rules, regulations, etc.) constraining the design of the
process. It has also been provided with input and output entries for trace-
ability of inputs and outputs. However, their use is optional for processes.
Finally, the process behaviour is defined by a set of procedural rules. The
event template indicates the domain processes to be triggered and the related
object view.

DOMAIN cust-ord-processing

Domain Description: Concerns receipt, acceptance, processing
of customer orders and price and delay
notification to customers

CIMOSA Compliant: Yes

Domain Objectives: to accept or reject customer orders
and notify customers

Domain Constraints: to be able to process at least 100
customer orders per day

Domain Processes: process-cust-order, send-notification

Boundary: Finance-relationship, MRP-relationship

Object Views: order-Al, customer-file, customer-data,
cust-notification

Events: order-Al-arrival

EVENT order-Al-arrival
Triggers: process-cust-order
Object View: order-Al
Predicate: arrival (order-A1l)

DOMAIN PROCESS process-cust-order

Objectives: to receive customer orders, to check the order, to check
the customer, and to process or reject the order

Constraints: to be able to process at least 100 customer orders per

day

Declarative Rules: DC-cust-ord-proc

Function Input: customer-file

Function Output: customer-data

The CIMOSA Languages 259

Control Input: order-Al

Control Output: Nil

Resource Input: Nil

Resource Output: Nil

Events: order-Al-arrival

Process Behaviour: {

WHEN (START WITH order-Al-arrival) DO check-order & check-customer

WHEN (ES(check-order)=‘0K’ AND ES(check-customer) = ‘0K’)
DO process-order

WHEN (ES(check-order)=‘NOT-0K’ AND ES(check-customer)=ANY)
DO reject-order

WHEN (ES(check-order)= ANY AND ES(check-customer)=‘NOT-0K’)
DO reject-order

WHEN (ES(process-order)=‘done’) DO FINISH

WHEN (ES(reject-order)=‘done’) DO FINISH}

Each enterprise activity identified must be defined by description of its
inputs and outputs and definition of its full set of possible ending statuses.
For instance, the activity check-customer is defined as follows (no activity
behaviour is defined at this modelling level and resource requirements are
defined in the required capabilities RC-check-customer):

ENTERPRISE ACTIVITY check-customer

Objectives: to verify the validity of this customer

Constraints: to be able to process at least 100 customer orders per
day

Declarative Rules: DC-customer-rejection-rule

Function Input: customer-file

Function Output: customer-data

Control Input: order-Al

Control Output: Nil

Resource Imput: Nil

Resource Output: Nil

Required Capabilities: RC-check-customer

Ending Statuses: {‘0K’ for valid customer, ‘NOT-0K’ otherwise}

where DC-customer-rejection-rule is a declarative rule (CIMOSA construct)
stating, for instance, that the customer order will be rejected if customer debit
is greater than ECU 20.000, customer-file and customer-data are information
object views about the customer, order-A1 is an object view defining the
customer order and providing the customer identification, and RC-check-
customer defines the set of capabilities required for the activity (e.g. process
a customer order in less than 5 min).

Finally, all object views identified in the previous constructs must be de-
fined in terms of their properties (information elements with relevant data
types or other object views). An object view can be made of other object
views (for instance, a technical document structured into sections and in-
cluding pictures). As an example, the template for the order-A1 object view

260 Frangois Vernadat

is given. The object view defines the leading object and related objects on
which this object view is defined and the list of properties describing occur-
rences of the object view. Among these, customer-id, status and date are
information elements and the others are object views.

OBJECT VIEW order-Ai

Description: Describes customer orders of type Al sent
by customers by EDI

Leading Object: customer

Related Objects: end-products

Properties:

customer-id: string [10]

date: date

customer-address: address

delivery-address: address

itemlist: setof item—quantity

status: (new, in-process, accepted, rejected)

At the design specification modelling level, the model is specified in more
details. Especially, time is added. Thus, the order-AI-arrival event and
the check-customer activity are further detailed as follows (where FE-1 and
printer-A are functional entities, customer is a local variable and SD the
system wide information access system of the CIMOSA Integrating Infras-
tructure):

EVENT order-Al-arrival

Source: outside (* means outside domain *)
Triggers: process-cust-order

Object View: order-Al

Predicate: Arrival (order-A1)

Timestamp: time

ENTERPRISE ACTIVITY check-customer

Objectives: to verify the validity of this customer

Constraints: to be able to process at least 100 customer orders per
day

Declarative Rules: DC-customer-rejection-rule

Function Input: customer-file

Function Output: customer-data

Control Input: order-Ai

Control Output: Nil

Resource Input: FE-~1, printer-A

Resource Output: Nil

Required Capabilities: RC-check-customer

Minimum Duration: 100

Maximum Duration: 200

Activity Behaviour: {

Declare cust-id: string [10]; (* declares local variables *)

The CIMOSA Languages 261

Preconditions: not-empty (customer-file);

Begin (* activity behaviour processing *)

SD.Get (customer-file);

SD.Get (order-Al);

cust-id := order-Al.customer-id;

FE-1.Check (cust-id, customer-file, customer-data, success);
(* implements the Declarative Rule *)

if success = 0 then begin

printer-A.print (customer-data);

ES (check-customer) := ‘0K’ end

else ES (check-customer) := ‘NOT-0K’ end

end;

Postconditions: order-Al.status := ‘in-process’;

SD.Put (order-Al);
SD.Put (customer-data)}
Ending Statuses:
{‘0OK’ for valid customer, ‘NOT-0K’ otherwise}

Pre-conditions and post-conditions can be declared for activities. If the
pre-conditions are not verified when the activity is started, control is passed
to the entity having responsibility for this construct (organisation unit). This
example shows that a type inference mechanism is required to recognise the
type of arguments of the functional operations used in the activity behaviour.
Formal arguments of functional operations are defined in the specification of
functional entities able to execute the functional operations. The example
also illustrates how ending status values are initialised during activity be-
haviour processing. In some cases, ending statuses can be forced by post-
conditions.

An example of a resource is given by the functional entity FE-1 which
is a software application installed on a computer workstation to perform
functional operations of the check-customer activity. We assume that there
is only one copy of this software in the company.

RESOURCE FE-1

Description: Software program installed on UNIX station US-1 used to

check customer data for new customer orders

Class: Functional Entity (* other classes are: Component,

Resource Set, Resource Cell *)

Object View: FE-1-desc (* object view containing descriptive data

about the resource *)

Cardinality: 1 (* only one occurrence of this resource, called

resource unit, exists x)

Location: port-a (* the UNIX station is connected to the CIM
architecture by an entry point logically
called port-a in the model #*)

Capability: C-FE-1 (* set of capabilities provided described in a

separate construct *)

Command Set:. (* set of functional operations provided by

262 Frangois Vernadat

the resource *)
Check (IN cid: string [10], cust-file: customer-file,
OUT cust-data: customer-data, success: FOstatus)
Allocation Mode: FIFO (* first requesting activity is served first #)
Assignment Mode: FIFO (* first request is processed first *)

6 Conclusion

The CIMOSA modelling approach is a business process oriented modelling
approach covering functional, information, resource and organisation aspects
of an enterprise. It provides a different modelling language for each of the var-
ious modelling levels of an enterprise, namely requirements definition, design
specification and implementation description. However, consistency among
modelling levels is ensured by preserving major concept description from one
level to another one.

The languages, although complex because of their richness in terms of
number of constructs, can be parsed to check model consistency and be used
for model simulation and execution. Especially, transformation rules have
been proposed to translate a control flow, expressed in terms of a workflow,
into generalised stochastic Petri nets, making its qualitative and quantita-
tive analysis and simulation possible [Ver94]. Finally, CIMOSA ideas and
constructs have influenced standardisation work dedicated to enterprise mod-
elling at the European level [CEN90, CEN95] or at ISO (ISO/TC184/SC5)
as well as the development of commercial enterprise modelling packages (such
as ARIS, FirstSTEP or even IBM’s FlowMark).

References

[AMI93] CIMOSA: Open System Architecture for CIM, 2nd extended and re-
vised version, Springer-Verlag, Berlin, 1993

[BN96] P. Bernus, L. Nemes (eds.), Modelling and Methodologies for Enter-
prise Integration, Chapman & Hall, London, 1996

[Bus96] Bussler, C., Specifying enterprise processes with workflow modelling
languages, Concurrent Engineering: Research and Applications 4 (3),
1996, 261-278

[CEN9(Q] CEN/CENELEC, Computer-Integrated Manufacturing, Systems Ar-
chitecture, Framework for Enterprise Modelling, CEN, Brussels, 1990

[CEN95] CEN/CENELEC, Advanced Manufacturing Technology, Systems Ar-
chitecture, Constructs for Enterprise Modelling, CEN, Brussels, 1995

[CIM96] CIMOSA Formal Reference Base, Version 3.2. CIMOSA Association
e.V., Germany, 1996

[DHP93]

[IV90)

[Murg9]

[Ver93]

[Ver94]

[Ver96]

The CIMOSA Languages 263

Di Cesare, F., Harhalakis, G., Proth, J-M., Silva, M., Vernadat, F.,
Practice of Petri Nets in Manufacturing, Chapman & Hall, London,
1993

Jorysz, H. R., Vernadat, F. B., CIM-OSA Part 2: Information View,
Int. J. Computer-Integrated Manufacturing 3 (3), 1990, 157-167

Murata, T., Petri nets: Properties, analysis, and applications, Pro-
ceedings of the IEEE 77 (4), 1989, 541-580

Vernadat, F., CIMOSA: Enterprise modelling and enterprise integra-
tion using a process-based approach, in: H. Yoshikawa, J. Goosse-
naerts (eds.), Information Infrastructure Systems for Manufacturing,
North-Holland, Amsterdam, 1993, 65-84

Vernadat, F., Manufacturing systems modelling, specification and
analysis, in: C. Walter, F. J. Kliemann, J. P. M. de Oliveira (eds.),
Production Management Methods (B-19), Elsevier Science, Amster-
dam, 1994, 75-83

Vernadat, F. B., Enterprise Modeling and Integration: Principles and
Application, Chapman & Hall, London, 1996

CHAPTER 12

ConceptBase
Managing Conceptual Models
about Information Systems

M.A. Jeusfeld, M. Jarke, H.W. Nissen, M. Staudt

ConceptBase is a meta data management system intended to support the cooper-
ative development and evolution of information systems with multiple interacting
formalisms. It supports a simple logic-based core language, O-Telos, which inte-
grates deductive and object-oriented features in order to support the syntactical,
graphical, and semantic customization of modeling languages as well as analysis in
multi-language modeling environments.

1 Multi-Language Conceptual Modeling

Conceptual models offer abstract views on certain aspects of the real world
(description role) and the information system to be implemented (prescrip-
tion role) [You89]. They are used for different purposes, such as a communica-
tion medium between users and developers, for managing and understanding
the complexity within the application domain, and for making experiences
reusable. The presence of multiple conceptual modeling languages is common
in information systems engineering as well as other engineering disciplines.
The reasons are among others:

e the complexity of the system requires a decomposition of the modeling
task into subtasks; a frequent strategy is to use orthogonal perspectives
(data view, behavioral view, etc.) for this decomposition

snthejinformatiomsystenvisidecomposed into subsystems of different type,
e.g. data storage system vs. user interface; experts for those subsystems
tend to prefer special-purpose modeling languages

266 M.A. Jeusfeld, M. Jarke, H.W. Nissen, M. Staudt

e the modeling process is undertaken by a group of experts with different
background and education; the experts may have different preferences
on modeling languages

e conceptual modeling has different goals (e.g., system analysis, sys-
tem specification, documentation, training, decision support); hetero-
geneous goals lead to heterogeneous representation languages, and to
heterogeneous ways-of-working even with given languages.

The pre-dominant approach to solve the integration problem is to “buy”
an integrated CASE tool which offers a collection of predefined modeling
languages and to apply it in the manner described in the manual. There
are good reasons to do so: the method design has already been done and
the interdependencies between the multiple modeling languages have already
been addressed by the CASE tool designers. Moreover, a CASE tool supports
the standardization of information systems development within an enterprise.

Still, there are information systems projects that require more flexibility
in terms of modeling language syntax, graphical presentations, and semantics
of modeling language interactions. The Telos meta modeling language has
been developed to address these concerns. Its implementation in Concept-
Base, a meta data management system based on the integration of deductive
and object-oriented technologies, supports an Internet-based architecture in-
tended to support flexible and goal-oriented distributed cooperation in mod-
eling projects.

1.1 A Brief History of Meta Modeling

In the mid-1970s, several semiformal notations supporting the development
of information systems were developed. The use of some of these became
standard practice in the 1980s, especially entity-relationship diagrams for
data modeling and dataflow diagrams for function modeling. More recently,
object-oriented methods have added notations for behavior modeling, such
as Statecharts, giving a broader picture of the specification and an easier
mapping to implementations in languages like C++ or Java.

It was recognized early on that managing large specifications in these
notations posed serious problems of inconsistency, incompleteness, mainte-
nance, and reuse. Conceptual modeling languages incorporate ideas from
knowledge representation, databases, and programming languages to provide
the necessary formal foundation for users with limited mathematics back-
ground.

In early 1980s, Sol Greenspan was the first to apply these ideas to re-
quirements engineering, when he formalised the SADT notation in the RML
language [GMBY94]. This was a precursor to numerous attempts worldwide.
Initially, these languages embodied a fixed ontology in which requirements
engineering could be described. As'early as 1984, it was recognized that mod-
eling formalisins must be customizable. Jeff Kotteman and Benn Konsynski

ConceptBase 267

Method engineering

M2-model
Modeling environment
languages SSRTRTTIPPPRRPRISS SN FOCTIRPRr :

Application

engineering
Models environment
u Usage environment
Instances
and
Scenarios

Figure 1: The ISO IRDS architecture applied to conceptual modeling

proposed a basic architecture that included a meta meta model (M2-model
for short) as the basis for using different notations within a development en-
vironment [KK84]. ISO’s Information Resource Dictionary System (IRDS)
[ISO90] standard generalized this idea to propose an architecture that com-
bines information systems use and evolution. Figure 1 shows its four-layer
architecture applied to the conceptual modeling activity.

The Instances and Scenarios level contains objects which cannot have
instances. Examples are data, processes, system states, measurements and so
on. Objects may have attributes and they may have classes (residing in the
model level). During design, when the information system and therefore the
instances do not yet exist, this level also contains scenarios of the intended
use of the system.

The Models level represents the classes of the objects at the instance
level. Those classes define the schema (attributes, properties) of the instance
level objects as well as rules for manipulating these objects. At the same time
the classes are themselves instances of the schema defined at the modeling
language level.

At the Modeling languages level, meta classes define the structure of
the objects (classes) at the model level. In other words, a model is instanti-
ated from the meta classes of the modeling language level. In section 3, the
modeling language level will be used to define specific graphical notations
and their interrelationships.

The M2-model level contains meta meta classes (M2-classes). They
are classes with instances at the modeling language level. Multiple modeling
languages are possible by appropriate instantiations from these M2-classes.
Moreover, the dependencies between the multiple languages can be repre-
sented as attributes between M2-classes in the M2-model level.

The four IRDS levels can be grouped in pairs that define interlocking
environments, as shown on the right side of Figure 1: usage environments,
application engineering environments, and the method engineering environ-
ment, which manages the interrelationships among modeling languages and
the interactions among modeling tools, The interlocking between the models

268 M.A. Jeusfeld, M. Jarke, H W. Nissen, M. Staudt

can be read down or up. Reading down, the architecture supports the gen-
eration of a distributed modeling environment; reading up, it supports the
integration of existing environments. In either case, the choice of metamodels
is crucial for the support the model definition and integration environments
can offer.

However, modeling languages do not just have a programming language
syntax which needs to be customized. The customization should also address
graphical conventions of the modeling formalisms; for example, the mobile
phone developer Nokia employs more than 150 method variants in terms
of notation, graphics, and ways-of-modeling. Moreover, the correct usage
of each formalism and the consistency of models that span across different
modeling formalisms should be definable.

Since the late 1980s, more dedicated M2-models have been developed, as
discussed in the next subsections. In parallel, the need to have generalized
languages dedicated to meta modeling and method engineering was recog-
nized by several people. In several iterations, a number of European projects
[JMSV92] jointly with the group of John Mylopoulos at the University of
Toronto developed the language Telos [MBJK90] which generalized RML to
provide a meta modeling framework which integrates the three perspectives
of structured syntax, graphical presentation, and formal semantics.

However, early attempts to implement the full Telos language (as in the
first version of ConceptBase [JJ89]) showed that its semantics was still too
complicated for efficient repository support based on known technologies.
Three parallel directions were pursued by different, but interacting and par-
tially overlapping groups of researchers.

The MetaEdit environment developed at the University of Jyviskyla
[KLR96] is a good example of an effort focusing on graphics-based method
engineering, i.e. the graphical definition of graphical modeling formalisms.

Starting from early experiences with ConceptBase in the DAIDA project
[JR88, JMSV92] the Semantic Index System developed in ESPRIT project
ITHACA [CIMV95] focused on an efficient implementation of the structurally
object-oriented aspects of the Telos language. It may be worth noting that
the recently announced Microsoft Repository [BHSSZ97] has generalized such
an approach to full object orientation based on Microsoft’s Common Object
Model.

Complementing these structural concerns, the first step in the further de-
velopment of ConceptBase within ESPRIT project Compulog focused on the
simplification of the logical semantics. The dissertation [Jeu92] showed that
the non-temporal part of Telos, with very minor modifications, can be based
on the fixpoint semantics of deductive databases (also known as Datalog)
with negation [CGT90], resulting in the O-Telos dialect used in the present
version of ConceptBase! [JGIJSE95]. Thereby, the diagrams denoting the

1The current version of the system can be obtained from the address http://www-
i5.informatik.rwth-aachen.de/CBdoc for research and evaluation purposes.

ConceptBase 269

structure became explicit facts in the database (of concepts), the syntactical
constraints are represented as deductive rules or queries or integrity con-
straints, and the manipulation services are expressed as restrictions on how
to update the database. This simple formalization thus was a prerequisite
of the re-integation of syntactical, graphical, and semantic aspects of meta
modeling, as discussed in section 2 below.

1.2 Three Basic Modeling Methodologies

As observed in [Poh94], modeling processes proceed along three dimensions:
representational transformation, domain knowledge acquisition, and stake-
holder agreement. Existing methodologies tend to emphasize one of these
dimensions over the others: the modeling notations, the available knowledge
within a specific domain, or the people involved in the analysis project. All
three methodologies have long histories, with little interaction between them.
All of them use multiple modeling perspectives but the purpose of these and
therefore the integration strategies are quite different.

Notation-oriented methods manifest their assistance in the set of
modeling notations they offer. Their philosophy can be characterized by the
slogan In the language lies the power. Examples of notation-oriented meth-
ods are structured analysis approaches, as, e.g., Modern Structured Analysis
(MSA) [You89], and object-oriented techniques, as, e.g., the Unified Modeling
Language (UML) [FS97]. A large number of CASE tools in the market offer
graphical editors to develop models of the supported notations and check the
balancing rules that must hold between models of different notations. The
notations as well as the constraints are hard-coded within the tools and are
not easily customizable by users.

A completely different strategy is employed by the domain-oriented
analysis methods. For a specific application domain, e.g., public adminis-
tration or furniture industry, they offer a predefined set of reference models.
Reference models describe typical data, processes and functions, together
with a set of consistency tests which evaluate relationships between the mod-
els. Reference models represent the knowledge collected in multiple analysis
projects within a particular domain: In the knowledge lies the power. The
reuse of reference models can strongly reduce the analysis effort. However,
it can be inflexible since the user can tailor the notations, the constraints
or contents only to the degree foreseen by the developers of the reference
models, or completely loses the help of the method.

The ARIS Toolset [IDS96] offers a platform for working with reference
models. It also offers hard-coded constraint checks within and across the
models. These tests are programmed individually and new tests can be added
manually, without a coherent theory, even though the concept of event-driven
process chain (EPC) provides a semi-formal understanding [Sch94]. Towards
a more formal approach, the NATURE project has defined formal problem

270 M.A. Jeusfeld, M. Jarke, H W. Nissen, M. Staudt

abstractions [MSTT94] via a M2-model which defines principles for the spec-
ification of domain models.

Goal- and team-oriented approaches specifically address the objec-
tive to capture requirements from multiple information sources and to make
arising conflicts productive. They incorporate stakeholder involvement and
prescribe general process steps rather than notations or contents: In the
people lies the power. Prominent examples include IBM’s JAD (Joint Appli-
cation Design) [Aug91], SSM (Soft Systems Methodology) [Che89], and PFR
(Analysis of Presence and Future Requirements) [Abe95]. In these methods
highly skilled group facilitators animate the participants, guide the analysis
process and keep an eye on the compliance with the specified analysis goals.
The general idea is to get as much information as possible from different
sources in a short time.

Teamwork remains very informal to enhance creativity. Neither notations
nor analysis goals are predefined by the methods but specified by the par-
ticipants according to the actual problem to be solved. To accommodate
the change of goals during project execution, the customization of analysis
goals and notations is required even during a running project. Outside Con-
ceptBase few supporting tools are available beyond simple groupware tools.
The main reason for this dilemma is the high degree of customizability the
tools must offer. They must be extensible towards new notations and flexible
enough to support changing analysis goals.

1.3 Goals and Architecture of ConceptBase
The design of ConceptBase addresses the following goals:

1. The system should include a feature to define and interrelate specialized
conceptual modeling languages in an cost-effective way. The language
should reflect the modeler’s need of key concepts types and their inter-
pretation of those concepts.

2. The system should be extensible at any time. When the need for a new
_concept type occurs, it should be possible to include it into the con-
ceptual modeling language definition in terms of language constructs,
graphical presentation, and semantic constraints.

3. The system should not only check the syntactic correctness within and
between models, but also allow to memorize patterns that indicate se-
mantic errors in the models. The memory of those patterns should be
extensible and adaptable to the user’s growing experience, thus support
organizational knowledge creation [Non94].

ConceptBase is realized in a client-server architecture (Figure 2). The Con-
ceptBase server stores, queries, and updates Telos models. The server offers
the method TELL for updating the object base and the method ASK for

ConceptBase 271

Graph Telos
Browser#2 Editor#5

] !

CB Toolbar

R Communication channel {Intemet)
TELL
ASK ¢
cB Simulation
Server Tool. CB Toomar

Figure 2: ConceptBase is a client-server meta data manager

querying its contents. Persistent object storage is implemented in C++.
Reasoning services for deductive query processing, integrity checking, and
code generation are implemented in Prolog.

A ConceptBase client is often a modeling tool, either graphical or textual,
but it could be another application, such as a simulation tool. The Internet
is the medium for the communication between the server and the clients.
Programming interfaces for various toolkits, including Andrew, Tcl/Tk, Ilog
Views and Java exist. The distributed version of ConceptBase includes a
standard usage interface, along with advice on how to develop your own.

2 The O-Telos Language

Like other conceptual modeling languages, O-Telos offers a textual and a
graphical representation. Both are structurally extensible through our meta
modeling approach, encoded in the basic language structure. However, the
distinguishing feature of O-Telos in comparison with other meta modeling
approaches is its simple logical foundation which enables (a) efficient imple-
mentation using experiences from deductive database technology, (b) cus-
tomization of the semantics of modeling formalisms, and most importantly,
(c) customization and incremental organizational learning about the analysis
of interactions between modeling formalisms. We first, discuss the user view
of the language (textual and graphical syntax), then the logical foundations
and finally its usage in customization and model analysis.

2.1 User View

The four IRDS levels discussed in the introduction define different user classes
for O-Telos. Method engineers define a modeling language (here: ER) based
on common principles (M2-classes NodeConcept and LinkConcept in the ex-
ample). Application engineers learn such a modeling language (symbolized
by the meta class EntityType) and develop a model (containing for exam-
ple a class Employee). Finally, application users manipulate instance level

272 M.A. Jeusfeld, M. Jarke, H.W. Nissen, M. Staudt

Method englnesr
-
\ B Al
¢ ‘-\-‘* — :
%tit!’n’p@ ————= Domain
Avplk-tlon::ln}/ T I —

5 s

//\\\"‘"& i salary__Integer
[

Empl — St
mployea = String
Applkltlor:/

O 7‘“ gijj hassalary_qenn

2N
/\ [i inetance

Figure 3: IRDS and O-Telos

— NodeConcept ~.

LinkConcept

T T

objects that conform to the model.

A closer look at Figure 3 reveals that any modeling facility supporting
such an interlocked way-of-working requires at least three basic language
concepts — one for self-standing labeled objects, a second one for labeled links
between them, and the third one to express the instantiation relationship
between the IRDS levels. In order to provide formal control over the usage
of these base constructs, a fourth concept, that of a logical assertion, is also
desirable.

As shown in Figure 4, the kernel of the O-Telos language is just that.
All other language facilities (such as generalization hierarchies, cardinality
constraints, and so on) can be bootstrapped from this kernel.

In the teztual view we group together all information for an object (e.g.
Employee). The class (e.g. EntityType) of that object precedes the object
name, the attributes of the object (e.g. salary) are sorted under attribute
categories (e.g. entity_attr) which refer to the attribute definitions of the
object’s classes. Note that all objects, i.e. links and nodes, are instances of
the builtin object Object.

Object EntityType with EntityType Employee with
attribute entity-attr
entity-attr: Domain name : String;
end salary: Integer
end

Besides inserting and modifying O-Telos objects (TELL function), the
second main function of the server is the ASK facility. Queries are formu-

ConceptBase 273

e
- Object |~ ——
attribute J — " in

~

rule/ ™
constraint “a

Assertion

Figure 4: O-Telos’ builtin objects

lated like ordinary classes with a (membership) constraint [SNJ94]. They are
recognized by the system via the keyword QueryClass. The query evaluator
computes the answers and establishes an intensional instantiation relation-
ship between the query class and the answers.

The following example presents a query class RichEmployees computing
all employees with salary greater than 120.000. We restrict the set of answers
to the employees by defining the query class as a specialization of Employee.
The attributes which should be part of the answer are specified as attributes
of the query class. In the example we will get the msalary attribute for all
computed employees. The constraint forms the membership condition, i.e.
all only employees that satisfy this constraint become answers to the query
class. For the example we require that the value of the salary attribute is
greater than 120.000.

QueryClass RichEmployees isa Employee with
attribute
salary : Integer

constraint
c : $ salary > 120.000 $
end

Note that updates (TELL) and queries (ASK) may refer to any abstrac-
tion level. Thus, instance level objects are updated and queried in exactly
the same way as the concepts of the modeling language level.

The ConceptBase user interface includes a customizable graph-browser.
The base function is to display node objects like Employee and link objects
like Employee!salary. The customization is done by assigning graphical
types to nodes and links directly or via deductive rules. It is therefore possible
to specify a certain graphical type to all instances of a specific object. An
example of graphical customization will be given in section 3.

2.2 Logical Foundations of O-Telos

O-Telos is fully based on the framework of deductive databases, more pre-
cisely Datalog with stratified negation [CGT90]. It employs a single relation

274 M.A. Jeusfeld, M. Jarke, H W. Nissen, M. Staudt

P to store nodes and links of a semantic network. Nodes are represented by
self-referring objects P(x,x,n,x) stating that an object identified by x and
labelled by n exists. An attribute labelled a of an object x having the at-
tribute value y is written as P(o,x,a,y). The attribute itself is regarded as a
full-fledged object with identifier o. We distinguish two attribute labels with
predefined interpretation: The fact that an object x is an instance of a class
c is represented by an object P(o,x,in,c). Moreover, the specialization re-
lationship between two objects c and d is stored as an object P(o,c,isa,d)
where ¢ is sometimes called a subclass of its superclass d.

The P relation allows the representation of arbitrary semantic networks.
It serves as the so-called extensional database in the deductive interpretation
of O-Telos: all explicit information (e.g., a diagram) is stored as objects in
the P relation. It should be noted that instances and classes are uniformly
represented as objects. Classes may be instances of objects themselves2. The
ability of O-Telos to represent instances, classes, meta classes, M2-classes
etc. uniformly as objects makes it a good framework to store information at
different abstraction levels as presented in the subsequent sections.

The extensional database is accompanied by the so-called intensional
database, i.e. a set of deductive rules and integrity constraints that are stored
as attributes of objects. The rules and constraints are logical expressions that
are evaluated against the extensional database. The formal interpretation of
rules is based on a fixpoint semantics [CGT90] which precisely defines which
facts can be derived from the database (extensional plus intensional part).
Intuitively, the derivation follows the Modus Pones rule: if the condition A
holds and we have a rule “A then B”, then the fact B holds. Constraints
are special rules of the form “if A does not hold then we have discovered
an inconsistency”. The object-oriented structure of O-Telos is defined on the
simple P-relation via predefined rules and constraints included in any O-Telos
database - the so-called O-Telos axioms.

forall o,x,c P(o,x,in,c) ==> (x in c)

If we explicitly state that x is an instance of ¢ than the fact (x in c)
holds.

forall o,x,c,d (x in ¢) and P(o,c,isa,d) ==> (x in d)

If x is an instance of a subclass, then it is also an instance of its super-
classes.

forall p,c,m,d,o0,x,1l,y P(o,x,1,y) and P(p,c,m,d)
and (o in p) ==> (x m/1 y)
forall x,m,l,y. (x.m/l y) ==>_(x.m y)

2If x is an instance of a class ¢ and c is an instance of a class mc, then we refer to mc as
a metaclass of x.

ConceptBase 275

The first rule derives an attribute predicate (x m/1 y) whenever an at-
tribute o is declared as an instance of another attribute p at the class level.
The label m is called the category of the attribute p. The second rule omits
the label of the instance level attribute.

Alltogether only 30 such rules were predefined in O-Telos [Jeu92]. The
two important things to memorize are

o The single P relation is able to capture semantic networks (“nodes
connected by links”).

¢ Rules and constraints are used to fix the interpretation of abstractions
like instantiation and specialization. These abstractions are predefined
node and link types in the semantic network.

2.3 Conceptual Modeling Languages as Meta Models

The foundation of O-Telos just provides the facilities for representing graphs,
plus to constrain and query them via logical conditions. In the following
we show that this is enough for not only describing a large collection of
conceptual modeling languages but also to relate them in a formal way.

0-Telos treats information at each abstraction level uniformly as objects.
The fact that some object is an instance of a class at the upper level is
represented as a (derived or stored) fact (x in c). A meta class mc of an
object x is represented by the derived fact (x [in] mc). The corresponding
deductive rule in O-Telos is simply3:

forall x,c,mc (x in c¢) and (c in mc) ==> (x [in] mc)

Attributes are also full-fledged objects: attributes at a class level are the
classes of the attributes at the instance level.

Constraints are employed to specify conditions on the instantiation of
classes. Rules define information that is derived from explicit information.
Note that constraints and rules can be defined at any abstraction level, even
crossing several abstraction levels. For example, the instance inheritance rule
above is applicable for objects at the model level as well as for objects at the
M2-model level. We distinguish the following types of formulae according
to the levels involved in the logical condition. As an example, we again use
pieces of a formalization of the Entity-Relationship (ER) approach within
O-Telos.

e Model conditions. Such formulae quantify over instances of classes de-
fined at the model level. For example, there may be a class Employee
at the model level with an attribute ’salary’:

SAll rules and constraints presented in this paper are part of the intensional database.
In principle, any such formula can be inserted into or deleted from the database at any
time. This holds for the axioms.of |O-Telos as well.

276 M.A. Jeusfeld, M. Jarke, H W. Nissen, M. Staudt

forall e,s (e in Employee) and (e salary s) ==> (s > 0)

e Modeling language conditions. Such formulae quantity over instances
of meta classes. For example, the meta class EntityType could have
a constraint that each instance (like Employee) must have at least one
attribute (like salary):

forall ¢ (¢ in EntityType) ==> exists d (d in Domain)
and (c entity_attr d)

o M2-model conditions. Here, the formulae talk about objects at the
modeling language level. In our running example, we can think of
the two M2-classes NodeConcept and LinkConcept that shall be used
to define EntityType and RelationshipType. A M2-model condition
could be that links connect nodes but not vice versa:

forall x,y (x connects y) ==
(x in LinkConcept) and (y in NodeConcept)

The reader should have noticed that there is no formal difference between
those three kinds of formulae; they are just quantifying over objects at differ-
ent abstraction levels. The uniform representation of O-Telos objects provides
this feature quasi for free. The above examples showed formulae quantify-
ing over objects at the next lower level of abstraction (class to instance).
It is also possible to express conditions spanning more than two IRDS lev-
els. Such conditions are needed when the semantics of certain concept types
(meta classes) can only be expressed in terms of the instances of the instances
of the meta classes. As an example consider “key attributes” of entity types
in the ER modeling language.

forall x,y,e,k,a,d,v (x,y in e) and
(e in EntityType) and P(k,e,a,d) and
(k in Key) and (x a v) and (y a v)
=> (x = y)

The formula states that when two entities x,y of the same entity type e
have the same value for the key attribute a, then they must be the same.

Such conditions are typical for formal interpretation of conceptual model-
ing languages. The interesting thing is that those conditions are expressible
in the Datalog logic of O-Telos. Thereby, they can be added and evaluated
to the (deductive) database at any time. This makes it possible to define
specialized modeling languages just by storing appropriate meta classes with
their axioms (rules and constraints) in the database. More examples of such
formulae crossing multiple IRDS levels can be found in [JJ96].

ConceptBase 277

3 Case Study

The following case study illustrates the management of conceptual models in
the context of computer-support for an informal, teamwork-oriented analysis
method used by a consulting company. Details and experiences can be found
in [NJJZH96).

The consulting firm uses the analysis method PFR (Analysis of Presence
and Future Requirements) for rapid, focused requirements capture in settings
that alternate between team workshops and individual interviews:

1. In a two-day workshop, stakeholders define an initial shared vision. The
group makes a rough analysis of the current business processes (mostly
in terms of information exchange among organizational units), analyses
the goal structure behind the current pattern, identifies goal changes,
drafts a redesigned business process, and identify the perspectives of
some stakeholders as critical to success.

2. The modeling perspectives identified as critical are then captured in
detail by interviews, workflow analyses, and document content studies.
This step has the goal of testing the initial vision against the existing
and expected organizational context, and to elaborate it, both in terms
of deepened understanding and in terms of more formal representations
(e.g. in the form of activity sequences or data flow models). The
acquisition process is accompanied by a cross-analysis of the captured
conceptual models for consistency, completeness, and local stakeholder
agreement.

3. A second workshop is intended to draw the individual perspectives to-
gether and to achieve global stakeholder agreement on the requirements.
The step is accompanied and followed by the development of a compre-
hensive requirements document of typically several hundred pages.

Even for rather complex projects, the goal is to complete the whole process
in a matter of weeks rather than months. A major obstacle in achieving this
goal has been the cross-analysis of heterogeneous conceptual models in step
2. Due to time pressure, this analysis often remained incomplete. This led
to repeating cycles of steps 2 and 3 due to problems detected only during
the second workshop. In a few cases, it even led to problems in the final
requirements document which showed up later as errors in the design, coding,
or even usage testing phase.

Initially, standard modeling languages like Entity-Relationship diagrams
were used both for describing the current procedures and the new (improved)
procedures.

Problems with the standard tools emerged with respect to interpretation,
extensibility, and analysis functionality. Regarding interpretation, customers
complained that they wouldn’t understand the difference between certain

278 M.A. Jeusfeld, M. Jarke, H W. Nissen, M. Staudt

activity sequence information exchange document

notation notation structure
| Employee |

notation
J Form

performer SendA a
' " \ includesL
| Action I%F [og.unt| [Packege]

\A)Ilows

Figure 5: Syntax of the standard PFR notations

concepts of the modeling languages. For example, discussions emerged on
whether a certain property of an entity would be a relationship or just an
attribute. During these discussions, computer scientists would take the lead
and the other participants would loose interest. Customers asked for a graph-
ical method where one has just nodes and links.

Another issue mentioned was extensibility. The consulting company has
developed its own approach to IT controlling where media was a central con-
cept, i.e. the physical carrier of data like paper and floppy disk. Information
on which data would be stored on which medium was important to decide
how to improve the current workflow of the customer. Unfortunately, no
CASE tool on the market fitted to these needs or could be easily adapted to
it.

Finally, the analysis capabilities of standard packages were regarded as in-
sufficient. Standard tools concentrate on syntactical correctness of the models
and their interdependencies. However, the semantic correctness was seen as
much more urgent. The following situation occured in a customer project:
A complex data object (tax form) was modeled which contained a smaller
data object (tax rate) as a part. A system function was provided to update
the tax rate. In this application however, it was required that the numbers
in the tax form are updated whenever the tax rate is changed. Since this
dependency was detected only after implementation, major error correction
costs were induced. As a consequence, the consulting company wanted to
memorize this pattern as a possible (not sufficient) cause for a semantic error
in the system model.

3.1 Customizing ConceptBase

To tailor O-Telos to the standard PFR modeling languages the consulting
firm first defined their syntax in O-Telos, as shown in Figure 5.

The ’activity sequence’ notation comprises the concept of an Employee
who is the performer of an Action. The Action gets and produces Infor-
mation. The follows relation describes dependencies between different Act-
ions. The ’information exchange’ notation captures Organisational Units

ConceptBase 279

supplies

the

generates

performed_by ; takes contains

give
enter;
%'

ingut =

output

Figure 6: A media-centered meta meta model for PFR

which may send a Package to another unit. Finally, the ’document structure’
notation comprises concepts to define a Form and the Items it includes.

The semantic properties of these notations are specified by integrity con-
straints and deductive rules. The PFR analysts required, e.g., that every in-
formation exchange between Organisational Units must be accompanied
with the exchanged Package. The following integrity constraint expresses
this requirement in a formal way:

forall s (s in OrgUnit!sends) exists p,a (p in Package) and
(a in OrgUnit!sends!a) and From(a,s) and To(a,p).

Similar constraints specify the semantic properties of the modeling con-
cepts of the other notations.

The semantic analysis of the individual conceptual models exploits the
properties of the observed domain and the analysis goals of the specific
project. The consulting firm specified the domain structure within a con-
ceptual model on the M2-model level, shown in Figure 6. The modeling
language definitions in Figure 5 form partial instances of this model which
describes the corresponding perspective. It interrelates all three perspectives
mentioned before. An Agent supplies another Agent with the Medium.
This Medium may contain some Data. On this Data an Agent performs his
Activity. The Data can be used as input or output. This model defines the
extent of the analysis project: exactly the concepts mentioned in this model
must be captured and modeled within the acquisition part of the project. It
also reflects some of the expected problems. The explicit distinction between
the Medium and the Data it contains allows for the detection of optimizable
workflows in the business process. Since the analysis goals may change from
project to project, also this domain model may change to cover the actual
problems to be investigated.

Beside the domain structure, the meta meta model contains the formal-
ization of the analysis goals. They reflect the problems the analysis project
is supposed to discover. Many customers of the consulting firm want to op-
timize their document flow. Therefore an analysis goal is to detect agents

280 M.A. Jeusfeld, M. Jarke, H.W. Nissen, M. Staudt

who get a document, but perform no activities on data contained on that
document. Thanks to the formal semantics of O-Telos we are able to specify
this analysis goal as a formal multi-level condition and to evaluate it on the
contents of the object base. We use a special syntax to indicate multi-level
literals: A literal of the form (i [in] c) describes an instantiation rela-
tionship between i and c that crosses multiple classification levels. A literal
of the form (a [m] b) where m is an arbitrary label describes an attribute
predicate that crosses multiple levels. In our case we use a label from the
M2-model level to form a condition on the schema level.

forall supply,user,medium (supply [in] Agent!supplies) and
(user [in] Agent) and (supply [to] user) and
(medium [in] Medium) and (supply [the] medium)
==> exists info,action (info [in] Data) and
(medium [contains] info) and (action [in] Activity)
and (action [performed_by] user) and
((action [input] info) or (action [output] info))

In the example environment more than 80 standard analysis goals make
semantic statements about single models, inter-relationships between multi-
ple models and properties of the modeled business process. These analysis
goals cannot be hard-coded because they may change from one project to
another. Further experiences in applying the PFR method lead to the de-
tection of further patterns of potential errors in business processes. These
patterns are then formulated as analysis goals to be available in following
analysis projects. An example of such a pattern is the situation where an
agent gets a document that contains only data that is already supplied to
him by other media. This pattern does not always describe an error of the
business process, but it is a hint for further investigation. It may indicate
an unnecessary media supply which is subject for optimization. But it may
also be an intended situation where the agent performs a comparison check
of the same data located on different media.

The syntactic and semantic extension of ConceptBase is complemented by
a graphical extension. A graphical type can either be specified for a specific
object or for all the instances of an object.

Figure 7 presents a screendump of the ConceptBase graph browser. It
shows a part of the three repository levels using the graphical types defined
by the consulting firm. The part of the meta meta model defining the infor-
mation exchange is shown on the top. The shape of a human is the graphical
presentation of the object Agent and the shape of a set of papers of Medium.
They used the shapes to indicate the abstract nature of these concepts. Below
these objects the notation of the corresponding conceptual models is shown.
The Organisational Unit is presented as a rectangle and the Package as
a diamond. On the bottom a small excerpt of the ’information exchange’
model is given. For the modeled agents and documents they used the filled

ConceptBase 281

graphical types of the concepts of the meta meta model to indicate that these
objects are more concrete.

4 Summary and Outlook

Conceptual modeling requires the use of multiple interdependent languages.
Selecting the right collection of languages and focusing the analysis of their
interactions is a not trivial task. For example, the mobile phone company
Nokia claims to employ more than 150 different notations and/or methods
in their software development processes. In such new application domains,
standard languages may very well miss the modeling goal by distracting the
modelers to details of notation instead to details of the domain to be modeled.

In O-Telos, as supported by the ConceptBase system, experts can de-
fine an adapted collection of languages via meta classes. The customized
languages are interrelated via a meta meta model which encodes the overall
modeling goals independently from details of the notation of the modeling
languages.

Move...

Erase

Show Attributes
Show Instances

Show Subclasses
Show Superclasses

Save Layout
Load Layout

Quit

-
?§'ﬁﬁ;::,;x\~ R
Ih'.].e saved.

282 M.A. Jeusfeld, M. Jarke, H. W. Nissen, M. Staudt

Versions of ConceptBase have been distributed for use in research, teach-
ing, and industrial development since the early 1990s. Currently, a few hun-
dred groups worldwide use the system, a number of such efforts have resulted
in spin-off products derived from the ConceptBase prototypes. The main ap-
plications have been in cooperation-intensive projects which we have here
placed in contrast to notation-oriented standards such as UML or domain-
oriented reference models as in the ARIS framework. Especially for the ref-
erence models, there is good reason to believe that this competitive situation
should be turned into a cooperative one — a cooperative, customized, and
goal-oriented modeling process should still be enabled to take advantage of
external experiences as encoded in reference models. This attempt to bring
goals, teamwork, and formal analysis into the customization process of com-
ponent software strategies such as SAP or Baan is a major methodological
goal of our ongoing research.

In order to support such methodological advances, some advances in the
technical support by ConceptBase are also being investigated. The descrip-
tion in this paper corresponds roughly to version 4.1 of the system which
has been distributed since 1996. In the following, we sketch some exten-
sions which have been developed for integration into the next versions of the
system.

Any extensions aim to preserve the decisive advantage of O-Telos, its
firm basis on standard predicate logic with clear semantics. Its ability to
uniformly represent instances, classes, meta classes, and attributes as objects
makes it an ideal framework for meta data management and meta modeling.
Its implementation, ConceptBase, adds persistent storage of objects, a query
evaluator, and a collection of graphical and frame-based tools.

In order to offer even more scalability in cooperative modeling tasks,
the most important extension is the introduction of a concept of modeling
perspectives, i.e. interacting modules, into the language such that models can
be organized according to accepted principles of software architecture. In
[Nis97, NJ97], the language M-Telos has been developed (and prototypically
implemented) which is upward compatible with O-Telos and preserves the
simple foundations based on Datalog.

A second important extension under development is a more active role
the ConceptBase server can take with respect to its clients; an important
special case is the transformation across notations (as opposed to just analy-
sis queries). To preserve consistency, such transformations with materialized
results should be incrementally maintainable over change. In [Sta96, SJ96],
formalisms and algorithms to achieve incremental maintenance of material-
ized views not only inside the server, but also in external clients have been
developed and implemented. The power of such algorithms and the user com-
fort are significantly enhanced if they are realized using mobile code that can
move to the client without local installation effort. Starting from experiences
with the CoDecide client that offers spreadsheet-like interfaces to the kind

ConceptBase 283

of data cubes used in data warehousing [GJJ97], a complete Java-based user
environment is being developed.

Last not least, many cooperative modeling processes require inconsistency
management not just for static logical interactions, but along possibly com-
plex process chains. The current deductive approach only allows the analysis
of process chains consisting of very few steps. Recently developed process rea-
soning techniques [BMR93] in a logical framework that is comparably simple
to ours appear as a promising candidate for an integration into ConceptBase,
without sacrificing its uniform framework and conceptual simplicity.

References

[Abe95]

[Aug9l]

[BHSSZ97]

[BMR93]

[CGT90]

[Che89]

[CIMV95]

[FS97]

[GII97]

[GMBY4]

(IDS96]

Abel, P., Description of the USU-PFR analysis method, Technical
report, USU GmbH, Méglingen, 1995

August, J. H., Joint Application Design: The Group Session Approach
to System Design, Yourdon Press, Englewood Cliffs, 1991

Bernstein, P. A., Harry, K., Sanders, P., Shutt, D., Zander, J., The
microsoft repository, in: Proc. of the 23rd Intl. Conf. on Very Large
Data Bases (VLDB), Athens, Greece, August 1997, 3-12

Borgida, A., Mylopoulos, J., Reiter, R., ”... and nothing else changes”:
The frame problem in procedure specifications, in: Proc. of the Fif-
teenth Intl. Conf. on Software Engineering (ICSE-15), May 1993

Ceri, S., Gottlob, G., Tanca, L., Logic Programming and Databases,
Springer Verlag, 1990

Checkland, P. B., Soft systems methodology, in: J. Rosenhead (ed.),
Rational Analysis for a Problematic World, John Wiley & Sons, Chich-
ester, 1989, 71-100

Constantopoulos, P., Jarke, M., Mylopoulos, J., Vassiliou, Y., The
software information base: A server for reuse, VLDB Journal 4 (1),
1995, 1-43

Fowler, M., Scott, K., UML Destilled: Applying the Standard Object
Modeling Language, Addison-Wesley, 1997

Gebhardt, M., Jarke, M., Jacobs, S., A toolkit for negotiation support
interfaces to multi-dimensional data, in: Proc. of the ACM SIGMOD
Intl. Conf. on Management of Data, May 1997, 348-356

Greenspan, S., Mylopoulos, J., Borgida, A., On formal requirements
modeling languages: RML revisited, in: Proc. of 16th Intl. Conf. on
Software-Engineering (ICSE), Sorrento, Italy, May 16-21 1994

IDS Prof. Scheer GmbH, Saarbriicken, ARIS-Toolset Manual V3.1,
1996

284

[1SO90]

[Jeu92]

[JGJISEQ5]

[3389]

[1396]

[IMSV92]

[JR8S]

[KK84]

[KLR96)

[MBJK90]

[MSTT94]

[Nis97]

[NJ97]

M.A. Jeusfeld, M. Jarke, H.W. Nissen, M. Staudt

ISO/IEC International Standard, Information Resource Dictionary
System (IRDS) - Framework ISO/IEC 10027, 1990

Jeusfeld, M. A., Update Control in Deductive Object Bases, PhD
thesis, University of Passau, (in German), 1992

Jarke, M., Gallersdorfer, R., Jeusfeld, M. A., Staudt, M., Eherer, S.,
ConceptBase - a deductive object base for meta data management,
Journal of Intelligent Information Systems, Special Issue on Deductive
and Object-Oriented Databases 4 (2), 1995, 167-192

Jarke, M., Jeusfeld, M. A., Rule Representation and Management in
ConceptBase, SIGMOD Record 18 (3), 1989, 46-51

Jeusfeld, M. A., Jarke, M., Enterprise integration by market-driven
schema evolution, Intl. Journal Concurrent Engineering Research and
Applications (CERA) 4 (3), 1996

Jarke, M., Mylopoulos, J., Schmidt, J. W., Vassiliou, Y., DAIDA: An
environment for evolving information systems, ACM Transactions on
Information Systems 10 (1), 1992, 1-50

Jarke, M., Rose, T., Managing knowledge about information system
evolution, in: Proc. of the SIGMOD Intl. Conf. on Management of
Data, Chicago, Illinois, USA, June 1988, 303-311

Kottemann, J. E., Konsynski, B. R., Dynamic metasystems for in-
formation systems development, in: Proc. of the 5th Intl. Conf. on
Information Systems, Tucson, Arizona, November 1984, 187-204

Kelly, S., Lyytinen, K., Ross, M., MetaEdit+: A fully configurable
multi-user and multi-tool CASE and CAME environment, in: P. Con-
stantopoulos, J. Mylopoulos, Y. Vassiliou (eds.), Proc of the 8th Intl.
Conf. an Advanced Information Systems Engineering (CAiSE’96),
Heraklion, Creta, Griechenland, May 1996, Springer-Verlag, LNCS
1080, 1-21

Mylopoulos, J., Borgida, A., Jarke, M., Koubarakis, M., Telos: Rep-
resenting knowledge about information systems, ACM Transactions
on Information Systems 8 (4), 1990, 325-362

Maiden, N., Sutcliffe, A., Taylor, C., Till, D., A set of formal problem
abstractions for reuse during requirements engineering, Engineering
of Information Systems 2 (6), 1994, 679-698

Nissen, H. W., Separation and Resolution of Multiple Perspectives
in Conceptual Modeling, PhD thesis, RWTH Aachen, Germany, (in
German), 1997

Nissen, H. W., Jarke, M., Goal-oriented inconsistency management in
customizable modeling environments, Technical Report 97-12, RWTH
Aachen, Aachener Informatik-Berichte, 1997

[NJIZH6]

[Non94]

[Poh94]

[Sch94]

[SJ96]

[SNJ94]

[Sta96]

[You89]

ConceptBase 285

Nissen, H. W., Jeusfeld, M. A., Jarke, M., Zemanek, G. V., Huber,
H., Managing multiple requirements perspectives with metamodels,
IEEE Software, 1996, 37-47

Nonaka, I., A dynamic theory of organizational knowledge creation,
Organization Science (1), 1994, 14-37

Pohl, K., The three dimensions of requirements engineering: A frame-
work and its application, Information Systems 19 (3), 1994

Scheer, A.-W., Business Process Engineering, Springer-Verlag, 1994

Staudt, M., Jarke, M., Incremental maintenance of externally mate-
rialized views, in: Proc. of the 22nd Intl. Conf. on Very Large Data
Bases (VLDB’96), Bombay, India, September 1996, 75-86

Staudt, M., Nissen, H. W., Jeusfeld, M. A., Query by class, rule and
concept, Journal of Applied Intelligence 4 (2), 1994, 133-156

Staudt, M., View Management in Client-Server Systems, PhD thesis,
RWTH Aachen, (in German), 1996

Yourdon, E., Modern Structured Analysis, Prentice Hall, Englewood
Cliffs, New Jersey, 1989

CHAPTER 13

Conceptual Graphs

John F. Sowa

Conceptual graphs (CGs) are a system of logic based on the existential graphs of
Charles Sanders Peirce and the semantic networks of artificial intelligence. Their
purpose is to express meaning in a form that is logically precise, humanly readable,
and computationally tractable. With their direct mapping to language, conceptual
graphs can serve as an intermediate language for translating computer-oriented for-
malisms to and from natural languages. With their graphic representation, they
can serve as a readable, but formal design and specification language. CGs have
been implemented in a variety of projects for information retrieval, database design,
expert systems, and natural language processing. A draft ANSI standard for CGs
has been developed by the NCITS T2 committee, the liaison to the ISO Conceptual
Schema Modelling Facility (CSMF') project under ISO/IEC JTC1/SC21/WG3.

1 Assertions and Constraints

As a system of logic, conceptual graphs can be used to describe or define
anything that can be implemented on a digital computer. But their graphic
structure resembles the informal diagrams and charts that are commonly
used in systems documentation. They have been used as a bridge between
the informal diagrams used by computer practitioners and the formalized
notations of computer scientists. As an example, Figure 1 shows a CG for an
assertion that might be added to a university database: Student Tom Jones
majors in the Biology Department, he enrolls in Section M1B, and Course
Calculus I has Section M1B.

The boxes in a conceptual graph are called concepts. Each box has two
parts: on the left of the colon is a type label, which represents the type of
entity; on the right is a referent, which can name a specific instance of the
type, such as Tom Jones or M1B. The circles or ovals are called conceptual
relations; they represent instances of relationships as expressed in the tuples
of a relational database. The labels inside the concept and relation nodes may
be copied directly from the relations of a relational database, or they may
be taken from.a more primitive set of relations, which are used to express

288 John F. Sowa

Student: Tom Jones —P———P— Section: M1B

#

=

Department: Biology Course: Calculus I

Figure 1: An assertion stated as a conceptual graph

the thematic roles or case relations of linguistics. The arrows on the arcs
distinguish the different arguments of a relation: the arrow pointing towards
the relation is the first argument, and the arrow pointing away is the second
argument; if a relation has more than two arguments, the arcs are numbered.

The box and circle notation for conceptual graphs, which is called the
display form, is highly readable, but it takes up a lot of space on the printed
page. To save space, there is an equivalent linear form, which can be typed
at a keyboard. Following is the linear form of Figure 1:

[Department: Biology]+(Major)<[Student: Tom Jones]-
(Enrolls)—[Section: M1B]+«+(Has)<+[Course: Calculus IJ.

In the linear form, the boxes are represented by square brackets and the
ovals are represented by rounded parentheses. If a CG is too long to fit on
one line, a hyphen is used to show that it is continued on the next line.

Although Figure 1 looks like an informal diagram, it is a formal repre-
sentation that can be translated automatically to other formalisms. A com-
panion notation for logic, which is also being standardized by the NCITS T2
committee, is the Knowledge Representation Format (KIF) [KIF95]. When
Figure 1 is translated to KIF, a concept like [Student: Tom Jones] becomes
the parenthesized pair (student Tom_Jones). Each relation with n arguments
becomes a list of n+1 elements, starting with the name of the relation. The
dyadic relation between Tom Jones and Section M1B would become the list
(enrolls Tom_Jones M1B). The order of the arguments corresponds to the
direction of the arrows: Tom_Jones is first, and M1B is second. Following is
the complete KIF representation for Figure 1:

(and (student Tom-Jones) (department Biology) (section M1B)
(course Calculus_I) (major Tom_Jones Biology)
(enrolls Tom_Jones M1B) (has Calculus.I M1B))

Conceptual Graphs 289

In KIF, the operator “and” is used to combine all the information from the
concepts and relations in a single expression; its arguments may be listed in
any order.

In Figure 1, each concept box has a name of a specific instance in its
referent field. Besides names, conceptual graphs also permit quantifiers in
the referent field. In predicate calculus, the two basic quantifiers are the ez-
istential quantifier represented by the symbol 3, and the universal quantifier
represented by the symbol V. In conceptual graphs, the quantifier 3 is the
default, represented by a blank referent field; and the quantifier V is repre-
sented by the symbol V or @every in the referent field. The following table
compares the quantifiers in English, predicate calculus, conceptual graphs,
and KIF:

English PC CG KIF
some student 3z : student [Student] (exists ((?x student)) ...)
every student Vz :student [Student: V] (forall ((?x student)) ...)

Figure 2 shows a conceptual graph with four concepts, each of which is
existentially quantified (blank referent). Surrounding the graph is another
concept box marked with a negation symbol —. The complete graph may be
read, It is false that there exists a student who is enrolled in two different
sections of the same course.

Enrolis

Figure 2: A constraint stated as a conceptual graph

Figure 2 has branches that cannot be drawn on a straight line. In the

290 John F. Sowa

linear form, it would be represented on several lines; continuations are shown
by hyphens, and cross references are shown by coreference labels, such as *z
and 7z: The first occurrence or defining label is marked with an asterisk, such
as *z; the subsequent occurrences or bound labels are marked with a question
mark, such as 7z.

=[[Student]—
(Enrolls) — [Section]—
(#) = [Section : 2]
(Has) + [Course : xw],
(Enrolls) = [?z] + (Has) + [tw]].

In the linear form, hyphens show that relations are continued on sub-
sequent lines, and commas terminate the most recent hyphens. When the
linear form is translated back to the display form, the concepts [?z] and [?w]
are overlaid on the corresponding concepts [Section: *z] and [Course: *w].
As this example illustrates, complex graphs are usually more readable in
the display form than in the linear form, but both forms are semantically
equivalent. Their formal syntax is presented in Section 4.

When Figure 2 is translated to KIF, a variable is associated with each of
the four concept boxes: 7x for the student, 7y for one section, 7z for another
section, and ?w for the course. The question mark distinguishes a variable
like 7x from a constant like M1B; the coreference labels in conceptual graphs
correspond to variables in KIF, and similar symbols are used for both. The
operator “exists” is used for the existential quantifier and “not” for the nega-
tion. Following is the KIF form of Figure 2:

(not (exists ((student ?7x) (section ?y) (section ?z) (course ?w)) (and
(enrolls ?x ?y) (enrolls ?x 7z) (/= 7y 7z) (has ?w ?y) (has

w 7z))))

This statement may be read, It is false that there exists a student z, a section
y, a section z, and a course w, where x is enrolled in y, T is enrolled in z, y
is not equal to z, w has y, and w has z . For readability, conceptual graphs
may use special symbols like # for not equal ; but KIF uses /=, since it has
a more restricted character set.

2 Database Queries

Besides representing tuples and constraints, conceptual graphs can also ex-
press any database query that can be expressed in SQL. Figure 3 shows a
query that might be used to look for students who violate the constraint
in Figure 2: Which student is enrolled in two different sections of the same
course?

The question mark in the concept [Student: ?] of Figure 3 characterizes
the graph as a query. When used by itself, the question mark asks the

Conceptual Graphs 291

Section

Enrolls

Enrolls

Figure 3: A query stated as a conceptual graph

question Which student? When used with a variable, as in 7x, the question
mark indicates a variable that corresponds to KIF variables like ?x or ?y.
These two uses of the ? symbol correspond to the two uses of the word which
in English: ? by itself corresponds to the interrogative which for asking
questions; and ?x corresponds to the relative pronoun which used to make a,
reference to something else in the sentence. In the query language SQL, the
question mark maps to the SELECT verb that designates which field in the
database contains the answer. Figure 3 would be translated to the following
query in SQL:

SELECT A.STUDENT
FROM ENROLLS A, ENROLLS B, HAS C, HAS D
WHERE A.STUDENT = B.STUDENT
AND A.SECTION -= B.SECTION
AND A.SECTION = C.SECTION
AND B.SECTION = D.SECTION
AND C.COURSE = D.COURSE

The SELECT clause in SQL lists the concepts that were marked with the
2 symbol; the FROM clause lists the telations; and the WHERE clause is a
translation of the conditions stated in the CG.

Any or all of the four concepts in Figure 3 could contain a question mark

292 John F. Sowa

in the referent field. If all four were marked with the ? symbol, the answer
would be the constraint violation in Figure 4, which says Student Tom Jones
is enrolled in two different sections, M1A and M1B, of the course Calculus I

Section:
MI1A

Smde;lt: @ Course:

Tom Jones Calculus I

&

Section:
MIi1B

Figure 4: A constraint violation as an answer to a query

3 Relational and Object-Oriented Databases

Besides relating natural language to expert systems, conceptual graphs can
be used to relate different kinds of databases and knowledge bases to one
another. Relational databases present the data in tables, and object-oriented
databases group data by objects. The two kinds of databases have different
advantages and disadvantages, but either kind could be translated to the
other by means of definitions written in conceptual graphs. To illustrate the
differences, consider Figure 5, which shows two structures of blocks and their
representation in a relational database.

At the left of Figure 5, the two structures are composed of objects that
support other objects. On the right, the Objects relation lists each object’s ID
(identifier), its Shape, and its Color; the Supports relation lists the Supporter
and Supportee for each instance of one object supporting another. In Figure
5, the separation between the two structures is not shown directly in the
database:pthe tuples;that,representyeach structure occur in both tables, and
each table mixes tuples from both objects.

Figure 6 shows a conceptual graph that represents the top structure of

Conceptual Graphs 293

OBJECTS SUPPORTS
SUPPORTER | SUPPORTEE

mEgaw»
Qouwuoyg

D
A
B
C
D
E
F
G
H

Figure 5: Two structures represented in a relational database

Figure 5 in an object-oriented style. Each object in the structure is rep-
resented by a concept of type Block or Pyramid. The conceptual relations
that link them are derived from the more primitive linguistic relations, such
as Characteristic (Chrc), Theme (THME), and Instrument (Inst). Starting
from the upper left-hand corner, Figure 6 could be read Pyramid E has a
color orange, it is being supported by block D, which has a color blue; D is
being supported by pyramid A, which has a color red, pyramid B, which has
color red, and pyramid C, which has a color yellow. However, the physical
placement of the nodes of a CG has no semantic meaning, and the same
graph could be translated to different sentences that all express the same
proposition. Another way of reading Figure 6 would be A red pyramid A,
a green pyramid B, and a yellow pyramid C support a blue block D, which
supports an orange pyramid E.

The concept and relation types in Figure 6, which map directly to the
semantic relationships in natural languages, do not correspond to the names
of the tables and fields of the relational database in Figure 5. As an alternate
representation, Figure 7 shows another conceptual graph that uses the same
names as the relational database.

The graphs in Figures 6 and 7 could be related to one another by selecting
a basic set of types and relations as primitives: the types Object, Color,
Shape, and Support; and the linguistic relations Chrc, THME, and Inst.
Then all of the types and relations in both graphs could be defined in terms
of the basic set. For example, following is a definition of the concept type
Block:

type Block(*x) is [Object: 7x]—+(Chrc)—[Shape: block].

294 John F. Sowa

Color: blue

Figure 6: A conceptual graph that represents the top structure in Figure 5

This definition says that a block z is an object x with a characteristic
(Chrc) shape of block. Next is a similar definition for the type Pyramid:

type Pyramid(*x) is [Object: ?x]—(Chrc)—[Shape: pyramid].
Following is a definition of the dyadic relation Supports:

relation Supports(*x,*y) is [Object: ?x]«(THME)+[Support]—
(Inst)—[Object: ?y].

This definition says that the Supports relation links an object z, which is
the theme (THME) of the concept [Support], to another object y, which is
the instrument (Inst) of the same concept. The Objects relation has three
formal parameters:

relation Objects(*x,*y,*z) is
[Object: ?x]-
(Chrc)—[Shape: ?y]
(Chrc)—[Color: 7z].

This definition says that the first| parameter z is of type Object; the
second y is a Shape that is characteristic of the Object; and the third z is a
Color that is characteristic of the Object.

Conceptual Graphs 295

IShaper pyramid’ | Object1 E SUPPORTS Object: D ‘Shaper block'
2 2
OBIECTS OBJECTS
3 3
\ 4
Color! orange Color! blue
FShapex pyramid’ LObjcctxA l ' ObjecthJ l Object: C lShapex yramid—l
2 1 1 2
OBJECTS OBIJECTS
3 OBJECTS 3
y
Color! red Color: yellow
!Shapex pyramid Color: green ‘

Figure 7: A conceptual graph generated directly from the relational database

For the relational database in Figure 5, the Supports relation has domains
named Supporter and Supportee. Those two domain names could also be
related to the conceptual graphs by type definitions:

type Supporter(*x) is [Object: ?x]< (Inst)«[Support].
type Supportee(*x) is [Object: ?x]«—(THME)+[Support].

The first line says that Supporter is defined as a type of Object that is the
instrument (Inst) of the concept [Support]; the second says that Supportee
is a type of Object that is the theme (THME) of [Support]. By expanding or
contracting these definitions, Figure 6 could be converted to Figure 7 or vice
versa. The definitional mechanisms provide a systematic way of restructuring
a database or knowledge base from one format to another.

Restructuring a large database is a lengthy process that may sometimes
be necessary. But to answer a single question, it is usually more efficient
to restructure the query graph than to restructure the entire database. To
access a relational database such as Figure 5, the definitions can be used
to translate the concept types in the query graph to concept types that
match the domains of the database. As an example, the English question
Which_pyramid_is_supported by a block? would be translated to the following
conceptual graph:

[Pyramid: 7]« (THME)%[Support]— (Inst)— [Block].

296 John F. Sowa

The question mark in the referent field of the concept [Pyramid: ?] shows
that this graph is a query graph . The identifier of the pyramid that makes
this graph true would be the answer to be substituted for the question mark.
The answer, Pyramid E, could be derived by matching the query graph to the
conceptual graph in Figure 6. If the data is in a relational database, however,
the query graph must be translated to SQL. Figure 8 shows how the type
and relation definitions are used to translate the original query graph to a
form that uses the same types and relations as the corresponding SQL query.

) e e R ey D & S Py

g a4} 4o 1-4—{na4—{ g |—>-(p)] o |32 fsae i
<] s 7 |+] g |>-G) g]

| shape: pyramid| | supportee: 7| -4—{"supports }e—] Suppm'ter] |Shape: block|
1 2
(oBsECTS) (oBrcts)

Figure 8: Translating a query graph to a form that maps directly to SQL

The graph at the top of Figure 8 is the original query graph generated
directly from English. The second graph replaces the concepts [Pyramid] and
[Block] by the definitions Object with Shape pyramid or Object with Shape
block. The third graph replaces the concept [Support] and the relations
THME and Inst with the relation Supports, which links the supporting object
[Supporter] to the supported object [Supportee]. Finally, the bottom graph
replaces the two occurrences of the Chre relation with the Objects relation.
Since the Objects relation has three arcs, two concepts of type Color are
also introduced; but they are ignored in the mapping to SQL, since colors
are irrelevant to this query. By translating the bottom graph of Figure 8
to SQL, the system can generate the following SQL query for the original
English question Which pyramid is supported by a block?

SELECT SUPPORTEE
FROM SUPPORTS, OBJECTS A, OBJECTS B
WHERE SUPPORTEE = A.ID
AND A.SHAPE = 'PYRAMID’
AND SUPPORTER = B.ID
AND B.SHAPE = "BLOCK’

Conceptual Graphs 297

The question mark in the concept [Supportee: ?] maps to the SELECT
verb in the first line of the SQL query. The three relations in the query
graph are listed in the FROM clause on line two. Since the Objects relation
appears twice, it is listed twice on line two — once as OBJECTS A and again
as OBJECTS B. Then the WHERE clause lists the conditions: the supportee
must be equal to the identifier of object A; the shape of object A must be
pyramid; the supporter must be equal to the identifier of object B; and the
shape of object B must be block. Every feature of the SQL query is derived
from some feature of the transformed query graph at the bottom of Fig. 8.

4 Dataflow Graphs and Recursive Functions

Functional programs, which do not have side effects, are the easiest to repre-
sent in conceptual graphs, KIF, or any other system of logic. By definition,
a function is a relation that has one argument called the output , which has a
single value for each combination of values of the other arguments, called the
inputs. In conceptual graphs, the output concept of a function is attached to
its last arc, whose arrow points away from the circle. If F is a function from
type T1 to type T2, the constraint of a single output for each input can be
stated by the following conceptual graph:

[T1: V]—=(F)—[T2: @1].
This graph says that for every input value of type T1, F has exactly one

output value of type T2. Combinations of functions can be linked together
to form dataflow diagrams, as in Figure 9.

Number: 7a

Number: 7b

Figure 9: A dataflow diagram written as a conceptual graph

The input labels ?a, ?b, and ?c refer back to defining labels *a, *b, and
*c on other concept nodes of other diagrams. The output label *x defines a
node that could be referenced in another graph by ?x. The functions (Sum)
and (Prod) take two numbers as input and generate their sum or product as
output. The function (CS2N) converts a character string input to a number
as output. Figure 9 could be mapped to the following statement in KIF:

(= 7x (*.(+ 7a ?b) (cs2n ?c)))

298 John F. Sowa

In a more conventional programming language, Figure 9 or its KIF equiv-
alent would correspond to an assignment statement

x := (a + b) * cs2n(c);

Figure 10: Defining a recursive function with a conceptual graph (relation
Facto(*n,*x) is functional)

Dataflow diagrams by themselves are not sufficient for a complete com-
putational system. But when combined with a conditional relation and the
ability to define recursive functions, they form the basis for a complete pro-
gramming language that can compute any function that is computable by a
Turing machine. Figure 10 shows a conceptual graph for defining the function
Facto, which computes the factorial = of a nonnegative integer n It could be
translated to the following function definition in KIF:

(deffunction facto ((?n nonnegint)) :=
(cond ((>2 ™) 1)
(true (* ?n (facto (1- 7n))))))

In Figure 10, both variables ?n and ?x are marked with ? rather than *
because their defining occurrences are already specified in the top line with
the keyword “relation”. The relation (Sub1) corresponds to the KIF function
1-, which subtracts 1 from its input. The relation (Cond) corresponds to the
conditional in KIF or the ternary ?: operator in C. Its first argument is a
Boolean value; if true, the output of Cond is equal to the second argument;
otherwise, the output of Cond is equal to the third argument. The features
illustrated in Figures 9 and 10 represent all the structure needed for a lan-
guage that can specify any computable function. The inference rules of logic
can make such diagrams executable, and a compiler can translate them to
more conventional programming languages.

Conceptual Graphs 299

5 Encapsulated Objects

To represent the encapsulated objects of object-oriented systems, logic must
support contexts whose structure reflects the nest of encapsulations. In con-
ceptual graphs, contexts are represented by concept boxes with nested graphs
that describe the object represented by the concept. In KIF, the nesting is
represented by the description relation dscr and a quoted KIF statement that
describes the object. As an example, Figure 11 shows a graph for a birthday
party that occurred at the point in time (PTIM) of 26 May 1996.

Birthday Party Date: 26 May 1996

Figure 11: A birthday party on 26 May 1996

The concept with the type BirthdayParty says that there exists a birthday
party, but it doesn’t specify any details. The PTIM relation for point-in-time
indicates that it occurred on the date 26 May 1996. To see the details of what
happened during the party, it is necessary to open up the box and look inside.
With a graphic display and a mouse for pointing, a person could click on the
box, and the system would expand it to the context in Figure 12. In that
graph, the large box is the same concept of type BirthdayParty that was
shown in Figure 11, but it now contains some nested conceptual graphs that
describe the party.

Inside the large box in Figure 12, the first graph says that 40 guests are
giving presents to a person named Marvin, and the second one says that
50 candles are on a cake. The relations AGNT, THME, and RCPT are
linguistic case relations that indicate the agent (guests who are giving), the
theme (presents that are being given), and the recipient (the birthday boy,
Marvin). The generic set symbol * indicates a set of unspecified things; the
types Guest and Candle indicate the types of things; and the qualifiers “@40”
and “@50’ indicate the count of things in each set.

6 Zooming in and Zooming out

At the bottom of the box in Figure 12 is another concept [Process], which
says that there exists some process in the birthday party. By clicking on
that box, a viewer could expand it to a context that shows the steps in the
process. In Figure 13, the process box contains three other nested contexts: a
state with duration 15 seconds, followed by an event that occurs at the point
in time 20:23:19 Greenwich Mean Time, followed by a state with duration
5 seconds. The relation Dur represents duration, PTIM represents point in
time, and Succ represents successor. Dur links each state to a time interval
during which the graphs that describe the state are true; PTIM links the

300 John F. Sowa

Date: May 1996

Birthday Party :

[cuaie 150 }—>-(00) - cae

Figure 12: Expanded view of the birthday-party context

event to a time point, which is a short interval whose starting and ending
times are not distinguished.

At the top of Figure 13, two new variables *x and *y appear in the
concepts of the 40 guests and the 50 candles. Those variables mark the
defining nodes, which are referenced by the bound variables ?x and ?y in
graphs nested inside the process context. In the pure display form, variables
are not needed, since coreference is shown by dotted lines. But when the
graphs contain a lot of detail, variables eliminate the need for crossing lines.
An interactive display could provide an option of showing coreference links
either as variables or as dotted lines.

In Figure 13, the graphs nested inside the concepts of type State and Event
are too small to be read. By clicking on the box for the first state, a person
could zoom in to see the details in Figure 14. The expanded state shows the
candles 7y burning while the guests 7x sing the song “Happy Birthday”. Then
the event box could be expanded to show Marvin blowing out the candles,
and the next state would show the candles smoking for 5 seconds. Context
boxes can encapsulate details at any level. At a lower level, the concept [Sing]
might be expanded to show one guest singing in the key of G while another
is'singing in G flat. In this way, the encapsulated description of any object
could be contained in a single context box, which could be expanded to show
the details or. contracted to-hide them.

Conceptual Graphs 301

Birthday Party :

Guest: {*}@40 AGNT Give Person: Marvin
Candle: {*}@50 Cake Present: {*}

Process
.
State: ~ 1 Interval: @ 15 sec

Event: Time: 20:23:19 GMT
e)= P

%
|

State: — @ Interval: @ 5 sec

Figure 13: Expanded view of the birthday party to show details of the process

7 Stylized Natural Language

Although conceptual graphs are quite readable, they are a formal language
that would be used by programmers and systems analysts. Application users
would normally prefer natural languages. But even programmers use natu-
ral language for comments, documentation, and help facilities. Conceptual
graphs were originally designed as a semantic representation for natural lan-
guage, and they can help to form a bridge between computer languages and
the natural languages that everyone reads, writes, and speaks. Following is a
stylized English description that could be generated directly from Figure 13:

302 John F. Sowa

Guest: {*}‘7x @ m @ Song: Happy Birthday

Figure 14: Expanded view of the first state of the process in Figure 13

There is a birthday party B.

In B, 40 guests X are giving presents to the person Marvin.
50 candles Y are on a cake.

There is a process P.

In the process P, there is a state S1 with a duration of

15 seconds.
The state S1 is followed by an event E at the time 20:23:15 GMT.
The event E is followed by a state S2 with a duration of

5 seconds.

In the state S1, the candles Y are burning.
The guests X are singing the song Happy Birthday.

In the event E, the person Marvin blows out the candles Y.

In the state S2, the candles Y are generating smoke.

The ambiguities in ordinary language make it difficult to translate to a formal
language. But generating natural language from an unambiguous formal
language, such as conceptual graphs, is a much simpler task. For stylized
English, the generation process can be simplified further by using variables
instead of pronouns and mapping the context structure of the graphs to
separate paragraphs. Such stylized language may not be elegant, but it is
useful for comments and explanations.

8 First-Order Logic

In conceptual graphs, as in Peirce’s existential graphs, there are three logical
primitives: conjunction, negation, and the existential quantifier. All the
operators of first-order logic can be defined by combinations of these three
primitives. A an example of the basic logical notation, Figure 15 shows a
conceptual graph for the sentence If a farmer owns a donkey, then he beats
it.

Conceptual Graphs 303

FARMER OWN DONKEY
\\ ,
=[x}t —fomar]>-)

Figure 15: A conceptual graph with nested negations and coreference links

The context boxes, which were used to encapsulate object descriptions in
previous examples, are also used to show the scope of the logical operators
and quantifiers in Figure 15. The dotted lines are coreference links; they
show that the concepts of type T, which represent the pronouns he and
it , are coreferent with the concepts [Farmer| and [Donkey]. The dyadic
conceptual relations represent the linguistic case roles experiencer (EXPR),
theme (THME), agent (AGNT), and patient (PTNT). Literally, Figure 15
may be read It is false that a farmer owns a donkey and that he does not beat
it.

To make conceptual graphs simpler or more readable, definitional mech-
anisms can be used to define new concept and relation types. Two nested
negations in the form —[p —[q]] are logically equivalent to If p, then g. There-
fore, the keywords If and Then may be defined as synonyms for a negation
applied to a context of type proposition:

type If(*p) is ~[Proposition: ?p].
type Then(*q) is ~[Proposition: ?q).

By these definitions, If and Then are defined to be type labels for propo-
sitions that are enclosed inside a negation. When the context of type Then
is enclosed inside a context of type If, the combination is logically equivalent
to the two nested negations of Figure 15, but with the more readable syntax
of Figure 16.

Figure 16 may now be read as the more natural sentence If a farmer z
owns a donkey y, then z beats y. The dotted lines, which showed coreference
links in Figure 15, have been replaced with pairs of coreference labels in
Figure 16. The pair *x and ?x represents the farmer, and the pair *y and
?y represents the donkey. The labels marked with asterisks, *x and *y, are
called the defining nodes; and the corresponding labels marked with question
marks; ?x and ?y, are called the bound nodes. Dotted lines are used in the
pure graph notation, but the equivalent coreference labels map more directly
to KIF variables. Following is the KIF translation of Figure 16:

304 John F. Sowa

If: |FarMER: * OWN @ DONKEY: *y
Then: BEAT @

Figure 16: A conceptual graph with an If-Then combination

(forall ((7x farmer) (?y donkey) (?z own))
(=> (and (EXPR 7z 7x) (THME ?z ?y))
(exists ((?w beat)) (and (AGNT ?w ?x) (PTNT ?w ?y)))
)

Other Boolean operators can also be defined by combinations of negations
and nested contexts. The disjunction or logical or of two graphs p and ¢ is
represented by the combination

-[Proposition: ~[Proposition: p] =[Proposition: g¢]].

For better readability, a dyadic conceptual relation OR may be introduced
by the following definition:

relation OR(*p,*q) is symmetric
—[Proposition: —[Proposition: ?p] =[Proposition: 7q]].

The definition of the OR relation implies that it is symmetric: the order
of the formal parameters p and ¢ may be interchanged without affecting the
meaning. In the heading of the definition, the keyword symmetric affirms
the symmetry and indicates that the arrows on the arcs of the OR relation
may be omitted.

The universal quantifier V may be defined in terms of an existential quan-
tifier 3 and two negations: (Vz) is equivalent to the combination ~(3z)~.
As an example, the following conceptual graph represents the sentence Fvery
cat is on a mat:

[Cat: V]—(ON)—[Mat].

The concept [Cat: V], which has a universal quantifier, may be replaced by
two negative contexts and the concept [Cat], which has an implicit existential
quantifier. The expansion is performed in the following steps:

1. Draw a double negation around the entire graph:

Conceptual Graphs 305

=[-[[Cat: V]—(ON)—[Mat]]].

2. Move the concept with the universal quantifier between the inner and
outer negations, and replace the symbol ¥ with a coreference label, such
as *x, which represents a defining node:

[[Cat: *x] = =(ON)—[Mat] .

3. Insert the concept [?x], which represents a bound node corresponding
to *x, in the original place where the concept [Cat: V] had been:

=[[Cat: *x]| [[?x]—(ON)—[Mat]]].
4. With the concept types If and Then, the graph could be written
[If: [Cat: *x] [Then: [?x]—(ON)—[Mat]]].
This graph may be read If there exists a cat z, then z is on a mat.

With the above definitions, the following English sentences can be translated
to conceptual graphs and then to KIF:

e FEuvery cat is on a mat.

[Cat: V]—(ON)—[Mat].
(forall ((?x cat)) (exists ((?y mat)) (on ?x ?y)))

It is false that every dog is on a mat.

—[[Dog: V]—(ON)—[Mat]].
(not (forall ((?x dog)) (exists ((?y mat)) (on ?x ?y))))

Some dog is not on a mat.

[Dog: *x] —[[?x]—(ON)—[Mat]).
(exists (?7x dog) (not (exists ((?y mat)) (on ?x ?y))))

Either the cat Yojo is on a mat, or the dog Macula is running.

[Either:
[Or: [Cat: Yojo] = (ON) — [Mat]]
[Or: [Dog: Macula] + (AGNT) < [Run]]].
(or (exists ((?x mat)) (and (cat Yojo) (on Yojo ?x)))
(exists ((?y run)) (and (dog Macula) (AGNT ?y Mac-

ula))))

e If a cat is on a mat, then it s happy.

306 John F. Sowa

(If: [Cat: *x]—(ON)—[Mat]
(Then: [?x]—(ATTR)—[Happy]]].
(forall ((?x cat) (?y mat))
(=> (on ?x ?y)
(exists ((?z happy)) (attr 7x ?z))))

9 Generalization Hierarchies

The rules of inference of logic define a generalization hierarchy over the terms
of any logic-based language. Figure 17 shows the hierarchy in conceptual
graphs, but an equivalent hierarchy could be represented in KIF or other
logical notation. For each dark arrow in Figure 17, the graph above is a
generalization, and the graph below is a specialization. The top graph says
that an animate being is the agent (AGNT) of some act that has an entity as
the theme (THME) of the act. Below it are two specializations: a graph for a
robot washing a truck, and a graph for an animal chasing an entity. Both of
these graphs were derived from the top graph by repeated applications of the
rule for restricting type labels to subtypes. The graph for an animal chasing
an entity has three subgraphs: a human chasing a human, a cat chasing a
mouse, and the dog Macula chasing a Chevrolet. These three graphs were
also derived by repeated application of the rule of restriction. The derivation
from [Animal] to [Dog: Macula] required both a restriction by type from
Animal to Dog and a restriction by referent from the blank to the name
Macula.

Besides restriction, a join was used to specialize the graph for a human
chasing a human to the graph for a senator chasing a secretary around a
desk. The join was performed by merging the concept [Chase] in the upper
graph with the concept [Chase] in the following graph:

[Chase]—(ARND)—[Desk].

Since the resulting graph has three relations attached to the concept
[Chase], it is not possible to represent the graph on a straight line in the
linear notation. Instead, a hyphen may be placed after the concept [Chase]
to show that the attached relations are continued on subsequent lines:

[Chase]-
(AGNT)—[Senator]
(THME)—[Secretary]
(ARND)—[Desk].

For the continued relations, it is not necessary to show both arcs, since
therdirectionrof onerarrowsimpliesstherdirection of the other one.

The two graphs at the bottom of Figure 17 were derived by both restric-
tion and join. The graph on the left says that the cat Yojo is vigorously

Conceptual Graphs 307
o) os)
oy > om ot G0« e - >] @ e} > o i
lmmcmw
/
(90| o o) [os: Mo« s | » 0 - [chevrot]

Figure 17: A generalization hierarchy

chasing a brown mouse. It was derived by restricting [Cat] to [Cat: Yojo]
and by joining the following two graphs:

[Mouse]—(ATTR)—[Brown].
[Chase]—(MANR)—[Vigorous].

The relation (MANR) represents manner, and the relation (ATTR) rep-
resents attribute. The bottom right graph of Figure 17 says that the cat
Tigerlily is chasing a gray mouse. It was derived from the graph above it
by one restriction and one join. All the derivations in Figure 17 can be re-
versed by applying the generalization rules from the bottom up instead of
the specialization rules from the top down: every restriction can be reversed
by unrestriction, and every join can be reversed by detach.

10 Multimedia Systems

The boxes of a conceptual graph can be used as frames to enclose images
of any kind: pictures, diagrams, text, or full-motion video. Figure 18 shows
arconceptual graphrthat-describessarpicture; it may be read A plumber is
carrying a pipe in the left hand and is carrying a tool box in the right hand.
The conceptual relations indicate the linguistic roles: agent (AGNT), theme

308 John F. Sowa

(THME), location (LOC), and attribute (ATTR). The picture itself is en-
closed in the referent field of a concept of type Picture. Concepts in the
graph contain indezical referents, marked by the § symbol, which point to
the parts of the picture they refer to.

Figure 18: Referring to parts of a picture with indexical referents

The pointers in Figure 18 are encoded in some implementation-dependent
fashion. As an alternate representation, the pointers may be taken out of
the referent fields of the concepts and put in a separate catalog. In Fig-
ure 19, the picture of Figure 18 has a catalog indexed by serial numbers.
Then the concepts may contain the serial numbers like 14261 instead of the
implementation-dependent pointers.

#3972 | o
#70503 h\
#14261 h\
#17926 h\
#82835 h\
\
Plumber: #14261 Catalog

Figure 19: Mapping via a catalog of objects

Whemapicturejisienclosedrinrasconcept box, conceptual relations may be
attached to it. Figure 20 shows the image relation (IMAG), which links a
concept of type Situation to two different kinds of images of that situation:

Conceptual Graphs 309

a picture and the associated sound. The situation is linked by the descrip-
tion relation (DSCR) to a proposition that describes the situation, which is
linked by the statement relation (STMT) to three different statements of the
proposition in three different languages: an English sentence, a conceptual
graph, and a KIF formula.

Glonk Imag Imag
CLANKETY @

scrape
Proposition
Stmt Stmt
A
fentencct)) . Formula:)
A plumber is carrying a pipe (exists((?x plumber) (?y carry) (?z pipe))

(and (agnt 7y 7x) (them ?y 7z)))

. Graph: |
e} @+ @]

Figure 20: A conceptual graph with embedded graphics and sound

Figure 20 shows how the nested contexts in conceptual graphs can be
used to encapsulate information either in conceptual graphs themselves or in
any other medium — including graphics, sound, natural language, or KIF. A
conceptual graph like Figure 20 resembles a hypertext network where each
concept box corresponds to a hypertext card that can encode information
in any arbitrary form. But unlike hypertext, a conceptual graph is a for-
mally defined version of logic that can be processed by rules of inference, be
translated to English or KIF, and be used to pass parameters to and from
application programs.

In multimedia systems, conceptual graphs have been used in conjunction
with the Standard Generalized Markup Language (SGML) and the Hyper-
Text Markup Language (HTML). The markup languages specify the syntac-
tic organization of a document in chapters, paragraphs, tables, and images;
but they don’t represent the|semantics of the text and pictures. Concep-
tual graphs.provide a bridge between syntax and semantics: they can be

310

John F. Sowa

translated to the syntactic tags of SGML or HTML; they are a semantic
representation, which can be translated to database and knowledge-base lan-
guages, such as SQL and KIF; and they can be translated to natural language
text and speech.

References

[Che96]

[EEM66]

[ELRS95]

[HMN92]

[KIF95]

[LDKSS97]

[NNGE92]

[MMS93]

[PN93]

[Sow84]

[Sow92]

[Sow99]

[TDS94]

M. Chein, (ed.), Revue d’Intelligence artificielle, Special Issue on Con-
ceptual Graphs, vol. 10, no. 1, 1996

P-W. Eklund, G. Ellis, G. Mann, (eds.), Conceptual Structures:
Knowledge Representation as Interlingua, Lecture Notes in AI 1115,
Springer-Verlag, Berlin, 1966

Ellis, G., Levinson, R. A., Rich, W., Sowa, J. F., Conceptual Struc-
tures: Applications, Implementation, and Theory, Lecture Notes in Al
954, Springer-Verlag, Berlin, 1995

Hansen, H. R., Miihlbacher, R., Neumann, G., Begriffsbasierte Inte-
gration von Systemanalysemethoden, Physica-Verlag, Heidelberg, Dis-
tributed by Springer-Verlag, 1992

ANSI ASC X3T2, Knowledge Interchange Format, available via http:
//logic.stanford.edu/kif/kif.html, March 1995

D. Lukose, H. Delugach, M. Keeler, L. Searle, J. F. Sowa, (eds.), Con-
ceptual Structures: Fulfilling Peirce’s Dream, Lecture Notes in AT 1257,
Springer-Verlag, Berlin, 1997

T. E. Nagle, J. A. Nagle, L. L. Gerholz, P. W. Eklund, (eds.), Concep-
tual Structures: Current Research and Practice, Ellis Horwood, New
York, 1992

G. W. Mineau, B. Moulin, J. F. Sowa, (eds.), Conceptual Graphs for
Knowledge Representation, Lecture Notes in AI 699, Springer-Verlag,
Berlin, 1993

H. D. Pfeiffer, T. E. Nagle, (eds.), Conceptual Structures: Theory and
Implementation, Lecture Notes in AI 754, Springer-Verlag, Berlin, 1993

Sowa, J. F., Conceptual Structures: Information Processing in Mind
and Machine, Addison-Wesley, Reading, MA, 1984

Sowa, J. F., Knowledge-Based Systems, Special Issue on Conceptual
Graphs, vol. 5, no. 3, 1992

Sowa, J. F., Knowledge Representation: Logical, Philosophical, and
Computational Foundations, PWS Publishing Co., Boston, MA, 1999

W.. M. Tepfenhart, J. P. Dick, J. F. Sowa, (eds.), Conceptual Struc-

Conceptual Graphs 311

tures: Current Practice, Lecture Notes in AI 835, Springer-Verlag, New
York, 1994

[Way92] E. C. Way, (ed.), Journal of Experimental and Theoretical Artificial
Intelligence (JETAI), Special Issue on Conceptual Graphs, vol. 4, no.
2, 1992

CHAPTER 14

GRAI Grid
Decisional Modelling

Guy Doumeingts, Bruno Vallespir, David Chen

Among formalisms used to model complex systems and organisations, the GRAI
Grid has a special status because it focuses on the decisional aspects of the man-
agement of systems. The GRALI grid defines the points where decisions are made
(decision centres) and the information relationships among these. Models built us-
ing the grid allow the analysis and design of how decisions are co-ordinated and
synchronised in the enterprise.

1 Introduction

Among formalisms used to model complex systems and organisations, the
GRAI Grid has a special status because it focuses on the decisional aspects
of the management of systems and it enables to build models at a high level
of globality, higher than most of other formalisms.

The GRAI Grid is a management-oriented representation of the enter-
prise. The GRAI Grid does not aim at the detailed modelling of informa-
tion processes, but puts into a prominent position the identification of those
points where decisions are made in order to manage a system. These points
are called decision centres. Decision centres are the locations where decisions
are made about the various objectives and goals that the system must reach
and about the means available to operate consistently with these objectives
and goals.

To manage a system, many decision centres operate concurrently, each
with its own dynamics reflecting the various time-scales and dynamic re-
quirements that management decisions need to address. The links existing
between decision centres are influenced by several concepts of control (situ-
ation in a hierarchy, temporal aspects, information handled, etc.). That is
why models built up by the/way of the GRAI Grid are in fact architectures of

314 Guy Doumeingts, Bruno Vallespir, David Chen

decision centres. These architectures remain at a high level of globality be-
cause the elementary building block of the GRAI Grid is the decision centre.
Other formalisms may be used for modelling the internal behaviour of deci-
sion centres, i.e. to describe how decisions are made; e.g. GRAI nets were
specifically designed for that purpose, however, other functional modelling
languages may also be suitable.

The GRAI Grid is a modelling tool with several concepts to model a
decisional system. These concepts are proposed within and are presented
consistently by the GRAI Model. The GRAI Model is a generic (reference
model) and the GRAI Grid enables its user to instantiate these concepts on
real individual cases (Figure 1).

GRAI Model:
reference model
\Generic concepts
Real > Model of
we
GRAI Grid:

modelling formalism

Figure 1: GRAI Model and GRAI Grid

The first part of this contribution will present the GRAI Model and the
associated concepts. The second part will focus on the GRAI Grid.

2 The GRAI Model

The two main domains contributing to the GRAI model are control theory
and the systems theory. We will show now what these contributions are.

2.1 From Control and Systems Theories Towards
Management Systems

Control theory describes an artificial system as a couple: the physical system
and the control system.

The physical system aims at the transformation of inputs into outputs.
E.g. in manufacturing raw materials are transformed into products. Re-
quirements about the physical system are directly linked to what the system
is expected to do." Thus the physical system is the key part of the whole
because it is-the physical system that supports the implementation of the

GRAI Grid 315

systems main aim. If the system is an enterprise then it is the physical
system that creates the products and services which are the reason for the
existence of the enterprise.

However, the physical system must be controlled to process consistently
with the objectives of the system. The control system ensures that this aim,
or objective is achieved by sending “orders” to the physical system. More-
over the control system communicates with the environment relating to the
systems aims, accepting orders, making commitments, and exchanging any
other information with the environment that is necessary to make decisions
about how to control the physical system to successfully achieve overall sys-
tem aims and objectives!. The control system acts (makes its decisions) by
using models of the physical system. However, for these models to reflect
reality to a sufficient degree the control system must receive information, or
feed-back, from the physical system (Figure 2).

Systems theory enables us to enrich this understanding of systems, taking
concepts into account, particularly relevant for our interest, such as those
below:

Information processing. The simplest systems are assumed to process
only physical flows, i.e. material and energy. However, when a system goes
higher in complexity, part of its activity is dedicated to the processing of
information necessary to control its own behaviour. Information processing
assumes the existence of a model based on which stimuli from the environment
or signals from the physical part of the system can be interpreted, and thus
become information.

Decision-making. Some systems appear to be able to choose their own
behaviour; in other words, given a situation to be in the position to carry out
any one of a set of activities and to choose one of them as the next course
of action, i.e. to decide on the system’s behaviour. Such systems appear
to follow an internal logic and can be characterised as “goal seeking.” The
system’s goal is usually not a simple objective function, but can be described
as a system of objectives®.

Memory. A system may be able to store and restore information for
control purposes. The structure and form of information to be stored is
related to what information will need to be re-used: since information is used

1Note that the distinction between decision system and physical system is less evident
when the system aims at the transformation of information (production of services gen-
erally speaking) than when it aims at the transformation of products (manufacturing).
In fact, when the service of the physical system involves information transformation, this
dichotomy remains valid: the physical system inputs and produces information (e.g. a de-
sign office receiving customer requirements and produces designs) and adds a value to this
flow of information while decision system processes information only in order to control
the physical system.

2Qperating under a system of objectives instead of a simple objective function nor-
mally means that there is no one single optimal behaviour, but there are several possible
behaviours which can satisfy to some degree the system of objectives.

316 Guy Doumeingts, Bruno Vallespir, David Chen

for decision making memory can be defined in relation to decision-making?.

Co-ordination. When a system is too complex, it must structure its
activities. Structuring of the system’s overall activity results in an activ-
ity decomposition and accordingly the overall system objective may be de-
composed into a system of objectives. The system can be considered as a
multi-objective, or multi-goal system. Individual constituent activities can
not be independently controlled so as to achieve their respective individual
objectives without regard to one another; they must be co-ordinated in order
for the entire system to meet overall system objectives.

Based on the above discussion the GRAI model describes the control
system as consisting of two parts: the information system and the decision
system (Figure 2). Note that the term information system is used here in a
more restrictive sense than it is generally understood in the IS discipline (see
also Section 2.4).

\S """""""" OX ?Ifllob.l ectives
N

p- DECISIONAL

; SYSTEM\
INFORMATIONAL | Information
SYSTEM about Order§
physical
AN system /
\‘ 7
.. -
Raw materials, __ oy~ .~ PHYSICAL| . Finished
components T SYSTEM products

Figure 2: The three sub-systems

2.2 Hierarchy, Co-ordination and Decomposition

Any complex system can be assumed to be hierarchycally controlled (see co-
ordination above). To support this assumption we must define more precisely
what is meant by a hierarchy. Two types of hierarchies are relevant for our
discussion: layers and echelons [MMT70] and are separately defined below.

2.2.1 Layers

Layers are related to the decision complexity. In this case, the hierarchy
supports a sequence of transformations and decisions. A layer is therefore a

3We consider the information needed for the control of the system; information that
is transformed by the physical system as part of its production activity is not considered
here.

GRAI Grid 317

step in a sequence of decision-making®* and the position of a layer related to
the other layers is the result of the logical form of the sequence. Figure 3
shows an example from the domain of production management.

In this example, we can see that a layer is characterized by the contents of
the decision made and the nature of the result. E.g. the task of calculating a
material requirements plan is different from the task of calculating a schedule.
The hierarchy is defined by a sequence: material requirements planning is
higher in the hierarchy than load planning because a material requirements
plan is needed as an input to load planning.

In Section 2.4, we shall come back to how the GRAI model takes layers
into account.

’—> MASTER PROD. SCHEDULE
Y
,_ﬂ MATERIAL REQ. PLANNING
Y
,——» LOAD PLANNING
Y

SCHEDULING

.

-
T

PROCESS

[77773

Figure 3: Layers in production management

A multi-echelon (or multi-tier) hierarchy corresponds to a decomposition
of the process and its dynamics. A system with any appreciable degree of
complexity has multiple functions or objectives which need to be controlled.
To ensure a harmonious process of the whole system, i.e. of the set of indi-
vidual controls, upper levels of control are needed. These levels are echelons.
Thus the multi-echelon hierarchy is the hierarchy of co-ordination (Figure 4).

A multi-echelon hierarchy is always based on the co-ordination princi-
ple of control: if a process P that is to be controlled is decomposed into
P, P,,...,P, and each such part is separately controlled by decision func-
tions D1, Da, ..., Dy, respectively from echelon level k, then there must be a
decision function D on level k+1 (or higher) which co-ordinates the decisions
taken by Dy, D, ..., D, . There are several different techniques to implement

4We are speaking about the “main stream” of decision-making, then the decomposition
in layers does not exclude possible iterations.

318 Guy Doumeingts, Bruno Vallespir, David Chen

~
/ .
/ by
Ve ~
7 .
Vs A Y
// * . Echelon3
// j/.-"' k:\\ ~
4 "‘_I' ‘\.~‘,~\ ~
e Pl BN t.
Decisionalunit -f ~ }---- * . Echelon2
- ~
Co-ordination (-, # LN way .
Information follow u et e s)
s P A AN Y t.
// ----- * . Echelen1
s h)
7 L A L J [N
I ~
L R e e b == - - - b P = = = - - - - - - - S I ~
Orders ™ Monitoring
2 L 4 2
— PROCESS -

Figure 4: Multi-echelon hierarchy: process decomposition and co-ordination

such co-ordination and there is an entire discipline, called co-ordination sci-
ence [MC94], that investigates the best models of co-ordination. It is possible
to design more than one multi-echelon control hierarchy for any given system,
e.g., because there is more than one way of decomposing processes (such as
decomposing P into Py, Ps, ..., P, above).

2.2.2 Echelons

A process can be decomposed based on various possible criteria such as

e resource structure (organizational decomposition), or

e steps® of transformation (functional decomposition).

Figure 5 shows an example of decomposition of a production® system based
on resource structure. In this example, the criteria of decomposition is the
organization of manufacturing resources: a factory is decomposed into shops,
which are decomposed into sections, which are further decomposed into work-
centres.

5Previously, we have presented layers as steps of transformation of information inside
the decision system. The steps we are speaking about here are related to the transformation
of products (physical system).

SProduction systems are systems which have an aim to produce products and, or services
for the external environment.

GRAI Grid 319

~
J ~
! ~
/ ~
Further Section
details
~
/s >~
/ ~
v ‘Workcentres

Figure 5: Organizational decomposition of a production system

The decomposition by steps of transformation (functional decomposition)
is based on the process of production (for instance, procurement, machine-
tooling, painting, etc.) without taking the organization into account (who
does what).

Within this framework, the time to process a task is a major character-
istic from a control point of view. Thus the functional decomposition of the
process supporting the definition of a multi-echelon hierarchy can be based
on the criteria of time to process each task. Figure 6 illustrates this. In this
figure the tasks processed by the physical system are decomposed into three
levels. The first level (n — 1) corresponds to a set of elementary tasks which
are assumed to have a time to process of value D,,_;. Based on the decom-
position presented in the figure, the tasks of the intermediary level (n) have
a time to process D, = 3 * D,_;. Finally, the upper level of decomposition
is composed of one task, the time to process of which is D,y = 6% D,_1.

The right part of the figure presents the multi-echelon hierarchy of control
related to this decomposition. There are three echelons, each of them being
characterised by a temporal concept: the horizon (part of the future taken
into account to make the decision). Then, echelon n — 1 is characterised by
a horizon equal to H,—; and so on. To ensure the complete controlability of
the whole system, an important rule says that the horizons must have a value
equal or more to the time to process of the task controlled by the echelon
(Hn-1 > Dp—1, and so on).

This concept is of paramount importance in the GRAI model and the
GRALI grid. We shall come back to this notion of horizon Section 3.1.

320 Guy Doumeingts, Bruno Vallespir, David Chen

2.2.3 Recursivity and Cognitive Limitation

The dichotomy control system / physical system is applicable to any level of
the decomposition. E.g., a shop (Figure 5) consists of a physical system (de-
scribed as a network of sections implicitely controlled) and a control system
(which can be described as a shop control function). Sections must in turn
also be understood as a physical system (a network of Workcentres) and a
control system (section control).

These considerations lead to a recursive model of the system where each
element of the decomposition has a control system and a physical system
which latter is a network of elements.

Cognitive limitation is another reason for using multi-echelon hierarchies
in the control of complex systems. Cognitive limitation can be expressed as
the quantity of information that a decision-maker is able to process in a unit
of time. Decisions must be taken in a limited amount of time (in accordance
with the dynamics of the system) therefore the amount of information that
can be considered to make the decision must also be limited. Above this
limitation, the decision-maker is overwhelmed by information.

The quantity of information handled by the decision-maker grows with
the level of detail and the size of the space, or scope of decision-making which
is the extent of the system meant to be influenced by the decision. E.g., in
the manufacturing domain this extent is defined in the space of resources,
products and time.

Roughly speaking, this limitation may be illustrated by assuming that it
is impossible to think in globality and in detail at the same time.

However, the complexity of manufacturing systems makes it necessary to
understand them at several levels from details to globality (from machine con-
trol to factory management). Thus, a decision-maker in charge of a detailed
level (e.g., control of a machine) uses information which is very detailed, and
the space of decision-making is very small (one machine, products operated

Echelon n+1
- .
i ! Do+l
0 Hn+1 2 Dnti
Echelon n COORDINATION I !
-~} ——
F 1 Dn
0 Hn>Dn
Echelon n-1 l | | l
{Dn-lj
0 Hn-12Dn-1

Figure 6: Multi-echelon hierarchy based on time to process (H = horizon)

GRAI Grid 321

on by this machine, and with a time span of one day or less). At the opposite
side, a decision-maker in charge of a global level (of the management of a
factory) uses global information with a space of decision-making very broad
(the factory, all products with a time span of one year or more). Intermediate
levels exist as well.

2.3 Functional Decomposition and Synchronization

Any concrete activity” is defined by a product (or a set of products®) and
a resource (or a set of resources®) (Figure 7). This is the definition of an
activity from a static point of view.

From a dynamic point of view, this definition is expanded in order to
take time into account; the triplet [Product, Resource, Time] must now be
considered. The dynamic definition of an activity is necessary to be able to
synchronise its execution with other activities.

Resource

v

Product —Pw ACTIVITY —P» Product

Figure 7: Definition of an activity from a static point of view: Activity = Product
x Resource

Figure 8 presents all the combinations of the above three dimensions.
Every area can be interpreted as describing some information about the ac-
tivity of the system. Let us consider the seven combinations in Figure 8a. T
is related only to time [Time]; in itself a list of time points (events) does not
provide any useful information on the system, therefore this area is concealed
(see Figure 8b).

The six remaining combinations are split into two parts as in Figure 8c.

e combinations where time is involved and

e combinations where time is not involved.

The three combinations within the first case are related to the domains of
production management. We find:

7A concrete activity is an occurence of an activity type, thus needs a resource to perform
it. An activity type of which the concrete activity is an occurence could be defined by
defining what input is transformed into what output.

8Input-output definitions.

91t-may-be-that-a-set-of resources-is-only able to carry out the activity if the set of
resources is in a given state, e.g. if it is configured in a certain manner. For this discussion
resource means a physical machinery or human in a state necessary to be able to perform
the activity.

322 Guy Doumeingts, Bruno Vallespir, David Chen

‘A) vt

NG
©)
‘ ‘ Management
‘ —
T

Figure 8: From the triplet Product, Resource, Time to the definition of domains
of production management

b)

[Product, Time]: To Manage Products which is related to deci-
sions about products (flows management, inventory control, purchas-
ing, etc.),

[Resource, Time]: To Manage Resources which is related to decisions
about resources (means, manpower, assignment, etc.) and

[Product, Resource, Time]: To Plan which is related to decisions deal-
ing with the transformation of products by resources. Its main purpose
is to manage the activity by synchronizing To Manage Products and
To Manage Resources.

The three combinations within the second case are related to the domains of
definition of products and resources. Thus they are related to technical data.
We find:

[Product]: Definition of products, bill-of-materials,
[Resource]: Definition of resources and

[Product, Resource]: Definition of Routes.

It is obvious that time is also involved in the three last domains because tech-
nical data evolve. However, the assumption here is that technical data evolve
more slowly than physical products de. Thus technical data are considered
constant related to the operational time base.

Figure 9 completes Figure 6 by taking these new concepts into account.

GRAI Grid 323

To manage To plan To manage
products resources

Echelon n+1 - . - &
SYNCHRONIZATION &

&

Echelon n =
Q

Q

Echelon n-1 % ©

Figure 9: Time hierarchy and domains of decision-making

2.4 Synthesis: The GRAI Model

All the notions presented in this paper are taken into account within the
GRAI model which is shown Figure 10.

2.4.1 Physical System

The physical system is presented as a set of organized resources the aim of
which is the addition of value to the flow of products by the transformation
of raw materials and information into final products.

2.4.2 Decision System

The decision system is composed of a set of decision centres which are the lo-
cations of decision-making for the management of the physical system. Map-
ping the domains of decision-making (Figure 8) to a hierarchical description
of the system allows us to define decision centres more precisely as sets of
decisions made on one hierarchical level and one domain of decision-making
(see below).

The hierarchical structure of the decision system is put in prominent
position. This hierarchy is defined consistently with the organization of the
physical system. The hierarchy is multi-echelon based and has a main purpose
of co-ordination. However, because the GRAI model aims at being a frame
for decisional models, it neither prescribes nor proposes anything about the
nature of decision made in the frame. Thus the GRAI model is fully open to
multi-layer approach which is generally relevant in production management
(as seen for instance Figure 3).

Production management system is assumed to mainly run periodically.
However, the lowest part runs in real-time. That it is why the GRAI model
set it apart by calling it operating system (but the GRAI Grid does not aim
at the modelling of the operating system).

324 Guy Doumeingts, Bruno Vallespir, David Chen

INFORMATION DECISION
SYSTEM

Decomposition
level

4 OPERATING \j \.

SYSTEM

/" PHYSICAL
SYSTEM

Raw materials, 4 / S - i A
Components Z g _.

- K

ﬂlnfmmaﬁm filtering and aggregation

Products

Figure 10: GRAI model

2.4.3 Information System

The information system is in charge of communication within the system and
between the system and the environment, it also serves as the memory of the
system and prepares information for the decision system.

Similarly to the decision system, the GRAI model does not propose any
particular structure for the information system. However, it puts emphasis
on the fact that the global structure of the information system is constrained
by the structure of the decision system. However, invariably two categories of

GRAI Grid 325

important functions: filtering and aggregation are emphasised in the GRAI
model, filtering functions are related to domains of decisions (what infor-
mation is to be selectively presented for individual decision centres) and ag-
gregation functions are those which summarise information flowing from the
buttom to the top of the information system.

More precisely, the information system must enable each level of the hi-
erarchy to maintain a relevant model of the physical system. Information
must be aggregated at every level based on a trade-off between detail and
size which is exploitable (constrained by the earlier discussed principle of
cognitive limitation).

3 The GRAI Grid

Figure 11 demonstrates the main concepts appearing in a GRAI grid. These
concepts are now detailed.

3.1 Levels

Levels of the GRAI grid correspond to the echelons presented in the previous
section. Each level is defined by a horizon and a period.

3.1.1 Horizon

A horizon is the part of the future taken into account by a decision. E.g.,
when a plan is made for three months, the horizon is three months. The
notion of horizon is closely related to the concept of planning. In this way this
notion is also very closed to the notion of terms (long term, short term, ...)
but is more precise because a horizon is quantified. In industrial production
systems and because of control considerations already discussed in Section
2.2 and Figure 6, horizons are directly valuated in relation with the customer
order lead time, the material requirements cycle times, the manufacturing
cycle etc.

3.1.2 Period

The notion of period is closely related to the concept of control and adjust-
ment. When, based on an objective, a decision has been made to carry out
some activity or activities during a subsequent horizon, the execution of these
activities needs to be monitored. The intermediary results obtained need to
be measured with respect to the objective before this activity is completely
finished and the horizon ran out. If the measurements show that there is
a deviation with reference to the objective, adjustments must be made. A
period is the time that passes after a| decision when this decision must be
re-evaluated. E.g., a three months plan may be re-evaluated and decided
upon every two weeks, i.e.; the horizon is three months and the period is two

326 Guy Doumeingts, Bruno Vallespir, David Chen

/[NFORMAT]ON T ——
FUNCTIONS
TN

External To Manage To Pl ToManage [~ Internal
Information Products o Han Resources Information
H-— || . -
A Peme — = <77~ ST 2 DECISIONFRAMES
HORIZONS - ﬁ'_ B n - _I'I—_
\} {} {} - {
NG S -~ Y
LEVELS ~x_ e et ————- -
PR T e R e | m——
B / 1l f
PERIODS vV v
\K H=— N S
. ——— T - T
~ PPz } e S, ——
D il R

DECISION CENTRES INFORMATION FLOWS
Figure 11: Concepts of the GRAI Grid

weeks. The concept of period allows the manager to take into account the
changes in the environment of the decision system. This change comes from
the internal behaviour of the system (disturbances, machine breakdowns, ...)
and from outside (new customers orders arrive, problems arise related to
providers, ...).

The value (length) of a period is determined as the result of trade-off
between stability and reactiveness: if the period is too short, the system will
not be stable enough; if it is too long, reactiveness is too weak. A period
is directly linked to the frequency of the occurence of events relevant to the
level considered. Although it is not optimal to react with changed decisions
to every single relevant event, the shorter the time between these events the
more frequently will it be necessary to re-evaluate the decisions which are
influenced by these events. This rule can be used as guide for designers of
the decision system.

An echelon-hierarchy is represented as rows of the grid, using these tem-
poral criteria. Further consistency criteria are a) an echelon with a longer
period must be considered to be higher in the hierarchy, and b) if two levels
have the same period, the level with the longer horizon is higher.

3.2 Functions

Decision-making tasks are classified into functions depending on the basic
items they handle (Products, Resources and Time). The three domains of
decision (called functions within the GRAI Grid) were previously described
(Figure 8¢) and are fundamental for the management of any kind of system.

When describing the management functions of an enterprise these func-

GRAI Grid 327

tions are broken down into separate functional areas either by functional
decomposition or by organizational partitioning as described in Section 2.2.

Here is a sample list of typical functions which would appear as separate
columns in the grid. Note that each of the functions below may or may not
have individual product and resource management components.

o Decisions about engineering: Function to manage engineering

To manage the engineering task means to manage the product of the en-
gineering department and to manage engineering resources. Depending
on whether the enterprise engages in repetitive or one of a kind pro-
duction the relative importance of the engineering management (both a
product and resource) is different — with one of a kind production being
in the need of more sophisticated engineering management functions.

¢ Decisions about maintenance: Function to manage maintenance

Maintenance is carried out, e.g. by a maintenance workshop, which
is a kind of service enterprise that gets its orders from the factory
rather than from the outside environment. Clearly, from the point
of view of the maintenance workshop the machines to be maintained
are products. Managing maintenance from the maintenance workshop
point of view is a product management task. The human resource
that does the maintenance task and the necessary equipment needs
to be managed as well, which is a resource management task of the
maintenance workshop.

From the point of view of the factory the management of machine
maintenance is a separate resource management task, e.g. it needs to
be planned when and which machine will be available (or not available
because it is scheduled for maintenance).

e Decisions about quality control: Function to manage quality control

Quality management is a kind of product management, deciding on the
quality control tasks needed at any stage of the product transforma-
tion. It may or may not need separate resource management for quality
control.

o Decisions about delivery: Function to manage delivery

Delivery is one function out of the many in the product transforma-
tion process. Delivery can be separately managed and therefore deliv-
ery management can be decomposed into product management (which
product to deliver and when), resource management (which delivery
resource, such as trucks, people should be available, and when) as well
as delivery planning and scheduling (which delivery is to be done by
which delivery resource at what time).

Delivery management may also be considered as part of the overall man-
agement.of a factory, whereupon the product and resource management

328 Guy Doumeingts, Bruno Vallespir, David Chen

and planning and scheduling tasks of management include delivery as
well as all other transformation functions. The only difference between
manufacturing and delivering a part is that manufacturing changes the
shape while delivery changes the physical co-ordinates (space) of the
part.

3.3 Decision Centres

A decision centre is defined as the set of decisions made in one level and
belonging to one decision function.

3.4 Information

The decision system (often called the production management system) re-
ceives information internally, mainly from the physical system and from out-
side the system.

3.4.1 Internal Information

The column on the right side of the grid is used to describe the information!®
generally coming from the physical system. This column identifies the feed-
back information needed for control (see upward pointing arrows in Figure
3). Based on this information the recipient decision centres can keep up to
date their respective models of the physical system.

3.4.2 External Information

The column on the left is related to information coming from outside the
system. This information corresponds to the fact that a production system
is open to its environment. Most of the time, the main part of external
information are of commercial nature (orders, forecasts, etc.).

On the level of the GRAI grid the identification of internal and external
information is qualitative in nature; commonly used data modelling languages
are readily available to develop the corresponding data descriptions in form
of database schematall.

3.4.3 Information Flows

Decision centres receive information through information flows. These flows
may be emitted by another decision centre, by an entity outside the pro-
duction system (external information) or by the physical system (internal
information). Because the GRAI Grid does not aim at a detailed model of

1901 the source.of information.

H1n case the information is not received through a database system, the precise descrip-
tion may be in any other form that pragmatically specifies the meaning of the information
identified.

GRAI Grid 329

the production management system, only major information flows are pre-
sented (those needed to understand the overall operation of the system).
Information flows are represented in the GRAI Grid by single arrows.

3.5 Decision Frames

The concept of decision frame is of paramount importance in a management-
oriented representation of the enterprises control. The global structure of
management is represented by decision centres and the decision frames linking
them.

A decision frame is a complex information entity which can be one of two
types: structural decision frame and operational decision frame. Structural
decision frames are qualitative in nature, while operational decision frames
are quantitative.

3.5.1 Structural Decision Frame

A structural decision frame describes for a decision centre the frame within
which it can make decision. This frame is structural because it cannot be
modified by a decision made within the model. To avoid conflicts, a decision
centre is under the influence of only one structural decision frame. Structural
decision frames are represented in the GRAI Grid by double arrows.

A structural decision frame is composed of:

e one or more objectives,
e one or more decision variables,

e zero or more criteria and

e zero or more structural constraints.

Objectives indicate which types of performances are targeted. These per-
formances may be the production costs, the delivery lead time, the level of
quality, etc. Objectives are needed everywhere a decision is made. Global
objectives refer to the entire production system and, according to the prin-
ciple of co-ordination are consistently detailed to give local objectives to all
decision centres!?.

Decision variables are the items which the decision centre can act on to
make its decisions in order to allow the decision centre to reach its objectives.
E.g., for scheduling of workers working hours a decision variable can be the
number of extra work hours, i.e. the decision frame of scheduling declares
that scheduling decisions may decide upon the value of extra working hours

12Whether,the docal;objectives,were,actually derived from global objectives or the global
objective was derived from local objectives by way of some form of aggregation or gen-
eralisation is immaterial; as long as the global objective is valid, the local objectives are
feasible, and the two sets are consistent.

330 Guy Doumeingts, Bruno Vallespir, David Chen

in order to reach the objective of scheduling. A decision centre may act upon
one or more decision variables through determining their respective values.
In other words decisions are made in a decision space the dimension of which
is the number of decision variables.

If several solutions can be found to reach the objectives in the space of
decision-making then criteria must be used to discriminate these solutions.

Constraints are the limitations on possible values of decision variables.
Structural constraints describe limitations which are not decided by the pro-
duction management system itself: they come as given and can not be trans-
gressed unless the production system itself or its environment is changed, e.g.
resource limits in terms of capabilities and capacities, regulations, etc.

3.5.2 Operational Decision Frame

The use of a structural decision frame is not sufficient from an operational
point of view. A decision centre receives an operational decision frame
through its structural decision frame. The operational decision frame is quan-
titative and changes each time the decision centre that determines this frame
makes a decision. A decision centre receives only one operational decision
frame at a time.

An operational decision frame consists of:

e the valuation of the objectives and
e one or several operational constraints.

In a structural decision frame objectives were only qualitative, not valuated.
An operational decision frame provides actual values for the qualitatively
defined parts of a structural decision frame.

Operational constraints aim at a limitation of the space of decision-making
for the decision centre receiving the frame. This limitation applies to the
decision variables in the structural decision frame of the same decision centre.
Operational constraints are defined in the same form as structural constraints.

3.5.3 Decision Variables and Constraints

Decision constraints limit the freedom of a decision centre to select any ar-
bitrary value for its decision variables (Figure 12).

Because structural constraints represent limitations that must not be
transgressed by decisions, the space of freedom defined by operational con-
straints must be contained in the space of freedom defined by structural
constraints!3.

1379 avoid Figure 12 to be too complex, structural constraints are not represented.
However, as noted above, the space defined by structural constraints must contain at least
the space defined by operational constraints.

GRAI Grid 331

Decision
varinbie 2 Italic: structural decision frame,
M2 | T YT TG | i e,
l?ﬁ?#f’ﬁﬁﬁﬁﬁ?l Bold: resulting decision.
G55
i
l%%%’f?’ %ﬁjéﬁl Val (VD2)
i, S
%
oo | — (TFRR TSI _
] | Decision
: variable 1

Figure 12: Space with two decision variables and two operational constraints

3.6 A Complete Environment of a Decision Centre

Two more concepts are needed to define a complete environment of decision-
making for a decision centre.

3.6.1 Commands

The decision frame contains all the elements indicating to a decision centre
in which frame (partially how) it can decide. Commands represent what must
be processed. A decision centre interprets commands in the context given by
the decision frames.

A decision centre may receive one or more commands and may emit one
or several ones as well. In the GRAI Grid, a command is represented as a
information flow or is implicit within a decision frame.

A command may come from another decision centre or from outside the
system, e.g. an order (sent by a customer) is a command.

In the same way, a command may be sent to a resource. Sending a
command to a resource is the way for the management system to control its
physical system.

3.6.2 Performance Indicators, Observability and Controllability

A performance indicator is an aggregated piece of information allowing the
comparison of the performance of the system to the systems objectives. A
performance indicator may be defined by its name, a value domain or dimen-
sion, and a procedure that describes how its value can be calculated.

332 Guy Doumeingts, Bruno Vallespir, David Chen

Performance indicators have a special status among aggregate feedback
information because they are defined for a specific decision centre consistent
with the objectives and decision variables of that decision centre.

Performance indicators must be consistent with objectives because it is
necessary to compare the performances targeted (objectives) with the per-
formances reached (indicator). This is the criterion of observability.

Performance indicators must also be consistent with decision variables
meaning that the manipulation of the values of decision variables must have
an effect on the performance monitored. This is the criterion of controllabil-

ity.

3.6.3 Environment of a Decision Centre

Using the above concepts it is possible to define a complete decision-making
environment (i.e. the set of all inputs) for each decision centre of the decision
system. Table 1 summarizes these concepts. Note that on the output side
the centres decision variables are valuated and are received as parts of the
operational frames (valuated objectives and constraints) and commands of
lower level decision centres.

STRUCTURAL OPERATIONAL
Objective (type) Objective (value)

Decision variable (type) /

Structural constraint (value) Operational constraint (value)
Criteria (type) /

Command (type) Command (value)

Performance indicator (type) Performance indicator (value)

Table 1: Environment (or input) of a decision centre (Legend: type means qual-
itatively defined, value means quantitatively defined, / means not appli-
cable)

Figure 13 shows a simple example of a GRAI grid'4. The grid is the result
of an as-is analysis and could be used to uncover various problems with the
present production management system.

3.7 Example

This section presents the use of the GRAI Grid in an industrial case study.
The company studied manufactures industrial butterfly floodgates. The sub-
ject of the study was an assembly shop and warehouse (for more detail con-
cerning this study, see [DVM95a]). The study aimed at re-engineering the
shop in order to meet the following objectives:

4Note that the function which was called to deliver by the analysis team is in fact a
delivery planning function (of the To plan type).

GRAI Grid 333

FCTS| EXTERNAL | TOMANAGE PRODUCTS TOPLAN TOMANAGE | 1 e INTERNAL
H/P INFORMATION TO PURCHASE TO SUPPLY{MANUFACTURING RESOURCES INFORMATION
1 year -to look for = I " equipment
y Sales forecast suppliers to fix the, budget J:(> &
1 year per family -to negotiate supplying employees
« PEED ﬂ program
Sales forecast {/ - '\”} - v - _\]|7
4 months fproduct . To do load
To adjust Toadjust | pagper production leveling
2 months Backlog markets SUPPYINg schedule /month / shop
of orders L - ﬂ
b
V) Stk
1.5 month Load planning L To al;am the -EP.
—t# employees
- Manufactured
1 week tityto | per team and pe
il Qﬂﬂ:: ty section components
V' 11
1 week To supply v - sm{
raw material Assembly -B b
1 week and - Bought
components components
1 week Assembly| Manufe
Urgent . planning | scheduling Ordering
1 day deliveries Tracking raay | per | planning
/ team hil

Figure 13: Example of a GRAI Grid (as-is analysis)

Regarding the customers:
o meet the strategic requirements in terms of manufacturing volume,
e respect delivery due dates,
e increase reliability of delivery lead times,
¢ improve load and product flexibility, and
e monitor and improve quality.
Regarding the factory organization:
o decrease inventories,
e decrease production costs, and
e enrich operating and management tasks, for employee motivation.

The objective of the use of the GRAI Grid was to identify the elements and
organization of the production system, and to present a model understand-
able by various users. This task had to allow existing inconsistencies to be
brought to the fore and their origin to be identified. Finally, the aim was to
allow the participants in the study to understand the system and to know its
specific featurcs.

334 Guy Doumeingts, Bruno Vallespir, David Chen

: To Mamage Products Ta
Fets External Tnternal
" ToPlaa To Mamage Resources Coatral
HE Thion Parcharing Inveniocies Quality o
Definition of Evolution of the
H=]
i * besmmual —P samber of Suppliens_| Marksting
P=3 months : ohhdﬁ-f-m employess qaalil. dans
- 4—4 E
‘ Components
He= 6 manths Nussber of + » -‘\ﬁz ;w E
roquasts for definition i review + trends.
P= | months dediverylesd T———————— ™ inew objective #
time 1 each mosth) L’
- r r
- P T = =8 V
Teq. plinsing
H- 5 months il
. et u o~ o,
P= 1 months Real managed capacitics (i necded)
-
J calculstion A I
’ s Recard of orders fo
Parchasiog licrs
oy !
L
He= & weeks 2
(including Inventorics Following of
Pe1day snangidon] contral moethly lead per
ones) Orders 1o suppliers ~— section and of
A Parshasing realized losd (in FF)
plamsing
S | ‘
=]
-t Load with
Ho=3 wesks 3 w"“ -~ m‘“"h"' v infinie capacity
Ovders (lnchoding A = Msapows:
Puldey axceptional ones) allocation
Schoduling
Special for activators
bsncs p |
H= 1 week Scheduling ‘
for - —
P=1day assembly
e J]:Il —
H=2 day Ovlors |
v Ascably } Lavestory
Pe0@®T Mechanies+ Routg | s Tt recard
puinting dispatch. | ping

Figure 14: The assembly management system (GRAI grid) - as-is situation

A grid representing the current assembly management system was built
(Figure 14). From this grid, the most important inconsistencies were identi-
fied, as well as the consequences of these for the production. What follows
is a sample analysis of the inconsistencies which were discovered in the three
main types of management functions “To plan,” “To manage products” and
“To manage resources.”® Such analysis can be carried out by a production
management expert who can compare known production management with
the explicit model of present production management as brought to light by
the model.

Long-term / To plan. Planning is only expressed in terms of money
(French Francs [FF]) and is based on orders. There is therefore no Master
Production Schedule taking manufacturing and procurement lead times into
account. Thus, it is not possible to define manufacturing parameters and
procurement rules over the long term. There is no criterion for processing
exceptional orders or project-like orders which may run over several months.

15Note that for the reader of this handbook it is harder to interpret this grid than for
those involved in the study, since the grid utilises the terminology commonly shared in the
studied shop and is interpreted in that context.

GRAI Grid 335

Long-term / To manage products. Incoming goods or products
should normally be procured on the basis of requirements planning, com-
ponent consumption review, or inventory control rules. Planning expressed
in terms of money is not suitable for the calculation of a procurement plan
(see Long-term / Plan). Thus, production objectives and procurement man-
agement are not consistent, leading to both stockouts and inventory inflation.

Long-term / To manage resources. Because of the long—term plan
being expressed in terms of money there is no real long-term resource man-
agement. Especially, the relationship between load and capacity cannot be
taken into account by resource management.

Middle-term / To plan. There is no load planning. The acceptance
of an order with a lead time less than the standard lead time is based only
on the availability of components. Thus the main aspect of dispatching is
based on a rigid sequencing rule, and resources shared by several routes do
not know their future loads.

Middle-term / To manage products. Because of the lack of load
planning it is impossible to adjust the procurement plan. Thus the inventory
is sizeable but inappropriate for the needs of the assembly unit.

Middle-term / To manage resources. Because of the lack of load
planning it is impossible to adjust capacities, mainly the allocation of oper-
ators.

Short-term / To plan. Scheduling is not really planned because it is
based only on a so-called infinite capacity calculation. The only real planning
is carried out by dispatching. Thus there is no synchronization. This leads
to stockouts and inventory inflation. The scheduling decision centre receives
an objective expressed in terms of money and as a monthly forecast. This is
inappropriate for the short-term level and the objective cannot be achieved.

Short-term / To manage products. Because of the inappropriateness
of the long- and middle-term product management, routing is triggered two
weeks before real requirements. This leads to increased Work-In-Process,
information flows and processing.

Short-term / To manage resources. Because of the status of the
middle-term resource management the optimization of the use of resources is
not possible.

4 Conclusion

The GRAI Grid was used in many studies, in SMEs and large companies
as well, in several business domains. Generally, the GRAI Grid is not used
alone but as one of the modelling formalisms brought into play within GIM
(GRAI Integrated Methodology) [DVZC92].

The success of the GRAT Grid may be explained through two main points.
First, the GRAI Grid is operationaly very practical because it gives a com-
prehensive, one-page model generally sufficient to explain the structure of

336 Guy Doumeingts, Bruno Vallespir, David Chen

the management system to the executives of a company. Second, the GRAI
Grid is management-oriented and enables the understanding of the produc-
tion system in terms of performances (related to the notion of objectives) and
integration (related to the notion of co-ordination and synchronisation).

It is considered particularly that the decomposition and transmitting of
objectives is a key point for integration. Integration is not only related to the
physical connection of machines and computers, but also to the coherence of
objectives of the various decision-making activities. Without coherence of
objectives, the physical connection of machines and communication network
cannot improve the performance of a manufacturing system.

The main items that make up the frames of decision making (objec-
tives, decision variables, constraints) are primarily determined by the hi-
erarchy of the decision system. These items are decomposed in a consis-
tent way by descending the hierarchy of the system. E.g., suppose that the
global objectives of a manufacturing system can be described by a triplet
< Costs, Quality, Leadtimes >, i.e. cost objectives, quality objectives and
lead time objectives. These objectives are the objectives of the highest level
of the hierarchy. The objectives of lower levels are different but must be con-
sistent with these three objectives. Conversely the performance of a lower
level decision centre contributes to the global performance of the system.

The GRAI Grid enables its user to analyse the consistency of the decision
system and helps in designing improved systems of management. Note that a
number of analysis rules exist which can be applied to GRAI grids to uncover
common problems of co-ordination and synchronisation thus improving the
level of integration in the enterprise.

References

[CVD96] Chen, D., Vallespir, B., Doumeingts, G., GIM: GRAI Integrated
Methodology, a methodology to design and specify integrated man-
ufacturing systems, in: Proceedings of ASI’96, Annual Conference of
ICIMS-NOE, Life Cycle Approaches to Production Systems, Toulouse,
France, 1996, 265-272

[Dou84] Doumeingts, G., Méthode GRAI: méthode de conception des systémes
en productique, Automatic Control, Université de Bordeaux I, 1984

[DVZC92] Doumeingts, G., Vallespir, B., Zanettin, M., Chen, D., GIM: GRAI
Integrated Methododology, a methodology for designing CIM systems,
A technical report of the IFAC/IFIP Task Force on Architectures For
Integrating Manufacturing Activities And Enterprises, GRAI/LAP,
Version 1.0, 1992

[DVM95a] Doumeingts, G., Vallespir, B., Marcotte, F., A Proposal for an In-
tegrated Model of Manufacturing System: Application to the re-

[DVC95b]

[DV95¢]

[MC94]

[Mar95]

[MMT70]

[Moi84]

[Vall90]

[VMD93]

GRAI Grid 337

engineering of an Assembly Shop, Control Engineering Practice, Spe-
cial Section on Models for Management and Control 3(1), 1995, 59-67

Doumeingts, G., Vallespir, B., Chen, D., Methologies for Designing
CIM systems — A survey, Computers in Industry, Special Issue on
CIM in the Extended Enterprise, Amsterdam, 25 (3) 1995, 263-280

Doumeingts, G., Vallespir, B., A Methodology Supporting Design and
Implementation of CIM Systems including Economic Evaluation, in:
P. Brandimarte, A. Villa (eds.), Optimization Models and Concepts
in Production Management, 1995, 307-331

Malone, T. W., Crowston, K., The interdisciplinary study of coordi-
nation, ACM Computing Surveys 26 (1), 1994, 87-119

Marcotte, F., Contribution a la modélisation des systémes de pro-
duction: extension du modéle GRAI, PhD Thesis, CIM, Université
Bordeaux I, 1995

Mesarovic, M. D., Macko, D., Takahara, Y., Theory of hierarchical,
multilevel, systems, Academic Press, New York and London, 1970

Le Moigne, J.-L., La théorie du systéme général, Presses Universitaires
de France, collection Systémes-Décisions, Paris, 1984

Vallespir, B., Hierarchical aspect of production management systers,
associated modelling tools and architecture, in: Proceedings of the 1st
International Conference on Automation Technology, Taipei, Taiwan,
1990

Vallespir, B., Merle, C., Doumeingts, G., GIM: a technico-economic
methodology to design manufacturing systems, Control Engineering
Practice, Oxford 1 (6), 1993, 1031-1038

CHAPTER 15

SOM
Modeling of Business Systems

Otto K. Ferstl, Elmar J. Sinz

SOM is an object-oriented methodology for comprehensive and integrated modeling
of business systems. It is based on a framework consisting of the layers business
plan, business process model, and business application system as well as views on
these layers focusing on specific aspects. This contribution presents the SOM lan-
guage for business process modeling and shows how business application systems
can be linked to business process models. The language uses concepts of systems
theory and is based on the notions of business object, business transaction, task,
event, and service. Business objects are coordinated by feedback control or by ne-
gotiation. Decomposition rules allow a stepwise refinement of a business process
model. The contribution includes a detailed example to illustrate the methodology.

1 Introduction

SOM is a methodology for modeling business systems [FS90, FS91, FS95].
The abbreviation means ‘Semantic Object Model’, expressing that the SOM
methodology is fully object-oriented and designed to capture business se-
mantics explicitly. General basis of the SOM methodology are concepts of
systems theory.

SOM supports the core phases of business engineering, such as analysis,
design, and redesign of a business system. A business system is an open,
goaloriented, sociotechnical system. Thus the analysis of a business system
focuses on the interaction with its environment, goal pursuing business pro-
cesses, and resources. Moreover, the dynamic behavior of a business system
requires investigation of properties such as stability, flexibility, and complex-
ity [Bah92].

The backbone of the SOM methodology is an enterprise architecture
which uses different perspectives on|a business system via a set of mod-
els. These models are grouped into three model layers referring to a business

340 Otto K. Ferstl, Elmar J. Sinz

plan, business process models and resource models. Each layer describes the
business system as a whole, but with respect to the specific perspective on
the model. In order to reduce complexity, each model layer is subdivided
into several views, each focusing on specific aspects of a model layer. On
the meta level, the modeling language of each layer is defined by:a meta
model and derivated view definitions. Thus the enterprise architecture pro-
vides a modeling framework which helps to define specific semantics and to
manage complexity of the model [Sin97]. In this contribution we outline the
methodological framework of SOM as well as its modeling language.

2 Characteristics of Business Systems

In terms of systems theory a business system is an open, goaloriented, so-
ciotechnical system [FS98]. It is open because it interacts with customers,
suppliers, and other business partners transferring goods and services. The
business system and its goods/services are part of a value chain which in gen-
eral comprises several consecutive business systems. A corresponding flow of
finance runs opposite the flow of goods and services.

The behavior of a business system is aimed at business goals and objec-
tives. Goals specify the goods and services to be provided by the system.
Objectives (e.g. profit and turnover) are defined measurable levels against
which business performance can be measured.

Actors of a business system are humans and machines. Human actors are
persons in different roles. Machine actors in general are plants, production
machines, vehicles, computer systems etc. SOM pays specific attention to ap-
plication systems which are the machine actors of the information processing
subsystem of a business system (information system). An application system
consists of computer and communication systems running application soft-
ware. The degree of automation of an information system is the ratio of tasks
carried out by application systems to all tasks of the information system.

The notion of a business system as open and goal-oriented reflects a per-
spective from outside the system. An inside perspective shows a distributed
system of autonomous, loosely coupled components which cooperate in pur-
suing the systems goals and objectives. The autonomous components are
business processes [FS93, FS95] which produce goods and services and de-
liver them to other business processes.

The cooperation of business processes is coordinated primarily through
process specific objectives which are derived from the overall objectives of a
business system. This is done by the business systems management. Within
the degrees of freedom defined by the process specific objectives a secondary
coordination is done by negotiation between the business processes.

Inside a business process there are components which also cooperate and
have to be coordinated. This [coordination is done by an intra-process man-
agement which controls the activities of the process components by sending

SOM 341

instructions to them and supervising their behavior. In contrast to the coordi-
nation between business processes, the components inside a business process
are guided closely by the process management.

The components of a business process as well as the business processes
as a whole take care of functions which are essential to every business sys-
tem. The following classification of these functions helps to identify business
processes and their components: (1) input-output-function to implement the
characteristic of openness, e.g. a production system, (2) supply function to
provide material resources and energy, (3) maintenance function to keep the
system running, (4) sensory function to register disturbances or defects inside
or outside the system, (5) managing function to coordinate the subsystems
[Bee81].

3 Architecture of Business Systems

The SOM methodology utilizes an enterprise architecture which consists of
three layers (Figure 1) [FS95]:

Model Layer Perspective View Specification
1st layer from outside
a business system
2nd layer from inside a ';:’:22? ;Zf;za::::ts:::::a
business system model

specification of schema of task

3rd layer from the _ classes
resources / 5T g "
ofabus- / £ § g2 § £ schema of concep-
ness c & £ § 8 1 tual classes
system Sa 22w 82
656 acn £ES

Figure 1: Enterprise architecture [FS95]

¢ Enterprise plan: The enterprise plan constitutes a perspective from
outside a business system. It focuses on the global task and the re-
sources of the business system. The specification of the global task
includes the universe of discourse, the goals and objectives to be pur-
sued, as well as the goods and services to be delivered. Requirements
on resources are derived from the global task and have to be cross-
checked to the capabilities of available resources. So both global task
and resources determine themselves mutually.

342 Otto K. Ferstl, Elmar J. Sinz

A first evaluation of an enterprise plan is done by an analysis of chances
and risks from a perspective outside the business system, and an ad-
ditional analysis of the strengths and weaknesses of the business sys-
tem from an inside perspective. Strategies on products and markets,
strategic actions, constraints, and rules serve as guidelines to realize an
enterprise plan.

¢ Business process model: The business process model constitutes a
perspective from inside a business system. It specifies main processes
and service processes. Main processes contribute directly to the goals
of the business system, service processes provide their outcome to main
processes or other service processes. The relationships between busi-
ness processes follow the client/server concept. A client process engages
other processes for delivering the required service. Business processes
establish a distributed system of autonomous components. They co-
operate in pursuing joint objectives which are derived from the overall
objectives of a business system.

e Specification of resources: In general, personnel, application sys-
tems as well as machines and plants are resources for carrying out the
tasks of business processes. In the following we focus on information
processing tasks and therefore omit machines and plants. Tasks of the
information system are assigned to persons or to application systems
classifying a task as non-automated or fully-automated. A task partly-
automated has to be split into sub-tasks which are non-automated or
fully-automated. The assignment of persons or application systems is
aimed at optimal synergy of person-computer cooperation.

The different layers of the enterprise architecture help to build business sys-
tems in a flexible and manageable way. They cover specific aspects of an
overall model which are outside perspective (enterprise plan), inside per-
spective (business process model), and resources. The relationships between
the layers are specified explicitly. Each layer establishes a distributed sys-
tem of autonomous, loosely coupled components. In contrast to a single-
layered monolithic model, the multi-layered system of three models allows
local changes without affecting the overall architecture. For example, it is
possible to improve a business process model (inside perspective) yet retain-
ing goals and objectives (outside perspective), or to replace actors of one type
by other ones.

Following an outside-in approach it is advisable to build the three model
layers top down the enterprise architecture. But the architecture does not
force this direction. There may be good reasons to depart from this guideline
€.g.'when analyzing existing business'systems. Here it is sometimes difficult
to find an elaborated enterprise plan, so modeling starts at the business
process layer focusing on the inside perspective. The enterprise plan may be

SOM 343

completed when the other layers are fully understood. In each case effects
on other layers have to be balanced and approved.

The enterprise architecture implies that functionality and architecture of
the business application systems are derived from the business process model.
The relationships between both layers are formalized to a high degree. Design
decisions and results at the business process layer are translated automati-
cally into the layer of application systems. The architecture of the layer of
application systems uses the concept of object-integration to combine con-
ceptual and task classes [Fer92]. Alternatively it is possible to link a business
process model to an existing, traditional application system which follows
the traditional concepts of function integration or data integration. In this
case tasks to be automated are linked to functional units of the application
system.

4 Language for Business Process Modeling

In this section we define the language for business process models. The
language is specified by a meta model (Section 4.1) and a set of decomposition
rules (Section 4.2). The section is completed by an example, introducing the
business process distribution of a trading company (Section 4.3).

4.1 Meta Model for Business Process Models

The meta model for business process modeling shows notions and relation-
ships between notions (Figure 2). It is specified as a binary entity-relationship
schema. Relationships between notions are associated with a role name as
well as two cardinalities to denote how many instances of the one notion
can be connected to one instance of the other notion at least and at most.
Within the meta model the notions are represented by entities. Each entity
also contains the symbols used for representation within a business process
model.

As introduced in Section 3, a business process model specifies a set of busi-
ness processes with client/server relationships among each other. A business
process pursues its own goals and objectives which are prescribed and tuned
by the management of a business system. Cooperation between processes is
a matter of negotiation. The term ‘business process’ denotes a compound
building block within a business process model and therefore it is not a basic
notion of the language. A business process consists of at least one business
object and one or more business transactions.

At the initial level of a business process model, a business object (object
in short) produces goods and services and delivers them to customer busi-
ness processes. Each business object belongs exclusively to a business process
of the universe of discourse or to the environment of a business system. A
business transaction (transaction in short) transmits a good or service to a

344 Otto K. Ferstl, Elmar J. Sinz

task-event schema '

. TR
Event O

| *

delivers

|~ Environment © | Negotiation Principle:
Universe of Discoursel] Initiating Ti
— Contracting Tc
!—— Enforcing Te
| Feedback Control Principle:
| +— Control Tr
Linteraction schema ___—_ FeedbackTf

Figure 2: Meta Model for Business Process Models [FS95]

customer business process or receives a good or service from a supplier busi-
ness process. A transaction connecting different business processes belongs
to both processes.

A business process may be refined using the decomposition rules given
below. At a more detailed level of a business process model, each business
object appears in one of two different roles: an operational object contributes
directly to producing and delivering of a good/service while a management
object contributes to managing one or more operational objects using mes-
sages. A business transaction transmits a good/service or a message between
two operational objects or a message between two management objects or
between a management object and an operational object.

A business transaction connects two business objects. Conversely, a busi-
ness object is connected with one to many (*) in-going or out-going business
transactions. From a structural viewpoint a transaction denotes an inter-
action channel forwarding goods, services, or messages. From a behavioral
viewpoint a transaction means an event which is associated with the trans-
mission of a specific good, a service package, or a message.

A business object comprises one to many tasks, each of them driving one
to many transactions. A transaction is driven by exactly two tasks belonging
to different business objects. The tasks of an object share common states and
are encapsulated by the object. These tasks pursue joint goals and objectives
which are attributes of the tasks.

The'SOMmethodology usestwordifferent concepts of coupling tasks (Fig-
ure 3, top): Loosely coupled tasks belong to different objects and therefore
operate on different states. The tasks are connected by a transaction which

SOM 345

loosely coupled tasks
—_(@S0Ciated to different obje

Object 1 p (<11
internal 1 transaction,
event c 7 B >
tightly coupled tasks tightly coupled tasks
(associated to one object) (associated to one object)

View on Structure:

: View on Behavior:
Interaction Schema

Task-Event Schema A

S e _ ol
Object 1| »|Object2| o Object2 |[a| [d>(@)—>]e]
L] g %l 13 —I— A

[t1 t2

2

Object1 b [>{(1)—>{c|

Figure 3: Representation of structure and behavior in a business process model

serves as an interaction channel for passing states from one task to the other.
A task triggers the execution of another task by an event (good, service pack-
age, or message) riding on the interaction channel. Tightly coupled tasks
belong to the same object and operate on the same states. The tasks are
connected by an internal event which is sent from one task to trigger the exe-
cution of the other. The concept of encapsulating tightly coupled tasks by an
object and loosely coupling the tasks of different objects via transactions is
a key feature of the object-oriented characteristic of the SOM methodology.

A third type of event is the external event. An external event denotes the
occurrence of an event like ‘the first day of a month’ which is not bound to
a transaction.

Due to its complexity, a business process model is represented in two
different diagrams (Figure 3 bottom and Figure 2): The Interaction Schema
is the view on structure. It shows business objects which are connected by
business transactions. The Task-Event Schema is the view on behavior. It
shows tasks which are connected by events (transactions, internal events, or
external events).

4.2 Decomposition Rules

The SOM methodology allows a business process model to be decomposed
by stepwise refinement: Decomposition takes place with the components of
the interaction schema specifying the structure of a business process model,
i.e. business objects, business| transactions, and goods/services (see the rela-

346 Otito K. Ferstl, Elmar J. Sinz

tionship consists of in Figure 2). The components of the task-event schema
which specify the behavior of a business process model (tasks, events riding on
transactions, internal events, and external events) are not decomposed but
redefined on subsequent decomposition levels of a business process model.
The decomposition rules for business objects and business transactions are
shown in Figure 4 . Specific rules for decomposition of goods/services are not
required because of simply decomposing them into sub-goods/sub-services.

Decomposition rules for business objects:

0 ::={0",0"T(0',0"),[T(0",0N]} M
0 :={0',0",[T(0,0")]} @)
0 :={spec O'}* &)
ojo" ==0 4

Decompostition rules for business transactions:

T(0,0' :=[[T«(0,0") seq] T¢(0',0)] seq T«(0,0") ®)

Tx m=T'x{seq T"x}* | T'x{par T"x}* (x=i,c,e,r,f) (6)
Tx = ={spec Tx}* (x=i,c.e,1,f) @)
TiTTe =T ®)
TTe ==T)

Figure 4: Decomposition rules for business objects and business transactions
(::=replacement,{} set, {}* list of repeated elements, [] option, | al-
terantiv, seq sequential order, par parallel order, spec specialization)

The decomposition of a business process model helps to manage its com-
plexity, allows to separate the management system of a business process from
its operational system, and uncovers the coordination of a business process.

The SOM methodology uses two basic coordination principles within de-
composition [FS95]:

e Applying the feedback control principle (rule 1) a business object is
decomposed into two sub-objects and two transactions: a management
object O’ and an operational object O” as well as a control transaction
T, from O’ to O” and a feedback transaction T in opposite direction.
Thesercomponentsiestablishrarfeedback control loop. The management
object prescribes objectives or sends control messages to the operational
object via the control transaction. Conversely the operational object

SOM 347

decomposition

7 _initiating transaction

object in role of
management object

control

. tr’z_a__?
objectinrole . i
of ope,aﬁo/ . ~_enforcing transaction
nal object 4l =Sty

Figure 5: Decomposition of business process models

reports to the management object via the feedback transaction.

e Applying the negotiation principle (rule 5) a transaction is decom-
posed into three successive transactions: (1) an initiating transaction
T; where a server object and its client learn to know each other and
exchange information on deliverable goods/services, (2) a contracting
transaction 1%, where both objects agree to a contract on the delivery of
goods/services, and (3) an enforcing transaction T,, where the objects
transfer the goods/services.

The types of transactions resulting from the decomposition are shown in the
meta model (Figure 2) as specialized transactions.

Figure 5 illustrates the application of the coordination principles for the
decomposition of business process models. The decomposition of the first
level into the second level is done by applying the negotiation principle. Ap-
plying the feedback control principle leads to the third level.

In addition to the coordination principles given above, a transaction may
be decomposed into sub-transactions of the same type which are executed
in sequence or in parallel (rule 6). Correspondingly, a business object may
be decomposed into sub-objects of the same type (management object or
operational object) which may be connected by transactions (rule 2). Objects
as well as transactions may be specialized within the same type (rules 3 and
7). The other rules (4, 8, and 9) are dsed for replacement within successive
decompositions.

348 Otto K. Ferstl, Elmar J. Sinz

It is important to state that successive decomposition levels of a business
process model do not establish new, different models. They belong to exactly
one model and are subject to the consistency rules defined in the meta model.

4.3 Example: Business Process Distribution

To give an example, Figure 6 (left) introduces the business process distribu-
tion of a trading company. At the initial level, the interaction schema consists
of three components, (1) the business object distributor which provides a ser-
vice, (2) the transaction service which delivers the service to the customer,
and (3) the business object customer itself. Distributor is an internal object
belonging to the universe of discourse while customer is an external object
belonging to the environment. At this level the entire cooperation and co-
ordination between the two business objects is specified by the transaction
service. Figure 6 (right) shows the corresponding sequence of tasks which
is very simple. The task names in the task-event schema are derived from
the name of the transaction. Here, the task service> (say send service) of
distributor produces and delivers the service, the task >service (say receive
service) of customer receives it. The arrow service here defines the sequence
of the two tasks belonging to the transaction service which is represented in
the interaction schema by an arrow, too.

> service

customer

SeTVIce distributor

service

service >

distributor

Figure 6: Interaction schema (left) and task-event schema (right) of business pro-
cess distribution (1st level)

Transactions like service connect business objects inside the universe of
discourse and link business objects to the environment. When modeling a
value chain the business process model of a trading company includes a second
business process procurement, which receives services from a business object
suppliery belonging tortherenvironment, and delivers services to distributor.

The example (Figure 6) will be continued now. As customer and dis-
tributor negotiate about the delivery of a service, the service transaction is

SOM 349

> price X

list _)O_> order > > service
customer| customer| customer

[0]

Q

c

[

(7]

o

rice .
|‘i)St N > order 90_)servnce >
distributor] distributor distributor

Figure 7: Interaction schema (left) and task-event schema (right) of business pro-
cess distribution (2nd level)

decomposed according to the negotiation principle into the sub-transactions
i price list (initiating), c: order (contracting), and e: service (enforcing
transaction). The corresponding task-event schema is determined implicitly
because the sub-transactions are executed in sequence (Figure 7). The tasks
of each business object are connected by object-internal events. In the next
step, the feedback control principle is applied to distributor to uncover the
internal management of the business object. This leads to the sub-objects
sales (management object) and servicing system (operational object) as well
as the transactions r: service order (controlling transaction) and f: service
report (feedback transaction). At the same time the transactions assigned
to the parent object distributor are re-assigned to the new sub-objects. The
sales sub-object deals with price list and order, the servicing system operates
the service transaction (Figure 8).

Continuing the example, the final decomposition of the business process
distribution uses the additional rules given above (Figure 9 and 10). Here, the
servicing system and the service transaction are decomposed to find business
objects and transactions which operate homogeneous goods or services. First,
the e: service transaction is decomposed into the sequence e: delivery and
e: cash up. The cash up transaction is decomposed again according to the
negotiation principle into the sequence c¢: invoice and e: payment. The
initiating transaction is omitted because the business objects already know
each other. The contract of the invoice transaction refers to amount and
date of payment, not to the obligation to pay in principle which is part. of
the transaction c: order.

As a result of this refinement, some other decomposition are necessary.
The business object servicing system is decomposed into store and finances,
responsible for goods and payments tespectively. The transaction r: service
order is decomposed into the parallel transactions r: delivery order and r:
debit. And likewise the transaction f: service report is decomposed into f:

350 Otto K. Ferstl, Elmar J. Sinz

list () order> > service

customer customer|

i: pri

e: service

sales -
W N service > service
price servi
)] list > >order L") 3 order > report
? I service f: service a
order report | sales | { sales |

sales

I3
I
@
23

o
i B
€: service | servicing g
system K]
8
- service >
> service (> senvicin
order
servicin, service
report >
servicing

Figure 8: Interaction schema (left) and task-event schema (right) of business pro-
cess distribution (3rd level)

c: invoice

: delivery
report

finances

e: payment

Figure 9: Interaction schema of business process distribution (4th level)

delivery report and f: payment report.

5 Linking Business Application Systems to
Business Process Models

As outlined in Section 3, personnel and business application systems are
resources to carry out business processes. In addition to the language for
business process modeling, the SOM methodology provides a concept for
explicitly linking business application systems to business process models. To
introduce this concept, we. investigate the automation of business processes

SOM 351

= & . pay-
list 3 o > order » > delivery > NocH () ment>
lcustomer
L]
5 = 8
B] g g
o 5 > &
£ 5 - [T
5 2 il invoice >
N | = ¥
price delivery | | | oeiven>(O¥ sales | pay-
fist> > order _)0_> order> | report ™ i ment repdri
sales : sales | sales | sales (¥ dabit> sales
e A !
- = i
:_8&;_85 .E o sales | E
:)
z 3 - z =
£ o
H 8 : £
= =] IS a o
e % = L] &
delivery >| b
==
> delivery store R i »pay- | payment
lorder Sdebit | ment -)(D—)l raport >
store : ivery E finances } finances| finances

del e
i i report > |3
store slore E finances

Figure 10: Task-event schema of business process distribution (4th level)

using business application systems, define a meta model for the domain-
specific specification of business application systems and discuss the impact
of this concept on the architecture of business application systems.

5.1 Automation of Business Processes

The automation of a business process is determined by the automation of
tasks and transactions. An information processing task is fully-automated,
if it is carried out completely by an application system, it is non-automated
if it is carried out by a person, and it is partly-automated if it is carried out
by both a person and an application system cooperating [FS98].

Similar considerations hold for the automation of transactions within in-
formation systems. A transaction is automated if it is performed by an
electronic communication system and it is non-automated if it is performed
e.g. paper-based or orally.

Prior to defining the degree of automation, a task or a transaction have
to be investigated if they are suitable for automation. A task is suitable
for automation if its states and operations can be handled by a computer
system. A transaction is suitable for automation if message passing and
protocol handling can be done by an electronic communication system.

The relationship between business process model and business application
systems is based exactly on the concept of automation of tasks and transac-
tions. The interaction schema of a business process model is convenient to
record the extent of both the achievable and the achieved degree of automa-
tion. Figure 11 (left) shows degrees of automation of tasks and transactions
(see also [Kru97]) and applies them to the business object sales of the business

352 Otto K. Ferstl, Elmar J. Sinz

share of a task
suitable for automation

not partly fully

[

4 &
4 N

thereof automated
fully partly not

A
g

transaction suitable
for automation 2 e« M=BE
£ 3 =28 WIWES
not fully 35 T © ol =8
s ST c|de
TR g Y s . G
o2 (o> >
(1]
E
S >
==
R —_—

Figure 11: Automation of tasks and transactions of the sales business object
process distribution (Figure 11 right).

5.2 Meta Model for Specifications of Business
Application Systems

The SOM methodology uses an object-oriented approach for the domain-
specific specification of business application systems. The corresponding
meta model is shown in Figure 12. The notion of class follows the general
understanding of object-orientation. Classes have attributes and operators
and they are connected by binary relationships. Relationships are either is_a,
interacts_with, or is_part_of relationships. Interacts_with relationships denote
channels for message passing between two classes, is_a relationships are used
to model the specialization of a class using inheritance, and is_part_of rela-
tionships allow the specification of the component classes of a complex class.

To specify the linkage of business application systems to business process
models the meta model in Figure 12 is related to the meta model in Figure 2.
The relationships represented as dashed lines connect notions of a business
process model to notions of a specification of an application system. A busi-
ness object is connected to an object-specific class. A good/service, business
transaction, or taskis connected to a service-specific, transaction-specific, or
task- specific class respectively as well as some interacts_with relationships.
Object-specific, service-specific, and transaction-specific classes together with

soM , 353

'2 2 connects 0,4/ :
Class - < ‘|Relat|onshrp
is_a| \ [Operator | is_a
/ \nas
| Attribute |
- / \\‘. /,. .
| object =7 SEWICB - Ef;gz;cmn 3 s 4 ‘ ;interactsq 1| i.s _paﬁ_of'
| specific speciﬁcJ |specif‘c = N ssesees _@f_ith-"'r'. [e—
I schema of conceptual classes '
P
| specific | -
- échema of task classes
_..'l — | RO | gt e e
| business | | good/ | | business t K
| object | | service ! !transaction | e

Figure 12: Meta Model of Business Application Systems

their relationships are arranged to the schema of conceptual classes. Task-
specific (task class in short) together with their relationships belong to the
schema, of task classes. Is_a relationships and is_part_of relationships cannot
be linked directly to a business process model. They have to be included
during the further specification of the schema of conceptual classes or the
schema, of task classes.

5.3 Architecture of Business Application Systems

The way of linking a business application system to a business process model
following the SOM methodology has impact on the architecture of business
application systems. Again we concentrate on domain-specific aspects and
omit details of design and implementation.

The SOM methodology leads to (1) strictly object-oriented, (2) distribu-
ted, (3) object-integrated, and (4) evolutionary adaptable specifications of
business application systems [FS96]:

1. The domain-specific specifications of the schema of conceptual classes
and of the schema of task classes are strictly object-oriented. Concep-
tual classes encapsulate (a) the states of the (automated) tasks of a
business object as well as the states of the corresponding transactions
and goods/services, and (b) the operations defined directly and exclu-
sively on these states. Using the linkage of business process models and
specifications of business application systems in Figure 12, the initial
structure of the schema; of conceptual classes can be derived from the
most detailed! level of the interaction schema in conjunction with the

354 Otto K. Ferstl, Elmar J. Sinz

T s

i "=~ datvery | : delivery |: d
~ e (/ s‘é{”e“"e"f}‘{mwn"'}“s{ e }

]
]

et | PEYMEnt

]

customer

Figure 13: Initial schema of conceptual classes of the business application system
sales

task-event schema of the corresponding business process model.

Figure 13 shows the initial schema of conceptual classes derived from
the business process model in Figures 9 and 10. The classes at the left
side correspond to the business objects and the product. The class price
list is derived from the corresponding transaction, connecting sales and
customer with reference to product. The same way the other classes are
derived from transactions. Figure 13 refers to the complete distribution
process. The shaded classes belong to the sales application system.
Dark shaded classes belong exclusively to the sales application system,
light shaded classes are shared with other application systems.

Task classes coordinate the cooperation of conceptual classes and/or
other task classes when executing a task automated fully or partly.
In other words, task classes specify the work-flow within a business
application system. The initial structure of the schema of task classes
is almost identical to the most detailed level of the task-event schema of
the corresponding business process model. Tasks lead to task classes,
internal events and transactions lead to interacts_with relationships.
Therefore Figure 10 illustrates the schema of task classes too. The
shaded areas delimit the schema of task classes for the sales business
application system as well as for store and finances.

2. A distributed system is an integrated system which pursues a set of
joint goals. It consists of multiple autonomous components which co-
operate in pursuing the goals. There is no need for a component which
has global control of the system [Ens78]. Starting with a business pro-
cess model with business objects loosely coupled by business trans-
actions, the SOM methodology leads to a specification of distributed
business application systems'in a very natural way. Initially, each con-
ceptual class and each task class derived from a business process model
is an autonomous component. During the further specification process

SOM 355

classes may be merged due to domain-specific reasons. For instance
in Figure 13 debit and invoice are merged to reduce redundancy of at-
tributes, in Figure 12 invoice> and debit> are merged to avoid sources
of functional inconsistency.

3. The most common way to integrate application systems is data inte-
gration. Several application systems share a common database, the
functions of the application systems operate on this database via exter-
nal views. Although this kind of integration preserves consistency and
avoids redundancy of data, it is not sufficient to support flexibility and
evolution of application systems. The SOM methodology completes
the concept of data integration by the concept of object integration
[Fer92, FS98]. This concept supports distributed application systems
consisting of autonomous and loosely coupled sub-systems which them-
selves may be internally data integrated. To achieve consistency of the
application system as a whole, the sub-systems exchange messages ac-
cording to detailed communication protocols. These protocols are de-
rived from the transaction-oriented coordination of business objects as
specified in the business process models.

4. The SOM methodology uses similar structures of distributed systems at
the business process model layer and the business application systems
layer [FS96]. A balanced and synchronized development of business
process models and business application systems allows a simultaneous
evolution of both layers during their life cycle [FS97]. There is a strong
need that local changes in the business process model should only ef-
fect local changes in the business application systems. Both features,
distributed systems at the two layers and the synchronized evolution,
show that the business process model of a business system proves to
be the backbone of a widespread architecture of business application
systems.

6 Related Work

In literature and practice, there are several approaches to business process
modeling. The approaches take different perspectives on a business system
and specify models based on different views. The differences will be illus-
trated exemplary at the modeling languages IDEF and CIMOSA.

IDEF (Integration Definition) is a family of languages which evolved since
the 1970’s adapting to different modeling methods [MM98]. Applied to busi-
ness systems, it basically covers the universe of discourse which is supported
by an application system. Personal actors of a business system are not sub-
ject of these languages. With respect to the SOM enterprise architecture
the IDEF languages refer to the model layers of business process model and
specification of business application systems. They use traditional views on

356 Otto K. Ferstl, Elmar J. Sinz

functions, data, and processes to specify structure and behavior of a system.
The first language IDEFOQ is based on the method Structured Analysis and
Design Technique (SADT). It helps to specify the functions of the universe of
discourse hierarchically. IDEF1X is suitable for modeling database schemes
and IDEF3 is aimed at processes. IDEF4 refers to software design. IDEF5
as the end of the chain supports the construction of enterprise ontologies. It
comes closest to the requests taken up for business process modeling within
the SOM methodology. The IDEF languages viewing functions, data, and
processes fail to integrate the three views within a single object-oriented con-
cept.

Another approach for modeling of business processes and business ap-
plication systems corresponding to the model layers 2 and 3 of the SOM
enterprise architecture are the CIMOSA languages [Ver98]. CIMOSA is an
open system architecture for enterprise integration in manufacturing. Like
the IDEF family the CIMOSA modeling languages also use views on func-
tions, data, and processes to specify structure and behavior of a system.
They supplement views on resources and organizational aspects. There are
different types of flows within a system of business processes i.e. control flows
defined as workflows, material flows and information flows. This approach
also fails to integrate the views within an object oriented concept.

IDEF and CIMOSA views a business process as a sequence of activities
(also called steps, process elements, functions), which are tied together by
joint marks and which have to be equipped with resources [FS93, VB96].
From the viewpoint of the SOM methodology, IDEF and CIMOSA describe
the behavior of a business system. In contrast, the SOM methodology spec-
ifies structure and behavior of a business system. The specification of struc-
ture consists of business objects and transactions and refers to the handling
of goods and services. The coordination of the business objects involved in
the handling of goods and services is specified explicitly.

7 Summary and Outlook

The previous sections give a brief introduction to the SOM methodology
for business systems modeling. A comprehensive enterprise model consists
of sub-models for each layer of the enterprise architecture (Figure 1). The
sub-models are balanced carefully within the architectural framework. It
is not necessary to start top down with the enterprise plan, followed by
the business process model and ending with the specification of business
application systems. The starting point depends on the goals pursued in the
specific project.

More and more, enterprise models prove to be indispensable for business
engineering; information management; and organization. Enterprise models
following the SOM methodology show several characteristics which support
the management of large enterprise models: (a) several model layers, each

SOM 357

focusing on specific characteristics of a business system, (b) definition of views
on each model layer, outside and inside perspectives, (c) different levels of
abstraction and decomposition within a single model, and (d) notions with
precise semantics which are arranged to meta models. Compared to other
approaches of enterprise-wide modeling, e.g. enterprise-wide data modeling,
a comprehensive model of a business system offers advantages and is more
likely to be handled successfully.

There is a lot of research around the kernel of the SOM methodology
which cannot be shown in this contribution due to limitation of space. These
features include management of complexity (i.e. decomposition of large busi-
ness process models into models of main and service processes), reuse of
model components (using patterns, reference models, application objects),
tool support (for modeling, reporting, business process management, infor-
mation management, work-flow management) [FS+94], an in depth consid-
eration of distributed business processes and distributed business application
systems [FS96] as well as first findings on virtual business processes [FS97].

References

[Bah92] Bahrami, H., The Emerging Flexible Organization: Perspectives from
Silicon Valley, in: California Management Review, Summer 1992, 33-52

[Bee81] Beer, S., The Brain of the Firm, 2nd Edition, Wiley, Chichester, 1981

[Ens78] Enslow, P. H., What is a ‘Distributed’ Data Processing System? in:
IEEE Computer, Vol. 11, No. 1, January 1978, 13-21

[Fer92] Ferstl, O. K., Integrationskonzepte betrieblicher Anwendungssysteme,
Fachbericht Informatik 1/92, Universitdt Koblenz-Landaun, 1992

[FS90] Ferstl, O. K., Sinz, E. J, Objektmodellierung betrieblicher
Informationssysteme im Semantischen Objektmodell (SOM), in:
Wirtschaftsinformatik 32 (6), 1990, 566-581

[FS91] Ferstl, O. K., Sinz, E. J., Ein Vorgehensmodell zur Objektmodel-
lierung betrieblicher Informationssysteme im Semantischen Objekt-
modell (SOM), in: Wirtschaftsinformatik 33 (6), 1991, 477-491

[FS93] Ferstl, O. K., Sinz, E. J., GeschiftsprozeBmodellierung, in:
Wirtschaftsinformatik 35 (6), 1993, 589-592

[FS98] Ferstl, O. K., Sinz, E. J., Grundlagen der Wirtschaftsinformatik, Band
1, 3. Auflage, Oldenbourg, Miinchen 1998

[FS95] Ferstl, O. K., Sinz, E. J., Der Ansatz des Semantischen Objektmodells
(SOM).zux Modellierung von Geschaftsprozessen, in: Wirtschaftsinfor-
matik 37 (3), 1995, 209-220

[FS+94] Ferstl, Q. K., Sinz, E. J, Amberg, M., Hagemann, U., Malischewski,

358

[FS96]

[FS97]

[Kru97]

[MM98]

[Sin97]

[Ver98]

[VB96]

Otto K. Ferstl, Elmar J. Sinz

C., Tool-Based Business Process Modeling Using the SOM Approach,
in: B. Wolfinger (ed.), Innovationen bei Rechen- und Kommunikations-
systemen, 24. GI-Jahrestagung im Rahmen des 13th World Computer
Congress, IFIP Congress 94, Hamburg, Springer, Berlin, 1994

Ferstl, O. K., Sinz, E. J., Multi-Layered Development of Business
Process Models and Distributed Business Application Systems - An
Object-Oriented Approach, in: W. Konig, K. Kurbel, P. Mertens, D.
Premar (eds.), Distributed Information Systems in Business, Springer,
Berlin 1996, 159-179

Ferstl, O. K., Sinz, E. J., Flexible Organizations Through
Object-Oriented and Transaction-oriented Information Systems,
in: H. Krallmann (ed.), Wirtschaftsinformatik '97, Internationale
Geschaftstitigkeit auf der Basis flexibler Organisationsstrukturen
und leistungsfahiger Informationssysteme, Physica-Verlag, Heidelberg
1997, 393-411

Krumbiegel, J., Integrale Gestaltung von Geschiftsprozessen und
Anwendungssystemen in Dienstleistungsbetrieben, Deutscher Univer-
sitatsverlag, Wiesbaden 1997

Menzel, Ch., Mayer, R. J., The IDEF Family of Languages, in: P.
Bernus, K. Mertins, G. Schmidt (eds.), Handbook on Architectures of
Information Systems, this volume, 1998

Sinz, E. J, Architektur betrieblicher Informationssysteme, in: P.
Rechenberg, G. Pomberger (eds.), Informatik-Handbuch, Hanser-
Verlag, Miinchen, 1997, 875-887

Vernadat, F. B., The CIMOSA Languages, in: P. Bernus, K. Mertins,
G. Schmidt (eds.), Handbook on Architectures of Information Systems,
this volume, 1998

G. Vossen, J. Becker (eds.), GeschiftsprozeBmodellierung und
Workflow-Management, International Thomson Publishing, Bonn,
1996

CHAPTER 16

Workflow Languages

Mathias Weske, Gottfried Vossen

We survey the requirements, concepts, and usage patterns of workflow languages
which are used in today’s commercial or prototypical workflow management sys-
tems. After briefly reviewing workflow application development processes, basic
notions of workflow modeling and execution and their relevant properties are in-
troduced. A coarse classification of workflow languages is presented, and the main
features of common workflow languages are described in the context of a sample
application process.

1 Introduction

Workflow management aims at modeling and controlling the execution of pro-
cesses in business, scientific, or even engineering applications. It has gained
increasing attention in recent years, since it allows to combine a data-oriented
view on applications, which is the traditional one for an information system,
with a process-oriented one in which activities and their occurrence over time
are modeled and supported properly [VB96, GHS95]. Workflow management
combines influences from a variety of disciplines, including cooperative infor-
mation systems, computer-supported cooperative work, groupware systems,
or active databases. Its major application area has so far been in the busi-
ness field; as the modeling of business processes has become a strategic goal in
many enterprises, a further step is to optimize or to reengineer them, with the
goal of automation in mind. Once the modeling and specification of business
processes has been completed, they can be verified, optimized, and finally
brought onto a workflow management system. It is here where languages for
describing or specifying workflows, or workflow languages for short, enter the
picture. These languages will be discussed in what follows.

Generally, workflow languages aim at capturing workflow-relevant infor-
mation of application processes with the aim of their controlled execution
by a workflow.management system [RS95, GHS95, She96]. The information

360 Mathias Weske, Gotifried Vossen

involved in workflow management is heterogeneous and covers multiple as-
pects, ranging from the specification of process structures to organizational
modeling and the specification of application programs and their respective
execution environments. We here survey the requirements, concepts, and us-
age patterns of workflow languages which are used in today’s commercial or
prototypical workflow management systems. To embed workflow languages
in the context of their purpose and usage, workflow application development
processes are reviewed, and a simple application process is described which
serves as our running example.

Workflow languages are yet another species of languages for human-com-
puter interaction. In contrast to general-purpose programming languages,
workflow languages are highly domain specific, i.e., they are tailored towards
the specific needs of workflow applications. Moreover, computational com-
pleteness is not an issue in a workflow language, since they are not used to
describe computations. While control structures play an important role in
both programming languages and in workflow languages, low-level constructs
are missing in workflow languages. On the other hand, workflow languages
support constructs to integrate external applications, and to describe and or-
ganize their interaction, cooperation, and communication relationships. They
are hence similar in nature to software specification languages, which also
have to be able to describe control flow as well as data flow between modules
or components. Since workflow models are used as an information basis for
the modeling and optimization of application processes, it should be obvious
that graphical languages play an important role.

There are numerous approaches to model related and potentially concur-
rent activities, which stem from different domains. A set of rigorous mathe-
matically founded approaches have been developed in the area of distributed
computing, among which process algebras play a key role, namely to formally
define concurrently executing processes and their communication behavior.
Important approaches are Milner’s CCS [Mil80] and Hoare’s CSP [Hoa85].
These approaches focus mainly on formal properties of distributed compu-
tations; since technical and organizational aspects, which are important for
workflow languages, cannot be represented in these calculi, they are not dis-
cussed in further detail here.

The organization of the remainder is as follows: In Section 2 basic con-
cepts and notions of workflow modeling are presented, and an example is
provided which will serve as our running example. Since process modeling
languages have been discussed elsewhere in this book, we focus on the specific
aspects workflow languages have to cover. Section 3 focuses on categories of
workflow languages. For each categoty we choose a typical language, and
we show how it can be used to model the sample application process as a
workflow. A summary and concluding remarks complete our survey.

Workflow Languages 361

Information Gathering

I

Business Process Modeling

J
Workflow Modeling

+

Implementation, Verification, Execution

Figure 1: Workflow Application Development Process

2 Workflow Modeling

Workflow management aims at modeling and controlling the execution of
complex application processes in a variety of domains, including the tradi-
tional business domain [LA94, GHS95, JB96] and the natural sciences [I0a93,
VW97]. Workflow models are representations of application processes to
be used by workflow management systems for controlling the execution of
workflows. Workflow languages are used to specify workflow models. Since
workflow modeling aims at mapping relevant information about application
processes into workflow models, workflow languages need to have constructs
for a variety of aspects, as explained below in Section 2.3.

2.1 Workflow Development Process

In general, workflow models capture the information of application processes
which is relevant for the purpose of workflow management. Before workflow
languages will be discussed, the general development process of workflow
applications is described. While the workflow application development pro-
cess differs from one project to the next, the following phases typically are
involved.

The first phase of the workflow application development process, which
generally shares a number of aspects and steps with a database design process
or an information system development process, deals with gathering informa-
tion, relevant for the application process under investigation (Figure 1). In
this phase, empirical studies like interview techniques and available docu-
mentation is used. The techniques used in this phase are mostly informal.
The activities of this phase are centered around the application, and technical
issues are not considered.

The next phase involves business process modeling, in which the informa-
tion previously gathered is used to specify business process models. In this
phase semi-formal techniques are used, typically some simple form of Petri
net formalism, often without exploiting their formal semantics. The main
purpose of business process modeling is to provide a general and easy-to-read
notation, which enables information system experts and domain experts to

362 Mathias Weske, Gotifried Vossen

validate and optimize business process models, an activity called business
process reengineering. The result of this phase is a business process model,
which is used as a basis for the next phase.

The purpose of the subsequent workflow modeling phase is to enhance
the business process model with information needed for the controlled execu-
tion of workflows by a workflow management system. In this phase workflow
languages are used. Typically, different languages are used for business mod-
eling and workflow modeling. Hence, business process models have to be
translated into the constructs of a workflow language. Notice that there are
languages that cover both phases, as discussed below. Besides the transla-
tion, information which is relevant for the controlled execution of workflows
by a workflow management system is added to the model. On the other hand,
information which is irrelevant for workflow executions is omitted from the
business process model. Hence, workflow modeling abstracts from irrelevant
information and adds relevant information, mainly of technical nature. For
instance, in workflow models application programs used to perform workflow
activities are specified, including their execution environment. The result
of the workflow modeling phase is a workflow model, which is used by a
workflow management system for controlling the execution of the workflow.
We point out that the workflow development process can be iterated so that
workflow execution data is used to improve business process models; it may
also depend on the methods and tools used.

2.2 Sample Application Process

In order to keep the presentation of workflow languages concise and to pro-
vide a common basis to study and to compare different workflow languages,
we now present an example of a business process from the area of credit
processing in a banking environment. This example originates from the doc-
umentation of FlowMark, IBM’s workflow management system [FM96]; when
using the example with other workflow languages, it is modified according to
the needs of the workflow language used.

Informally, the application process starts when a customer requests a
credit from the bank. The customer does so by filing a credit request form and
by sending it to the appropriate department in the bank. The information in
the credit request form is transferred into the bank’s computer system. After
the validity of the data is checked, the next step involves an assessment of
the risks involved in granting the credit request. Depending on the amount
requested, checking activities of different complexity may be involved. We
assume that the checking activity is performed by a financial expert, subject
to the credit amount requested and the financial situation of the applicant.
If the expert grants the credit, administrational activities to allocate the
requested amount to the customer’s account are launched. If it is not granted
in this activity then a second, more advanced expert re-evaluates the case,
possibly after getting hold of new information on the financial situation of

Workflow Languages 363

the customer. Depending on his or her judgment, the credit is rejected or
granted. In any case, the customer is informed of the decision.

While this description of a credit processing application simplifies real-
world applications considerably, it provides a basis for a presentation of work-
flow aspects and of typical workflow languages. Notice a typical aspect of
such informal descriptions, namely that errors and failures which may be
encountered while the process is executed are not included. Indeed, a vastly
open problem today is to specify exceptions as well as repair or compensat-
ing actions for possible errors and failures, or to build corresponding features
into languages that allow the specification of normal activities in workflows.

2.3 Workflow Aspects

As discussed above and as indicated in the example, workflow modeling aims
at specifying different aspects of the application process and of the technical
and organizational environment in which the workflow will be executed. To
provide modularity in workflow modeling and to refer to the different dimen-
sions of workflow modeling explicitly, workflow aspects are described [JB96].
The description of the workflow aspects includes basic notions of workflow
modeling and execution.

2.3.1 Functional Aspect

The functional aspect covers the functional decomposition of activities as
present in application processes, i.e., it specifies which activities have to be
executed within a workflow. To deal with the high complexity of application
processes, the concept of nesting is used to describe the functional aspect of
workflows. In partic<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>